半导体导电特性
半导体的特性

一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。
如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。
导体的电阻率小于10-6cm。
如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。
绝缘体的电阻率大于108cm。
有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。
半导体的电阻率在10-6~108之间。
众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。
我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。
而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。
然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。
半导体在不同情况下,导电能力会有很大差别,有时犹如导体。
在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。
②温度:当温度稍有变化,半导体的导电能力就会有显著变化。
如温度稍有增高,半导体的电阻率就会显著减小。
同理光照也会影响半导体的导电能力。
2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。
(纯度约为99.999999999%。
即杂质含量为10的9次方分之一。
)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。
锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。
由于原子核带正电与电子电量相等,正常情况下原子呈中性。
由于内层电子受核的束缚较大,很少有离开运动轨道的可能。
所以它们和原子核一起组成惯性核。
外层电子受原子核的束缚较小。
叫做价电子。
硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。
半导体的特性

半导体的特性
半导体是一种具有介于导体和绝缘体之间的电导性能的材料。
其特
性包括:
1. 导电性:半导体具有介于导体和绝缘体之间的导电性能。
在绝缘
体中,电子无法自由移动,而在导体中,电子可以自由移动。
半导体
的特点是在常温下,其导电性由掺杂与温度控制。
2. 能带结构:半导体的原子排列形成了能带结构,其中包含导带和
价带。
绝缘体的导带与价带之间的能隙非常大,而导体几乎没有能隙。
半导体的能隙介于导体和绝缘体之间,通常为1-3电子伏特。
3. 温度对导电性的影响:与导体不同,半导体的电导性能与温度密
切相关。
随着温度的升高,半导体的电导性能也会增加。
4. 掺杂:通过在半导体晶体中掺入少量的杂质,可以显著地改变其
导电性质。
杂质的掺杂可以分为N型和P型。
N型掺杂引入一个附加
的自由电子,而P型掺杂引入一个附加的空穴。
5. PN结:将N型和P型的半导体材料接触在一起形成PN结。
PN
结具有整流作用,即在正向偏置时,电流可以流动,而在反向偏置时,电流被阻塞。
6. 半导体器件:半导体的特性使其成为制造各种电子器件的理想材料,如二极管、晶体管、场效应管和集成电路等。
总的来说,半导体的特性使其成为现代电子技术的基础,广泛应用于计算机、通信、光电等领域。
p型半导体和n型半导体导电能力

P型半导体和n型半导体导电能力半导体材料是一类在电子学领域中具有重要应用的材料,它具有介于导体和绝缘体之间的导电特性。
而p型半导体和n型半导体是半导体材料中的两种重要类型,它们的导电能力是半导体器件工作的关键。
本文将从p型半导体和n型半导体的导电能力特性入手,探讨它们在电子器件中的应用。
一、p型半导体的导电能力1. 杂质掺杂p型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为正电荷载流子的半导体。
常用的杂质有铝(Al)、硼(B)等。
p型半导体的导电能力主要来源于由掺杂杂质形成的空穴(正电荷载流子)。
2. 导电特性由于p型半导体中的空穴为主导电载流子,因此其导电特性取决于空穴的迁移率和扩散率。
相比n型半导体而言,p型半导体的导电能力较弱,但在一些特定的电子器件中,p型半导体也具有重要的应用价值。
二、n型半导体的导电能力1. 杂质掺杂n型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为负电荷载流子的半导体。
常用的杂质有磷(P)、砷(As)等。
n型半导体的导电能力主要来源于由掺杂杂质形成的自由电子(负电荷载流子)。
2. 导电特性由于n型半导体中的自由电子为主导电载流子,因此其导电特性取决于自由电子的迁移率和扩散率。
相比p型半导体而言,n型半导体的导电能力较强,因此在电子器件中得到广泛的应用。
三、p型半导体和n型半导体的应用1. 集成电路在集成电路中,p型半导体和n型半导体往往交替排列,形成复杂的电路结构。
通过p-n结的形成,可以实现整流、放大、开关等各种功能,为现代电子设备的发展提供了重要的支持。
2. 光电器件在光电器件中,p型半导体和n型半导体可以形成光电二极管、太阳能电池等器件,将光能转化为电能,具有广泛的应用前景。
3. 光电子器件光电子器件利用p型半导体和n型半导体的光电转换特性,实现光信号的检测、放大和处理,被广泛应用于通信、显示、医疗等领域。
p型半导体和n型半导体作为重要的半导体材料类型,其导电能力及应用具有重要的理论和实际意义。
半导体的导电特性杂质电子与导电性的关系

半导体的导电特性杂质电子与导电性的关系半导体是一种介于导体和绝缘体之间的材料,其导电特性与其内部的杂质电子密切相关。
在本文中,我们将探讨半导体的导电特性与杂质电子之间的关系,并介绍几种常见的半导体杂质掺杂类型及其导电性质。
一、掺杂对半导体导电特性的影响1. 杂质掺杂半导体通过潜在的杂质掺杂,即将少量的外来原子引入到晶体中来增强其导电性能。
杂质可以是五价的磷或三价的硅,分别称为N型和P型半导体。
这些杂质原子与半导体晶体原子形成化学键,引入额外的电子或空穴,从而改变其导电特性。
2. N型半导体在N型半导体中,磷原子的外层电子多于硅原子,磷原子取代硅晶格位置时,五价的磷原子将共价键与四个硅原子形成。
多余的第五个电子不与任何原子形成共价键,形成自由电子。
这些自由电子在半导体中流动,使N型半导体具有较高的电导率。
3. P型半导体在P型半导体中,硅原子的外层电子少于磷原子,因此P型半导体通过三价的硅原子掺杂。
这些三价硅原子与晶体硅原子形成共价键,但又有一个缺少的共价键。
这个缺少的位置称为空穴,因此半导体内出现了正电荷。
在P型半导体中,空穴被认为是载流子,通过与自由电子的复合,有效地传导电流。
二、半导体杂质掺杂类型及导电性质1. N型半导体掺杂N型半导体通过掺杂五价元素,如磷或砷,增加了半导体中的自由电子数量。
这些自由电子可从禁带穿过,在半导体中导电。
N型半导体具有较高的电导率,适用于制造晶体管和发光二极管(LED)等电子器件。
2. P型半导体掺杂P型半导体通过掺杂三价元素,如硼或铝,增加了半导体中的空穴数量。
这些空穴可以吸收自由电子并传导电流。
P型半导体也用于制造晶体管和LED等器件,与N型半导体结合使用以形成PN结。
3. 绝缘体杂质掺杂当掺杂浓度过高时,半导体的导电性能可能会减弱或消失。
这种情况下,半导体可能会表现出绝缘体的性质,导电能力很低,不可实际应用。
三、总结半导体的导电特性与杂质电子的存在密切相关。
半导体的导电特性

半导体
本征半导体 杂质半导体
P型半导体(空穴型) N型半导体(电子型)
常用半导体材料硅和锗的原子结构
价电子:最外层的电子受原子核的束缚最 小,最为活跃,故称之为价电子。 最外层有几个价电子就叫几价元素, 半导体材料硅和锗都是四价元素。
Si+14 2 8 4
Ge+32 2 8 18 4
2. 半导体的内部结构及导电方式:
一是势垒电容CB 二是扩散电容CD
(1) 势垒电容CB
势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压降发生变化时,离子薄层 的厚度也相应地随之改变,这相当PN结中存储的 电荷量也随之变化,犹如电容的充放电。
图 01.09 势垒电容示意图
(2) 扩散电容CD
扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散 到P区的电子,与外电源提供的空穴相复合,形 成正向电流。刚扩散 过来的电子就堆积在P 区内紧靠PN结的附近, 形成一定的多子浓度 梯度。
vi
RL vo
vo
t
例3:设二极管的导通电压忽略,已知
vi=10sinwt(V),E=5V,画vo的波形。
vi 10v
5v
R
t
D
vo
vi
E
vo
5v
t
例4:电路如下图,已知v=10sin(t)(V),
E=5V,试画出vo的波形
vi
解:
t
vD
t
例5:VA=3V, VB=0V,求VF (二极管的导 通电压忽略)
根据理论推导,二极管的伏安特性曲线可用下式表示
V
I IS (e VT 1)
式中IS 为反向饱和电流,V 为二极管两端的电压降 ,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数 ,q 为电子电荷量,T 为热力学温度。对于室温(相 当T=300 K),则有VT=26 mV。
半导体和超导体的特点

半导体和超导体的特点半导体和超导体是两种不同类型的材料,它们都在电子和能量传导方面具有很特殊的性质,下面详细介绍它们的特点。
一、半导体的特点1.导电特性:半导体能够在一定条件下表现出良好的导电性能,当半导体中的电子数目增加时,它的导电性能也会相应提升。
2.能带结构:半导体的能带结构独特,其中包含了价带和导带,两者之间有一个带隙。
在带隙范围内,半导体是难以导电的。
3.热激发:半导体可以通过热激发的方式将电子从价带中提取出来,然后进入导带中,使其导电。
4.杂质掺杂:通过掺杂一些杂质元素,可以使半导体导电性发生变化。
n型半导体是通过掺杂五价元素(如磷等)来实现,p型半导体是通过掺杂三价元素(如硼、铝等)来实现的。
5.少数载流子:与金属导电形式不同,半导体的导电是通过少数载流子来实现。
n型半导体电子是载流子,p型半导体空穴是载流子。
二、超导体的特点1.无电阻:超导体的最大特点就是展现出了无电阻状态,电流可以不受电阻和能量损失的限制自由流动。
2.零电阻带:当温度降到超导临界温度以下时,超导体可以形成一条零电阻带,这条带会对电磁波产生反射作用,并导致绕返波的出现。
3.鸣振波:超导体在过渡时通过鸣振波的形式来恢复电阻,当电流超管超过超导体的临界电流时,静态电场会引起振动,从而产生鸣振波。
4.磁场排斥作用:磁场对超导体具有排斥作用,在超导体中,磁场的介入会限制其超导性能。
5.临界温度:超导体的临界温度是它能够表现出超导性的最高温度。
对于高温超导体而言,它们的临界温度要高于-100°C,而对于低温超导体而言,它们的临界温度要低于-100°C。
总体而言,半导体和超导体都是一个致力于推动人类技术进步发挥重要作用的材料。
半导体广泛使用于半导体电子学、信息科技等领域,而超导体则在高速列车、轨道交通等领域有广泛的应用。
随着科技的不断进步,这些材料的应用前景也会更加广阔。
6-1 半导体的导电特性

6-1 半导体二极管半导体元器件是现代电子技术的重要组成部分,是构成各种电子电路的核心,常用的半导体元器件有二极管、晶体管、场效应管等。
半导体元器件由半导体材料制成,因此,学习电子技术应首先了解半导体材料的特性,这将有助于对半导体元器件的学习、掌握和应用。
6-1-1 半导体的导电特性1. 半导体的导电机理导电能力介于导体与绝缘体之间的物质称为半导体,这类材料大都是三、四、五价元素,主要有:硅、锗、磷、硼、砷、铟等,他们的电阻率在10-3~107欧.厘米。
绝对纯净的硅、锗、磷、砷、硼、铟叫做本征半导体。
(1)本征半导体及特点半导体材料的广泛应用,并不是因为它们的导电能力介于导体与绝缘体之间,而是它们具有一些重要特性:1)当半导体受到外界光和热的激发(本征激发)时,其导电能力发生显著的变化;2)若在本征半导体中加入微量的杂质(不同的本征半导体)后,其导电能力显著的增加;半导体的这些特点取决于这类物质的化学特性。
(2)半导体的共价键结构1)半导体的化合价物质的化学和物理性质都与物质的价电子数有密切的关系,半导体材料大都是三、四、五价元素。
硅、锗(四价)、磷、砷(五价)、硼、铟(三价)。
2)化学键物质化学键分离子键、共价键和金属键三种,半导体物质的化学键都属于共价键的晶体结构,同时它们的键长一般很长,故原子核对价电子的束缚力不象绝缘物质那样紧,当价电子获得一定的能量后,就容易挣脱原子核的束缚成为自由电子。
+4+4+4+4+4+4+4+4+4+4可见半导体中的载流子有两种,即自由电子(●)和空穴(○)。
本征半导体的载流子是由本征激发而产生的,其自由电子与空穴是成对出现,即有一个自由电子,就一定有一个空穴,故称电子空穴对。
由于空穴带正电,容易吸引邻近的价电子来填补,从而形成了共有价电子的运动,这种运动无论从效果上,还是从现象上,都好象一个带正电的空穴在移动,它不同于自由电子的运动,故称之为空穴运动。
物质的导电是靠物体内带电粒子的移动而实现的,这种粒子称作载流子。
半导体指的是什么东西

半导体指的是什么东西半导体是一种电子材料,具有介于导体和绝缘体之间的电导率。
它的电导率介于导体和绝缘体之间,当半导体处于不同的电场中或受到光照时,其电导率会发生变化。
半导体在电子学和光电子学领域有着广泛的应用,是现代电子行业中至关重要的材料之一。
半导体的基本特性1.导电性质半导体的导电性介于导体和绝缘体之间,当外加电压或光照作用于半导体材料时,会产生载流子,从而改变其电导率。
这种特性使得半导体可以被用于制造各种电子器件,如晶体管、二极管等。
2.能带结构半导体的导电性取决于其能带结构,包括价带和导带。
在基本结构中,价带中填充了电子,当电子受到激发或加热时,会跃迁到导带中,从而形成电子与空穴对,使半导体具有导电性。
3.半导体材料常见的半导体材料包括硅、锗、砷化镓等。
其中,硅是最为广泛应用的半导体材料,其稳定性和可控性较高,适用于各种电子器件的制造。
半导体的应用领域1.微电子器件半导体器件的制造和发展推动了微电子技术的进步,例如集成电路、晶体管等,广泛应用于计算机、通信设备等领域。
2.光电子器件某些半导体材料还具有光电转换特性,可以用于制造激光器、太阳能电池等光电子器件,将光能转化为电能。
3.传感器半导体传感器利用半导体材料的导电性变化来感知温度、压力、光照等物理量,广泛应用于工业控制、汽车电子等领域。
未来发展趋势随着技术的不断创新和发展,半导体材料和器件的研究也在不断向着更高性能、更小尺寸的方向发展。
纳米技术、量子技术等将为半导体领域带来全新的突破,推动电子学、光电子学等领域的进步。
总的来说,半导体作为一种介于导体和绝缘体之间的电子材料,在现代电子领域中发挥着不可替代的作用。
通过不断的研究和应用,将为人类带来更多更好的科技产品和服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷原子 在N 型半导体中自由电子是 多数载流子,空穴是少数载 流子。
半导体导电特性
5.1.2 N型半导体和 P 型半导体
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
动画 掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数电特性
5.1.3 PN结的形成
内电场越强,漂移运
空间电荷区也称 PN 结
少子的漂移运动
动越强,而漂移使空间 电荷区变薄。
P 型半导体
内电场 N 型半导体
------ + + + + + + ------ + + + + + + ------ + + + + + + 动画 - - - - - - + + + + + +
(b)面接触型
结面积小、 结电容小、正 向电流小。用 于检波和变频 等高频电路。
结面积大、 正向电流大、 结电容大,用 于工频大电流 整流电路。
(c) 平面型 用于集成电路制作工艺中。PN结结面积可大可小,
用于高频整流和开关电路中。
半导体导电特性
二极管的结构示意图
金属触丝 N型锗片
阳极引线
阴极引线
半导体导电特性
5.1.2 N型半导体和 P 型半导体
在本征半导体中掺入微量的杂质(某种元素), 形成杂质半导体。 在常温下即可
变为自由电子 掺入五价元素
Si
Si
pS+i
Si
多余 电子
动画
掺杂后自由电子数目 大量增加,自由电子导电 成为这种半导体的主要导 电方式,称为电子半导体 或N型半导体。
失去一个 电子变为 正离子
- - - - - - + + + + + + 动画 --- - -- + + + + + + --- - -- + + + + + +
P
内电场 外电场
N
–+
半导体导电特性
2. PN 结加反向电压(反向偏置)P接负、N接正
PN 结变宽
--- - -- + + + + + + --- - -- + + + + + + ---- - - + + + + + +
同时共价键中留下一个空
Si
Si
位,称为空穴(带正电)。
空穴
这一现象称为本征激发。
温度愈高,晶体中产 价电子 生的自由电子便愈多。
在外电场的作用下,空穴吸引相邻原子的价电子
来填补,而在该原子中出现一个空穴,其结果相当
于空穴的运动(相当于正电荷的移动)。
半导体导电特性
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出现
无论N型或P型半导体都是中性的,对外不显电性。
半导体导电特性
1. 在杂质半导体中多子的数量与 a (a. 掺杂浓度、b.温度)有关。
2. 在杂质半导体中少子的数量与 b (a. 掺杂浓度、b.温度)有关。
3. 当温度升高时,少子的数量 c (a. 减少、b. 不变、c. 增多)。
4. 在外加电压的作用下,P 型半导体中的电流 主要是 b ,N 型半导体中的电流主要是 a 。
( a) 点接触型 外壳
铝合金小球 N型硅
阳极引线
PN结 金锑合金
底座
阳极引线 二氧化硅保护层
N型硅 阴极引线
(c ) 平面型
P 型硅
阳极 D 阴极
阴极引线
( d) 符号
P
IR
内电场 外电场
–+
N
动画
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。
温度越高少子的数目越多,反向电流将随温度增加。
半导体导电特性
5.2 半导体二极管
5.2.1 基本结构
(a) 点接触型
器件是非线性的、特性有分散性、RC 的值有误差、 工程上允许一定的误差、采用合理估算的方法。
半导体导电特性
5.1 半导体的导电特性
半导体的导电特性: 热敏性:当环境温度升高时,导电能力显著增强
(可做成温度敏感元件,如热敏电阻)。 光敏性:当受到光照时,导电能力明显变化 (可做
成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。
浓度差 形成空间电荷区
多子的扩散运动
扩散的结果使 空间电荷区变宽。
半导体导电特性
扩散和漂移 这一对相反的 运动最终达到 动态平衡,空 间电荷区的厚 度固定不变。
5.1.4 PN结的单向导电性
1. PN 结加正向电压(正向偏置) P接正、N接负
PN 结变窄
---- - - ---- - - ---- - -
+ + ++ + + + + ++ + + + + ++ + +
动画
内电场被 削弱,多子 的扩散加强,
P IF
内电场 N
外电场
+–
形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
半导体导电特性
2. PN 结加反向电压(反向偏置)P接负、N接正
两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复合。
在一定温度下,载流子的产生和复合达到动态平衡, 半导体中载流子便维持一定的数目。 注意:
(1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性 能也就愈好。所以,温度对半导体器件性能影响很大。
半导体导电特性
5.1.1 本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
半导体导电特性
自由电子 本征半导体的导电机理
价电子在获得一定能量
(温度升高或受光照)后,
Si
Si
即可挣脱原子核的束缚, 成为自由电子(带负电),
对于元器件,重点放在特性、参数、技术指标和 正确使用方法,不要过分追究其内部机理。讨论器 件的目的在于应用。
学会用工程观点分析问题,就是根据实际情况, 对器件的数学模型和电路的工作条件进行合理的近 似,以便用简便的分析方法获得具有实际意义的结 果。
对电路进行分析计算时,只要能满足技术指标, 就不要过分追究精确的数值。