高中数学基础知识大串讲知识点

合集下载

高中数学259个知识点

高中数学259个知识点

高中数学259个知识点一、集合与函数概念。

1. 集合。

- 集合的定义:把一些元素组成的总体叫做集合。

- 集合元素的特性:确定性、互异性、无序性。

- 集合的表示方法:列举法、描述法、韦恩图法。

- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。

- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。

- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。

高中数学基本知识点汇总(2篇)

高中数学基本知识点汇总(2篇)

高中数学基本知识点汇总(2篇)高中数学基本知识点汇总(一)一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同性质的事物的全体。

常见的集合表示方法有列举法和描述法。

列举法:将集合中的元素一一列举出来,例如 \( A = \{1, 2, 3\} \)。

描述法:用集合中元素的共同性质来描述集合,例如\( B = \{x \mid x > 0\} \)。

2. 集合的基本运算并集:两个集合的所有元素的集合,记作 \( A \cup B \)。

交集:两个集合的共同元素的集合,记作 \( A \cap B \)。

补集:全集中不属于某集合的元素的集合,记作 \( C_UA \)。

差集:属于第一个集合但不属于第二个集合的元素的集合,记作 \( A B \)。

3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。

函数的定义域、值域和对应关系是函数的三要素。

定义域:函数中自变量可以取值的集合。

值域:函数中因变量可以取值的集合。

对应关系:自变量与因变量之间的对应法则。

4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。

二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。

指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。

5. 函数的性质单调性:函数在某一区间内单调递增或单调递减。

奇偶性:奇函数满足 \( f(x) = f(x) \),偶函数满足 \( f(x) = f(x) \)。

周期性:函数在某一区间内重复出现,例如三角函数。

高中数学知识点大全(一)

高中数学知识点大全(一)

高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

(2)函数的表示法:解析法、表格法、图象法、分离法。

(3)函数的基本性质:单调性、奇偶性、周期性、对称性。

2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。

3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。

(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。

(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。

(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。

(5)极限存在的条件:夹逼定理、单调有界定理。

二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。

高中数学基本知识点汇总(最新)

高中数学基本知识点汇总(最新)

高中数学基本知识点汇总(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。

集合的表示方法:列举法、描述法、图示法。

常见数集:自然数集N、整数集Z、有理数集Q、实数集R。

2. 集合间的关系与运算子集、真子集、相等关系。

并集、交集、补集的定义及运算。

集合运算的性质:交换律、结合律、分配律、摩根律。

3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、值域、对应关系。

函数的表示方法:列表法、图象法、解析法。

4. 函数的性质单调性:增函数、减函数的定义及判定。

奇偶性:奇函数、偶函数的定义及判定。

周期性:周期函数的定义及常见周期函数。

最值:函数的最大值和最小值及其求法。

二、基本初等函数1. 一次函数与二次函数一次函数的形式:y = kx + b(k≠0)。

一次函数的图象与性质:直线、斜率、截距。

二次函数的形式:y = ax^2 + bx + c(a≠0)。

二次函数的图象与性质:抛物线、顶点、对称轴、开口方向。

2. 指数函数与对数函数指数函数的形式:y = a^x(a>0且a≠1)。

指数函数的图象与性质:单调性、过定点(0,1)。

对数函数的形式:y = log_a(x)(a>0且a≠1)。

对数函数的图象与性质:单调性、过定点(1,0)。

3. 幂函数幂函数的形式:y = x^α。

常见幂函数的图象与性质:α为正整数、负整数、分数时的图象特点。

4. 三角函数正弦函数、余弦函数、正切函数的定义及图象。

三角函数的性质:周期性、奇偶性、单调性。

三角函数的诱导公式及恒等变换。

三、立体几何1. 空间几何体的结构特征多面体:棱柱、棱锥、棱台的定义及性质。

旋转体:圆柱、圆锥、圆台、球体的定义及性质。

2. 空间几何体的三视图主视图、俯视图、左视图的定义及绘制方法。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高三数学复习中的重要知识点串讲

高三数学复习中的重要知识点串讲

高三数学复习中的重要知识点串讲在高三数学复习中,理解和掌握一些重要的知识点是非常关键的。

本文将从代数、几何和概率三个方面,串讲一些高三数学复习中的重要知识点。

希望通过这篇文章的阅读,能够帮助同学们更好地整理和复习数学知识,提高数学成绩。

1. 代数知识点1.1 整式的加减法整式的加减法是代数中的基础运算,重点是掌握同类项的合并与整理。

我们可以通过合并同类项的系数来简化整式的运算,并最终得到结果。

在复习中,同学们要特别注意符号的运用,以及对多项式的展开与简化运算。

1.2 一次函数与二次函数一次函数和二次函数是高中数学中非常重要的知识点。

我们需要掌握一次函数与二次函数的基本概念,熟练掌握它们的图像特征及相关性质。

在复习中,同学们要重点掌握一次函数和二次函数的图像、性质、方程以及应用问题的解法。

1.3 四则运算与方程四则运算是代数中的基本运算,涉及到加法、减法、乘法和除法。

在复习中,同学们要熟练掌握四则运算法则,加强运算能力和步骤的规范性。

同时,方程的解法也是数学复习的重点之一。

我们需要掌握一元一次方程、二元一次方程、二次方程的解法,并能够熟练运用到实际问题中。

2. 几何知识点2.1 三角函数三角函数是几何中的重要知识点,我们需要熟练掌握正弦、余弦、正切等基本三角函数的定义和性质,以及它们之间的关系。

在复习中,同学们要注意三角函数的图像、周期性、性质等内容的理解和应用。

2.2 向量与立体几何向量是几何中的重要概念,我们需要掌握向量的定义、运算法则和性质。

在复习中,同学们要重点掌握向量共线、垂直、平行等关系,在解决几何问题时能够正确运用向量的性质和运算法则。

此外,立体几何也是复习中的重点内容,我们需要掌握几何体的性质、表面积和体积计算等内容。

2.3 三角形与圆三角形是几何中的基本图形,我们需要掌握等腰三角形、直角三角形、等边三角形等特殊三角形的性质和计算方法。

在复习中,同学们要重点复习三角形的内角和外角、面积计算、三角形的相似性质等内容。

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。

掌握实数的分类和复数的基本概念。

1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。

包括因式分解、公式法解方程、分式方程的解法等。

1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。

理解不等式的性质和解不等式的一般步骤。

1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。

了解函数的极限和连续性概念。

1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。

掌握无穷等比数列的和的计算方法。

1.6 排列组合与概率排列、组合的基本概念和公式。

概率的定义、性质及计算方法。

理解条件概率和独立事件的概念。

二、几何与测量2.1 平面几何点、线、面的基本性质。

掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。

2.2 空间几何空间直线和平面的位置关系。

柱面、锥面、旋转体等常见立体图形的性质和计算。

2.3 解析几何坐标系的建立和应用。

通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。

2.4 三角学三角比的概念、三角函数的定义和性质。

掌握正弦定理、余弦定理及其在解三角形中的应用。

2.5 向量向量的基本概念、线性运算、数量积和向量积。

理解向量在几何和代数中的应用。

三、统计与概率3.1 统计基本概念数据的收集、整理和描述。

理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。

3.2 概率分布离散型随机变量和连续型随机变量的概念。

熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。

3.3 抽样与估计抽样方法、样本容量的确定。

参数估计的基本概念和方法,包括点估计和区间估计。

3.4 假设检验假设检验的基本思想和步骤。

理解显著性水平、第一类错误和第二类错误的概念。

高三数学知识点串讲

高三数学知识点串讲

高三数学知识点串讲高三是学生们备战高考的最后一年,数学作为高考科目之一,对于学生们而言尤为重要。

掌握高三数学知识点是提高数学成绩的基础,也是冲刺高考的关键。

本文将对高三数学知识点进行串讲,帮助学生们系统复习数学知识,提升解题能力。

一、函数与导数高三数学的第一个重点是函数与导数。

函数是数学中的重要概念之一,它描述了不同元素之间的关系。

而导数则是函数的变化率,表示函数曲线在某一点的切线斜率。

接下来我们将重点讲解函数极限、导数定义及求导法则等内容。

1.1 函数极限函数极限是描述函数在某一点附近的取值情况。

极限存在与否及极限的计算方法是高三数学的重点内容。

极限存在的判定方法有有界性、夹逼定理等,极限的计算方法包括直接代入法、夹逼法、函数性质法等。

1.2 导数定义导数是函数变化率的表示,它反映了函数曲线在某一点的切线斜率。

导数的定义是数学分析中的重要内容,掌握导数定义对于后续求导法则的运用和理解极限概念具有重要意义。

1.3 求导法则求导法则是导数计算的基本规则,它包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等内容。

熟练掌握求导法则对于解题过程中的快速计算至关重要。

二、数列与数项数列与数项是高中数学中的重要概念,也是高三数学的重点之一。

数列是按照一定规律排列的一系列数,而数项则是数列中的每个元素。

接下来我们将重点讲解等差数列、等比数列和数列的求和问题。

2.1 等差数列等差数列是指数列中相邻两项之间的差值相等的数列。

等差数列的性质包括通项公式、前n项和及求和公式等内容。

了解等差数列的性质和求和公式有助于简化计算过程,快速得到结果。

2.2 等比数列等比数列是指数列中相邻两项之间的比值相等的数列。

等比数列的性质包括通项公式、前n项和及求和公式等内容。

掌握等比数列的特点和求和公式有助于解决与等比数列相关的问题。

2.3 数列求和数列求和是高三数学的常见题型,需要掌握的内容包括等差数列求和公式、等比数列求和公式以及部分和公式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学知识点总结
前言:
无论是学习,还是考试,对于知识我们都要应该从学习最基础最根本的定理,公式,以及概念开始,切不可眼高手低,舍本逐末。

基础不牢地动山摇,只有当我们将基本的掌握了,才能更加有深度有逻辑的去思考,去发现,去探索。

以下是本人对高中数学知识点总结,当然不可能面面俱到,仅供读者参考。

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?
注重借助于数轴和韦恩图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:
(3)德摩根定律:
4. 你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。

6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。


原命题与逆否命题同真、同假;逆命题与否命题同真同假。

注意否命题和命题的否定的区别与联系。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。


8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?
10. 如何求复合函数的定义域?
义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15. 如何利用导数判断函数的单调性?
值是()
A. 0
B. 1
C. 2
D. 3
∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?函数,T是一个周期。


如:
18. 你掌握常用的图象变换了吗?
注意如下“翻折”变换:
19. 你熟练掌握常用函数的图象和性质了吗?
的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)
利用它的单调性求最值与利用均值不等式求最值的区别是什么?
20. 你在基本运算上常出现错误吗?
21. 如何解抽象函数问题?
(赋值法、结构变换法)
22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。


如求下列函数的最值:
23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24. 熟记三角函数的定义,单位圆中三角函数线的定义
25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
图象?
30. 熟练掌握同角三角函数关系和诱导公式了吗?
“奇”、“偶”指k取奇、偶数。

A. 正值或负值
B. 负值
C. 非负值
D. 正值
31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
应用以上公式对三角函数式化简。

(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。


具体方法:
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
(应用:已知两边一夹角求第三边;已知三边求角。


33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下结论:
36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。


38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
39. 解含有参数的不等式要注意对字母参数的讨论
40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。


证明:
(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
43. 等差数列的定义与性质
0的二次函数)
项,即:
44. 等比数列的定义与性质
46. 你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法
解:
[练习]
(2)叠乘法
解:
(3)等差型递推公式
[练习]
(4)等比型递推公式
[练习]
(5)倒数法
47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:
[练习]
(2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]
48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款
日,如此下去,第n次还清。

如果每期利率为r(按复利),那么每期应还x元,满足
p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩
则这四位同学考试成绩的所有可能情况是()
A. 24
B. 15
C. 12
D. 10
解析:可分成两类:
(2)中间两个分数相等
相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况
51. 二项式定理
性质:
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52. 你对随机事件之间的关系熟悉吗?
的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

相关文档
最新文档