MATLAB实现最速下降法_和牛顿法和共轭梯度法

合集下载

matlab梯度算法

matlab梯度算法

matlab梯度算法Matlab梯度算法在数学和计算机科学中,梯度是指一个多元函数在某一点上的变化率或斜率。

梯度算法是一种优化算法,用于找到函数的最小值或最大值。

在Matlab中,有多种方法可以使用梯度算法来优化函数,包括梯度下降和共轭梯度法。

本文将详细介绍Matlab中的梯度算法,并逐步讲解其原理和应用。

I. 梯度下降法梯度下降法是一种基于迭代的优化算法,通过计算函数的梯度来更新参数的值,以逐步接近函数的最小值。

在Matlab中,可以使用"gradientDescent"函数来实现梯度下降法。

1. 实现梯度下降法首先,我们需要定义一个优化目标函数,例如:f(x) = x^2 + 2x + 1。

然后,定义其梯度函数为g(x) = 2x + 2。

接下来,我们可以使用以下代码来计算梯度下降:matlab定义优化目标函数f = (x) x^2 + 2*x + 1;定义梯度函数g = (x) 2*x + 2;初始化参数x0 = 0;设置学习率和迭代次数alpha = 0.01;iterations = 100;梯度下降法for i = 1:iterationsx0 = x0 - alpha * g(x0);end打印最优解disp(['Optimal solution: ', num2str(x0)]);在这个例子中,我们使用了学习率(alpha)为0.01,迭代次数(iterations)为100。

通过不断更新参数x0的值,最终得到了最优解。

2. 梯度下降法的原理梯度下降法的核心思想是利用函数在当前点的梯度信息来更新参数的值,以便能够向着函数的最小值前进。

具体来说,算法的步骤如下:a. 初始化参数的值:选择一个初始参数的值作为起始点。

b. 计算梯度:计算函数在当前点的梯度,即求解函数关于参数的偏导数。

c. 更新参数:根据当前点的梯度和学习率,通过减去梯度的乘积来更新参数的值。

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。

无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。

而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。

本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。

一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。

其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。

然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。

2. 共轭梯度法共轭梯度法是一种改进的最速下降法。

它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。

相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。

3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。

它通过构建并求解特定的二次逼近模型来求解无约束问题。

然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。

二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。

它通过在可行域内进行边界移动来寻找最优解。

然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。

2. 内点法内点法是一种改进的线性规划问题求解方法。

与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。

内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。

三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。

它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。

信赖域算法既考虑了收敛速度,又保持了数值稳定性。

2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。

它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。

遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。

最优化方法实验报告(2)

最优化方法实验报告(2)

最优化方法实验报告Numerical Linear Algebra And ItsApplications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验三实验名称:无约束最优化方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过本次实验的学习,进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。

二、实验背景:(一)最速下降法1、算法原理最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。

2、算法步骤用最速下降法求无约束问题n R()min的算法步骤如下:xxf,a )给定初始点)0(x ,精度0>ε,并令k=0;b )计算搜索方向)()()(k k x f v -∇=,其中)()(k x f ∇表示函数)(x f 在点)(k x 处的梯度;c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索,即求k λ,使得)(min )()()(0)()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。

(二)牛顿法1、算法原理牛顿法是基于多元函数的泰勒展开而来的,它将)()]([-)(1)(2k k x f x f ∇∇-作为搜索方向,因此它的迭代公式可直接写出来:)()]([)(1)(2)()(k k k k x f x f x x ∇∇-=-2、算法步骤用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下:a )给定初始点)0(x ,精度0>ε,并令k=0;b )若ε≤∇)()(k x f ,停止,极小点为)(k x ,否则转c );c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ∇∇-=∇--令;d )令1,)()()1(+=+=+k k p x x k k k ,转b )。

matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码

matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码

matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码二分法(Bisection Method)是一种寻找函数零点的数值计算方法。

该方法的基本思想是:首先确定一个区间[a, b],使得函数在这个区间的两个端点处的函数值异号,然后将区间逐步缩小,直到找到一个区间[a', b'],使得函数在这个区间的中点处的函数值接近于零。

以下是使用MATLAB实现二分法的示例代码:```matlabfunction [x, iter] = bisection(f, a, b, tol)fa = f(a);fb = f(b);if sign(fa) == sign(fb)error('The function has the same sign at the endpoints of the interval');enditer = 0;while (b - a) / 2 > tolc=(a+b)/2;fc = f(c);if fc == 0break;endif sign(fc) == sign(fa)a=c;fa = fc;elseb=c;fb = fc;enditer = iter + 1;endx=(a+b)/2;end```牛顿法(Newton's Method)是一种用于寻找函数零点的数值计算方法。

该方法的基本思想是:通过迭代来逼近函数的零点,每次迭代通过函数的切线来确定下一个近似值,直到满足收敛条件。

以下是使用MATLAB实现牛顿法的示例代码:```matlabfunction [x, iter] = newton(f, df, x0, tol)iter = 0;while abs(f(x0)) > tolx0 = x0 - f(x0) / df(x0);iter = iter + 1;endx=x0;end```黄金分割法(Golden Section Method)是一种用于寻找函数极值点的数值计算方法。

matlab用共轭梯度法求解优化问题

matlab用共轭梯度法求解优化问题

标题:利用MATLAB中的共轭梯度法求解优化问题正文:一、概述在数学和工程领域中,优化问题是一个重要的研究领域。

优化问题的目标是寻找一个能够最大化或最小化某个函数的变量的数值,使得该函数达到最优值。

而共轭梯度法是一种常用的优化算法,能够有效地解决大规模的线性和非线性优化问题。

本文将介绍如何利用MATLAB中的共轭梯度法来求解优化问题。

二、共轭梯度法简介共轭梯度法是一种迭代算法,用于求解无约束优化问题。

它是一种在局部搜索过程中利用历史信息的优化方法,通常用于求解大规模的线性和非线性优化问题。

共轭梯度法基于数学中的共轭梯度概念,通过迭代寻找下降最快的路径,从而逐步逼近最优解。

三、MATLAB中的共轭梯度法函数MATLAB提供了丰富的优化算法和函数,其中包括了共轭梯度法函数。

在MATLAB中,可以使用“fmincg”函数来调用共轭梯度法来求解无约束优化问题。

该函数可以接收目标函数、初始变量值和其他参数作为输入,并计算出最优解。

四、使用共轭梯度法求解优化问题的步骤1. 确定目标函数在使用共轭梯度法求解优化问题之前,首先需要确定目标函数。

目标函数可以是线性函数、非线性函数或者带有约束条件的函数。

在MATLAB中,需要将目标函数定义为一个函数句柄,并且确保该函数具有输入参数和输出数值。

2. 确定初始变量值在使用共轭梯度法求解优化问题时,需要提供初始的变量值。

这些初始变量值可以是任意的数值,但通常需要根据实际问题进行合理选择。

3. 调用共轭梯度法函数在确定了目标函数和初始变量值之后,可以调用MATLAB中的“fmincg”函数来求解优化问题。

该函数会根据目标函数、初始变量值和其他参数进行迭代计算,直到找到最优解为止。

4. 获取最优解可以通过“fmincg”函数的输出结果来获取最优解。

该结果通常包括最优变量值和最优目标函数值。

五、优化问题的案例分析下面以一个简单的优化问题为例,说明如何利用MATLAB中的共轭梯度法来求解。

基于matlab平台的三种迭代法求解矩阵方程

基于matlab平台的三种迭代法求解矩阵方程

数值分析第二次作业学院:电子工程学院基于matlab平台的三种迭代法求解矩阵方程组求解系数矩阵由16阶Hilbert方程组构成的线性方程组的解,其中右端项为[2877/851,3491/1431,816/409,2035/1187,2155/1423,538/395,1587/1279,573/502,947 /895,1669/1691,1589/1717,414/475,337/409,905/1158,1272/1711,173/244].要求:1)Gauss_Sedel迭代法;2)最速下降法;3)共轭梯度法;4)将结果进行分析对比。

解:根据题目要求,编写了对应算法的matlab程序,求解结果如下:(求解精度为10e-4,最大迭代次数1000)1、方程的解:如下图1所示图1 三种方法求解的结果对比图2 Gause_Sedel算法收敛特性图3 最速下降法收敛特性图3 共轭梯度法收敛特性从图中可以看到,在相同的最大迭代次数和预设求解精度条件下,共轭梯度算法仅需要4次迭代便可求出方程组的解,耗时0.000454秒,而且求出解的精度最高;Gauss_Sedel方法需要465次迭代,耗时0.006779秒,求解精度最差;最速下降法需要398次迭代,耗时0.007595秒,求解精度与共轭梯度算法差不多,因此两者求出的解也几乎相同。

从中可以得出结论,共轭梯度算法无论从求解精度还是求解速度上都优于其他两种,最速下降法在求解精度上几乎与共轭梯度算法持平,但求解速度更慢。

Gauss_Sedel方法在求解精度和速度两方面都最差。

具体的解为:Gauss_Sedel迭代法:(共需465次迭代,求解精度达到9.97e-5) X=[0.995328360833192 1.01431732497804 1.052861239300110.934006974137998 0.931493373808838 0.9665081384030661.00661848511341 1.03799789809258 1.051806903036541.06215849948572 1.04857676431223 1.028561990411131.01999170162638 0.971831831519515 0.9525261666348130.916996019179182].最速下降法:(共需398次迭代,求解精度达到9.94e-5)X=[0.998835379744322 1.01507463472900 0.9825890937201850.980191460759243 0.991245169713628 1.003780222253291.01350884374478 1.01928337905816 1.020859096651941.01930314197028 1.01444777381651 1.007040589892970.998384452250809 0.987399404644377 0.9757678149709120.963209150871750].共轭梯度法:(共需4次迭代,求解精度达到3.98e-5)X=[0.996472751179456 1.02707840189049 0.9776233734098530.973206695321590 0.986133032967607 1.001289025642341.01322158496914 1.02047386502293 1.023009050605651.02163015083975 1.01678089454399 1.009203108638740.999772406055155 0.988443827498859 0.9760941924969490.962844741655005].Matlab程序主程序:clc;clear;%% 本程序用于计算第二次数值分析作业,关于希尔伯特矩阵方程的解,用三种方法,分析并比较,也可推广至任意n维的矩阵方程%%A=hilb(16); %生成希尔伯特系数矩阵b=[2877/851;3491/1431;816/409;2035/1187;2155/1423;538/395;1587/1279;573/502;947/895;166 9/1691;1589/1717;414/475;337/409;905/1158;1272/1711;173/244]; %右端向量M=1000; %最大迭代次数err=1.0e-4; %求解精度[x,n,xx,cc,jingdu]=yakebi_diedai(A,b,err,M); % 雅克比算法求解tic;[x1,n1,xx1,cc1,jingdu1]=gauss_seidel(A,b,err,M); % gauss_seidel算法求解toc;tic;[x2,n2,xx2,jingdu2]=zuisuxiajiangfa(A,b,err,M); % 最速下降法求解toc;tic;[x3,flag,jingdu3,n3]=bicg(A,b,err); % matlab内置双共轭梯度算法求解toc;tic;[x4,xx4,n4,jingdu4]=con_grad(A,b,err,M); % 教材共轭梯度算法求解toc;%% 计算相应结果,用于作图%%num=[1:16]';jie=[num,x1,x2,x4]; % 三者的解对比% 三者的收敛情况对比num1=[1:n1]';fit1=[num1,jingdu1'];num2=[1:n2]';fit2=[num2,jingdu2'];num4=[1:n4]';fit4=[num4,jingdu4'];子函数1(Gause_Sedel算法):function [x,n,xx,cc,jingdu] = gauss_seidel(A,b,err,M)% 利用迭代方法求解矩阵方程这里是高斯赛尔得迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数cc 迭代矩阵普半径jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解for ii=1:length(b)if A(ii,ii)==0x='error';break;endendD=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=(D-L)\U;cc=vrho(B); %迭代矩阵普半径FG=(D-L)\b;x0=zeros(length(b),1);x=B*x0+FG;k=0;xx(:,1)=x;while norm(A*x-b)>errx0=x;x=B*x0+FG;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endjingdu(k)=norm(A*x-b);endend子函数2(最速下降算法):function [x,n,xx,jingdu]=zuisuxiajiangfa(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是最速下降迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% % M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;t0=r0'*r0/(r0'*A*r0);x=x0+t0*r0;r=b-A*x;xx(:,1)=x;k=0;while norm(r)>epsr=r;x=x;t=r'*r/(r'*A*r);x=x+t*r;r=b-A*x;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend子函31(共轭梯度法):function [x,xx,n,jingdu]=con_grad(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是共轭梯度迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;p0=r0;% t0=r0'*r0/(r0'*A*r0);% x=x0+t0*r0;% xx(:,1)=x;k=0;x=x0;r=r0;p=p0;while norm(r)>epsx=x;r=r;p=p;afa=r'*r/(p'*A*p);x1=x+afa*p;r1=r-afa*A*p;beta=r1'*r1/(r'*r);p1=r1+beta*p;x=x1;r=r1;p=p1;k=k+1;xx(:,k)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend。

MATLAB实现最速下降法

MATLAB实现最速下降法

%最速下降法clear all;close all;clc;tic;format longedisp('请输入参数');K=input('维数K=');ticA=hilb(K);% A元素是0-100% for i=1:K% A(i,i)=sum(abs(A(i,:)))+20*rand(1); %对角占优的量为0~20 % endb=zeros(K,1);for i=1:K;x=0;for r=1:K;x=x+A(i,r);endb(i,1)=x;end%产生b矩阵,b中的元素为A中对应行的和,目的是使方程解全为 1 jd=input('控制精度jd=');x0=zeros(K,1); %初始迭代矩阵r=b-A*x0; %剩余向量ak=dot(r,r)/dot(A*r,r);y1=x0+ak*r; %迭代公式s1=1; %迭代次数while norm(y1-x0)>=jdx0=y1;r=b-A*x0; %剩余向量ak=(r'*r)/((A*r)'*r);y1=x0+ak*r; %迭代公式s1=s1+1; %迭代次数+1ends1toc;x0=zeros(K,1); %初始迭代矩阵r=b-A*x0;%剩余向量p=r;ak=dot(r,r)/dot(p,A*p);y=x0+ak*p; %迭代公式r1=r-ak*A*p;bk=dot(r1,r1)/dot(r,r);p1=r1+bk*p;s=1; %迭代次数while norm(y-x0)>=jd; %迭代条件 x0=y;p=p1;r=r1;ak=dot(r,r)/dot(p,A*p);y=x0+ak*p; %迭代公式r1=r-ak*A*p;bk=dot(r1,r1)/dot(r,r);p1=r1+bk*p;s=s+1;endstoc;t=1:K;yy1=abs(y1'-1)/1;yy2=abs(y'-1)/1;plot(t,yy1,'r');hold onplot(t,yy2,'b');hold ontitle('绝对误差图')legend('最速下降法','共轭梯度法')。

matlab 最速下降迭代路径

matlab 最速下降迭代路径

一、Matlab最速下降迭代路径介绍Matlab是一款强大的数学软件工具,其中包含了各种数学工具箱,用于解决不同领域的数学问题。

最速下降迭代路径是其中的一个重要工具,用于求解非线性方程组或最优化问题。

二、最速下降迭代路径原理1.首先介绍最速下降法的思想:即在迭代过程中,每次选取下降方向时选择负梯度方向,使得目标函数值下降最快。

2.最速下降法的迭代公式:x^(k+1) = x^k - α * ∇f(x^k),其中x^k 为迭代的当前点,α为步长,∇f(x^k)为目标函数在x^k点的梯度。

三、Matlab中最速下降迭代路径的函数及使用方法1.在Matlab中,可以使用fminunc函数来实现最速下降迭代路径。

其用法为[fval, x] = fminunc(fun, x0, options),其中fun为目标函数的句柄,x0为迭代的初始点,options为优化选项。

2.在使用fminunc函数时,需注意定义目标函数的句柄,并设定合适的初始点和优化选项,以确保得到准确的最速下降迭代路径。

四、最速下降迭代路径的应用实例以一个简单的非线性方程组为例:f(x) = x^2 + 2y^2,其中目标是求解该方程组的最小值。

通过Matlab最速下降迭代路径,可以求解该方程组的最小值点。

五、总结与展望最速下降迭代路径是一种常用的非线性方程组求解方法,Matlab中的fminunc函数提供了便捷的实现途径。

今后,我们可以进一步深入研究不同类型问题下的最速下降迭代路径,并探索更多有效的数值计算方法。

以上是关于Matlab最速下降迭代路径的简要介绍,希望能为您提供一些帮助。

感谢阅读!最速下降迭代路径是一种常用的优化方法,广泛应用于解决非线性方程组和优化问题。

在Matlab中,最速下降迭代路径的实现通过fminunc函数来完成。

在本文中,我们将进一步探讨最速下降迭代路径的原理、Matlab中的具体使用方法以及其应用实例。

让我们更深入地了解最速下降迭代路径的原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB实现最速下降法_和牛顿法和共轭梯度法最速下降法:
题目:f=(x-2)^2+(y-4)^2
M文件:
function [R,n]=steel(x0,y0,eps) syms x;
syms y;
f=(x-2)^2+(y-4)^2;
v=[x,y];
j=jacobian(f,v);
T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0;
n=0;
syms kk;
while (temp>eps)
d=-T;
f1=x1+kk*d(1);f2=y1+kk*d(2);
fT=[subs(j(1),x,f1),subs(j(2),y,f2)];
fun=sqrt((fT(1))^2+(fT(2))^2);
Mini=Gold(fun,0,1,0.00001);
x0=x1+Mini*d(1);y0=y1+Mini*d(2);
T=[subs(j(1),x,x0),subs(j(2),y,y0)];
temp=sqrt((T(1))^2+(T(2))^2);
x1=x0;y1=y0;
n=n+1;
end
R=[x0,y0]
调用黄金分割法:
M文件:
function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk;
u=a0+0.382*(b0-a0);
v=a0+0.618*(b0-a0);
k=0;
a=a0;b=b0;
array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u);
Fv=subs(f,kk,v);
if(Fu<=Fv)
b=v;
v=u;
u=a+0.382*(b-a);
k=k+1;
elseif(Fu>Fv)
a=u;
u=v;
v=a+0.618*(b-a);
k=k+1;
end
array(k+1,1)=a;array(k+1,2)=b; end
Mini=(a+b)/2;
输入:
[R,n]=steel(0,1,0.0001)
R = 1.99999413667642 3.99999120501463 R = 1.99999413667642
3.99999120501463 n = 1
牛顿法:
题目:f=(x-2)^2+(y-4)^2
M文件:
syms x1 x2;
f=(x1-2)^2+(x2-4)^2;
v=[x1,x2];
df=jacobian(f,v);
df=df.';
G=jacobian(df,v);
epson=1e-12;x0=[0,0]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs (G,{x1,x2},{x0(1,1),x0(2,1)});k=0;mul_count=0;sum_count=0;
mul_count=mul_count+12;sum_count=sum_count+6; while(norm(g1)>epson) p=-G1\g1;
x0=x0+p;
g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});
G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});
k=k+1;
mul_count=mul_count+16;sum_count=sum_count+11;
end;
k
x0
mul_count
sum_count
结果::k = 1
x0 =
2
4
mul_count = 28
sum_count = 17 共轭梯度法:
题目:f=(x-2)^2+(y-4)^2
M文件:
function f=conjugate_grad_2d(x0,t)
x=x0;
syms xi yi a
f=(xi-2)^2+(yi-4)^2; fx=diff(f,xi);
fy=diff(f,yi);
fx=subs(fx,{xi,yi},x0); fy=subs(fy,{xi,yi},x0); fi=[fx,fy]; count=0;
while double(sqrt(fx^2+fy^2))>t
s=-fi;
if count<=0
s=-fi;
else
s=s1;
end
x=x+a*s;
f=subs(f,{xi,yi},x);
f1=diff(f);
f1=solve(f1);
if f1~=0
ai=double(f1);
else
break
x,f=subs(f,{xi,yi},x),count end
x=subs(x,a,ai);
f=xi-xi^2+2*xi*yi+yi^2;
fxi=diff(f,xi);
fyi=diff(f,yi);
fxi=subs(fxi,{xi,yi},x);
fyi=subs(fyi,{xi,yi},x);
fii=[fxi,fyi];
d=(fxi^2+fyi^2)/(fx^2+fy^2); s1=-fii+d*s;
count=count+1;
fx=fxi;
fy=fyi;
end
x,f=subs(f,{xi,yi},x),count 输入:conjugate_grad_2d([0,0],0.0001) 结果:
x = 0.24998825499785 -0.24999998741273
f = 0.12499999986176
count = 10
ans = 0.12499999986176。

相关文档
最新文档