matlab编程实现共轭梯度法最优解
运筹学实验报告(F-R共轭梯度法、Wolfe简约梯度法)

一、实验目的:1、掌握求解无约束最优化问题的 F-R 共轭梯度法,以及约束最优化问题 Wolfe 简约梯度法。
2、学会用MATLAB 编程求解问题,并对以上方法的计算过程和结果进行分析。
二、实验原理与步骤: 1、F-R 共轭梯度法基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d关于A 共轭,即(1)()(1),0k k k d d Ad --<>=然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点)1(+k X ,即)(m in )()()(0)1(k d X f X f k k λλ+=>+如此下去, 得到序列{)(k X }。
不难求得0,)1()(>=<-k k Ad d的解为)()1()1()()()()1(,,k k k k k k k d Ad d d AX b XX><>-<+=--+注意到)(k d 的选取不唯一,我们可取)1(1)()()(--+-∇=k k k k d X f d β由共轭的定义0,)1()(>=<-k k Add 可得: ><><-=----)1()1()1()(1,,k k k k k Ad d Ad r β共轭梯度法的计算过程如下:第一步:取初始向量)0(X , 计算⎪⎪⎩⎪⎪⎨⎧+=><><-=-=-∇==(0)0(0)(1))0()0()0()0(0(0)(0)(0)(0)d X X ,,X )X (r d λλAd d Ad r A b f第1+k 步:计算⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=><><-=+=><><-=-=-∇=+------(k)0(k)1)(k )()()()()1(1(k))()1()1()1()(1(k)(k)(k)d X X ,,r ,,X )X (r λλββk k k k k k k k k k k k k Ad d Ad r d d Ad d Adr A b f2、Wolfe 简约梯度法Wolfe 基本计算步骤:第一步:取初始可行点 x 0∈X l ,给定终止误差ε>0 ,令k:=0;第二步:设 I B k是x k 的 m 个最大分量的下标集,对矩阵A 进行相应分解 A =(B k ,N k );第三步:计算 ∇f(x k)=(∇B f(x k )∇Nf(x k )) ,然后计算简约梯度r N k=−(B k −1N k )T ∇B f(x k )+∇N f(x k );第四步:构造可行下降方向 p k . 若||p k ||≤ε ,停止迭代,输出x k 。
最优化方法及其matlab实现

一、引言1.1 阐述最优化方法的重要性 1.2 介绍文章内容二、最优化方法的基本概念与分类2.1 最优化问题的定义2.2 最优化方法的分类2.2.1 无约束最优化2.2.2 约束最优化三、常用最优化方法的原理与特点3.1 梯度下降法3.1.1 原理介绍3.1.2 算法流程3.1.3 特点分析3.2 牛顿法3.2.1 原理介绍3.2.2 算法流程3.2.3 特点分析3.3 共轭梯度法3.3.1 原理介绍3.3.2 算法流程3.3.3 特点分析四、最优化方法在实际问题中的应用4.1 工程优化问题4.1.1 结构优化设计4.1.2 控制优化问题4.2 数据拟合与机器学习4.2.1 深度学习中的优化问题4.2.2 模型参数的优化五、 Matlab实现最优化方法的实例5.1 Matlab在最优化方法中的应用 5.2 梯度下降法的Matlab实现5.2.1 代码示例5.2.2 实例分析5.3 牛顿法的Matlab实现5.3.1 代码示例5.3.2 实例分析5.4 共轭梯度法的Matlab实现5.4.1 代码示例5.4.2 实例分析六、结论及展望6.1 对最优化方法的总结与归纳6.2 未来最优化方法的发展方向七、参考文献以上是一篇关于“最优化方法及其Matlab实现”的文章大纲,您可以根据这个大纲和相关资料进行深入撰写。
文章内容需要涉及最优化方法的基本概念与分类、常用最优化方法的原理与特点、最优化方法在实际问题中的应用、Matlab实现最优化方法的实例等方面,保证文章内容的权威性和实用性。
另外,在撰写文章过程中,建议加入一些案例分析或者数据实验,通过具体的应用场景来展示最优化方法的有效性和优越性,增强文章的说服力和可读性。
对于Matlab实现部分也要注重代码的清晰性和易懂性,方便读者理解和实践。
希望您能够通过深入的研究和精心的撰写,呈现一篇高质量、流畅易读、结构合理的中文文章,为读者提供有益的知识和参考价值。
prp共轭梯度法matlab

prp共轭梯度法matlabPRP共轭梯度法是一种用于求解无约束优化问题的数值方法。
它是共轭梯度法的一种改进算法,通过引入一种预处理技术来加速收敛速度。
共轭梯度法是一种迭代方法,用于求解线性方程组或者最小化二次型函数。
它的基本思想是利用共轭方向的性质,通过一系列迭代步骤来逼近最优解。
这种方法在大规模问题的求解中非常有效,因为它不需要存储整个系统矩阵,而只需要存储向量和一些中间变量即可。
然而,传统的共轭梯度法在实际应用中存在一些问题。
首先,它对于一些病态问题的收敛速度较慢,需要较多的迭代步骤才能得到满意的结果。
其次,它对于非二次型函数的最小化问题效果不佳,容易陷入局部最优解。
为了克服这些问题,PRP共轭梯度法应运而生。
PRP共轭梯度法采用了一种预处理技术,通过对梯度向量进行修正来提高算法的收敛速度。
具体来说,PRP共轭梯度法在每一步迭代中计算一个修正系数,将修正系数和梯度向量的线性组合用于更新搜索方向。
这种修正技术可以加速算法的收敛速度,特别是在处理病态问题和非二次型函数时效果显著。
PRP共轭梯度法的算法流程如下:1. 初始化变量,包括初始解向量、梯度向量、搜索方向和修正系数。
2. 计算修正系数,根据修正系数和梯度向量的线性组合更新搜索方向。
3. 求解步长,通过线搜索方法确定下一步的迭代点。
4. 更新解向量和梯度向量。
5. 判断收敛条件,如果满足条件则停止迭代,否则返回第2步继续迭代。
PRP共轭梯度法在实际应用中具有广泛的应用价值。
它可以用于求解大规模线性方程组、最小化二次型函数以及其他无约束优化问题。
与传统的共轭梯度法相比,PRP共轭梯度法具有更快的收敛速度和更好的全局搜索能力。
此外,PRP共轭梯度法还可以与其他优化算法结合,形成更加强大的求解器,提高问题求解的效率和精度。
PRP共轭梯度法是一种有效的数值方法,用于求解无约束优化问题。
它通过引入预处理技术来加速收敛速度,具有较好的全局搜索能力。
在实际应用中,可以根据具体问题的特点选择合适的优化算法,以提高问题求解的效率和精度。
matlab梯度算法

matlab梯度算法Matlab梯度算法在数学和计算机科学中,梯度是指一个多元函数在某一点上的变化率或斜率。
梯度算法是一种优化算法,用于找到函数的最小值或最大值。
在Matlab中,有多种方法可以使用梯度算法来优化函数,包括梯度下降和共轭梯度法。
本文将详细介绍Matlab中的梯度算法,并逐步讲解其原理和应用。
I. 梯度下降法梯度下降法是一种基于迭代的优化算法,通过计算函数的梯度来更新参数的值,以逐步接近函数的最小值。
在Matlab中,可以使用"gradientDescent"函数来实现梯度下降法。
1. 实现梯度下降法首先,我们需要定义一个优化目标函数,例如:f(x) = x^2 + 2x + 1。
然后,定义其梯度函数为g(x) = 2x + 2。
接下来,我们可以使用以下代码来计算梯度下降:matlab定义优化目标函数f = (x) x^2 + 2*x + 1;定义梯度函数g = (x) 2*x + 2;初始化参数x0 = 0;设置学习率和迭代次数alpha = 0.01;iterations = 100;梯度下降法for i = 1:iterationsx0 = x0 - alpha * g(x0);end打印最优解disp(['Optimal solution: ', num2str(x0)]);在这个例子中,我们使用了学习率(alpha)为0.01,迭代次数(iterations)为100。
通过不断更新参数x0的值,最终得到了最优解。
2. 梯度下降法的原理梯度下降法的核心思想是利用函数在当前点的梯度信息来更新参数的值,以便能够向着函数的最小值前进。
具体来说,算法的步骤如下:a. 初始化参数的值:选择一个初始参数的值作为起始点。
b. 计算梯度:计算函数在当前点的梯度,即求解函数关于参数的偏导数。
c. 更新参数:根据当前点的梯度和学习率,通过减去梯度的乘积来更新参数的值。
Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。
无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。
而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。
本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。
一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。
其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。
然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。
2. 共轭梯度法共轭梯度法是一种改进的最速下降法。
它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。
相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。
3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。
它通过构建并求解特定的二次逼近模型来求解无约束问题。
然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。
二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。
它通过在可行域内进行边界移动来寻找最优解。
然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。
2. 内点法内点法是一种改进的线性规划问题求解方法。
与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。
内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。
三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。
它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。
信赖域算法既考虑了收敛速度,又保持了数值稳定性。
2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。
它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。
遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。
matlab用共轭梯度法求解优化问题

标题:利用MATLAB中的共轭梯度法求解优化问题正文:一、概述在数学和工程领域中,优化问题是一个重要的研究领域。
优化问题的目标是寻找一个能够最大化或最小化某个函数的变量的数值,使得该函数达到最优值。
而共轭梯度法是一种常用的优化算法,能够有效地解决大规模的线性和非线性优化问题。
本文将介绍如何利用MATLAB中的共轭梯度法来求解优化问题。
二、共轭梯度法简介共轭梯度法是一种迭代算法,用于求解无约束优化问题。
它是一种在局部搜索过程中利用历史信息的优化方法,通常用于求解大规模的线性和非线性优化问题。
共轭梯度法基于数学中的共轭梯度概念,通过迭代寻找下降最快的路径,从而逐步逼近最优解。
三、MATLAB中的共轭梯度法函数MATLAB提供了丰富的优化算法和函数,其中包括了共轭梯度法函数。
在MATLAB中,可以使用“fmincg”函数来调用共轭梯度法来求解无约束优化问题。
该函数可以接收目标函数、初始变量值和其他参数作为输入,并计算出最优解。
四、使用共轭梯度法求解优化问题的步骤1. 确定目标函数在使用共轭梯度法求解优化问题之前,首先需要确定目标函数。
目标函数可以是线性函数、非线性函数或者带有约束条件的函数。
在MATLAB中,需要将目标函数定义为一个函数句柄,并且确保该函数具有输入参数和输出数值。
2. 确定初始变量值在使用共轭梯度法求解优化问题时,需要提供初始的变量值。
这些初始变量值可以是任意的数值,但通常需要根据实际问题进行合理选择。
3. 调用共轭梯度法函数在确定了目标函数和初始变量值之后,可以调用MATLAB中的“fmincg”函数来求解优化问题。
该函数会根据目标函数、初始变量值和其他参数进行迭代计算,直到找到最优解为止。
4. 获取最优解可以通过“fmincg”函数的输出结果来获取最优解。
该结果通常包括最优变量值和最优目标函数值。
五、优化问题的案例分析下面以一个简单的优化问题为例,说明如何利用MATLAB中的共轭梯度法来求解。
基于matlab平台的三种迭代法求解矩阵方程

数值分析第二次作业学院:电子工程学院基于matlab平台的三种迭代法求解矩阵方程组求解系数矩阵由16阶Hilbert方程组构成的线性方程组的解,其中右端项为[2877/851,3491/1431,816/409,2035/1187,2155/1423,538/395,1587/1279,573/502,947 /895,1669/1691,1589/1717,414/475,337/409,905/1158,1272/1711,173/244].要求:1)Gauss_Sedel迭代法;2)最速下降法;3)共轭梯度法;4)将结果进行分析对比。
解:根据题目要求,编写了对应算法的matlab程序,求解结果如下:(求解精度为10e-4,最大迭代次数1000)1、方程的解:如下图1所示图1 三种方法求解的结果对比图2 Gause_Sedel算法收敛特性图3 最速下降法收敛特性图3 共轭梯度法收敛特性从图中可以看到,在相同的最大迭代次数和预设求解精度条件下,共轭梯度算法仅需要4次迭代便可求出方程组的解,耗时0.000454秒,而且求出解的精度最高;Gauss_Sedel方法需要465次迭代,耗时0.006779秒,求解精度最差;最速下降法需要398次迭代,耗时0.007595秒,求解精度与共轭梯度算法差不多,因此两者求出的解也几乎相同。
从中可以得出结论,共轭梯度算法无论从求解精度还是求解速度上都优于其他两种,最速下降法在求解精度上几乎与共轭梯度算法持平,但求解速度更慢。
Gauss_Sedel方法在求解精度和速度两方面都最差。
具体的解为:Gauss_Sedel迭代法:(共需465次迭代,求解精度达到9.97e-5) X=[0.995328360833192 1.01431732497804 1.052861239300110.934006974137998 0.931493373808838 0.9665081384030661.00661848511341 1.03799789809258 1.051806903036541.06215849948572 1.04857676431223 1.028561990411131.01999170162638 0.971831831519515 0.9525261666348130.916996019179182].最速下降法:(共需398次迭代,求解精度达到9.94e-5)X=[0.998835379744322 1.01507463472900 0.9825890937201850.980191460759243 0.991245169713628 1.003780222253291.01350884374478 1.01928337905816 1.020859096651941.01930314197028 1.01444777381651 1.007040589892970.998384452250809 0.987399404644377 0.9757678149709120.963209150871750].共轭梯度法:(共需4次迭代,求解精度达到3.98e-5)X=[0.996472751179456 1.02707840189049 0.9776233734098530.973206695321590 0.986133032967607 1.001289025642341.01322158496914 1.02047386502293 1.023009050605651.02163015083975 1.01678089454399 1.009203108638740.999772406055155 0.988443827498859 0.9760941924969490.962844741655005].Matlab程序主程序:clc;clear;%% 本程序用于计算第二次数值分析作业,关于希尔伯特矩阵方程的解,用三种方法,分析并比较,也可推广至任意n维的矩阵方程%%A=hilb(16); %生成希尔伯特系数矩阵b=[2877/851;3491/1431;816/409;2035/1187;2155/1423;538/395;1587/1279;573/502;947/895;166 9/1691;1589/1717;414/475;337/409;905/1158;1272/1711;173/244]; %右端向量M=1000; %最大迭代次数err=1.0e-4; %求解精度[x,n,xx,cc,jingdu]=yakebi_diedai(A,b,err,M); % 雅克比算法求解tic;[x1,n1,xx1,cc1,jingdu1]=gauss_seidel(A,b,err,M); % gauss_seidel算法求解toc;tic;[x2,n2,xx2,jingdu2]=zuisuxiajiangfa(A,b,err,M); % 最速下降法求解toc;tic;[x3,flag,jingdu3,n3]=bicg(A,b,err); % matlab内置双共轭梯度算法求解toc;tic;[x4,xx4,n4,jingdu4]=con_grad(A,b,err,M); % 教材共轭梯度算法求解toc;%% 计算相应结果,用于作图%%num=[1:16]';jie=[num,x1,x2,x4]; % 三者的解对比% 三者的收敛情况对比num1=[1:n1]';fit1=[num1,jingdu1'];num2=[1:n2]';fit2=[num2,jingdu2'];num4=[1:n4]';fit4=[num4,jingdu4'];子函数1(Gause_Sedel算法):function [x,n,xx,cc,jingdu] = gauss_seidel(A,b,err,M)% 利用迭代方法求解矩阵方程这里是高斯赛尔得迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数cc 迭代矩阵普半径jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解for ii=1:length(b)if A(ii,ii)==0x='error';break;endendD=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=(D-L)\U;cc=vrho(B); %迭代矩阵普半径FG=(D-L)\b;x0=zeros(length(b),1);x=B*x0+FG;k=0;xx(:,1)=x;while norm(A*x-b)>errx0=x;x=B*x0+FG;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endjingdu(k)=norm(A*x-b);endend子函数2(最速下降算法):function [x,n,xx,jingdu]=zuisuxiajiangfa(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是最速下降迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% % M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;t0=r0'*r0/(r0'*A*r0);x=x0+t0*r0;r=b-A*x;xx(:,1)=x;k=0;while norm(r)>epsr=r;x=x;t=r'*r/(r'*A*r);x=x+t*r;r=b-A*x;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend子函31(共轭梯度法):function [x,xx,n,jingdu]=con_grad(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是共轭梯度迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;p0=r0;% t0=r0'*r0/(r0'*A*r0);% x=x0+t0*r0;% xx(:,1)=x;k=0;x=x0;r=r0;p=p0;while norm(r)>epsx=x;r=r;p=p;afa=r'*r/(p'*A*p);x1=x+afa*p;r1=r-afa*A*p;beta=r1'*r1/(r'*r);p1=r1+beta*p;x=x1;r=r1;p=p1;k=k+1;xx(:,k)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend。
共轭梯度法matlab

共轭梯度法matlab中文:共轭梯度法(Conjugate Gradient),是一种非常有效的求解对称大型线性系统的近似解的算法。
使用共轭梯度法来求解线性系统最终收敛于最小值,它是在不构造正定矩阵时,可以快速求解系统的一个有效解法。
拉格朗日方程,线性系统通常表示为Ax = b,其中A为系数矩阵,b为常数矩阵,x 为未知标量或未知向量。
给定矩阵A和b,共轭梯度法可以用来求解x。
共轭梯度法的基本思想是,不断改变梯度的方向直到梯度收敛为零。
梯度收敛的定义是:在不同的两个迭代过程中,两个梯度的乘积的值小于一个特定的参数。
由于梯度的收敛程度越小,时间复杂度也就越低。
matlab中,我们可以使用共轭梯度法导入函数cgs来解决线性系统的代数方程。
语句形式为[x,flag,relres,iter,resvec] = cgs(A,b),其中A是系数矩阵,b为常数矩阵,x 为未知量,flag表示结束状态,relres为相对残差,iter表示迭代次数,resvec为残差向量。
若要解决Ax = b,即:A = [1 2;3 4]我们用matlab cgs 函数进行求解,可以这样写:[x,flag,relres,iter,resvec] = cgs(A,b);flag表示收敛情况,flag=0代表收敛,flag=-1代表系数矩阵A不能被处理。
relres 是收敛的相对误差,iter是迭代次数,resvec是残差向量,x为未知量。
上面的程序可以得到flag=0,relres=1.537e-14,iter=13,resvec=[1.0135e-14]。
上面的解为x=[-1;1],解析解一致,表明matlab cgs函数可以成功求解对称大型线性方程组。
最后,共轭梯度法是一种近似求解线性系统的有效算法,它的优势是具有快速的收敛性,在计算时省去构造正定矩阵的时间,并且稳定。