计算方法之曲线拟合资料
第3章曲线拟合的最小二乘法计算方法

最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为
计
i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81
算
1 5 2 10 25 50 125 625
方
2 6 1 6 36 36 216 1296
法
3 8 2 16 64 128 512 4096
课
4 10 4 40 100 400 1000 10000
件
Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408
计
2
3
27.4
3.3105
9
9.9315
算
3
4
36.6
3.6000
16
14.4000
方
4
5
49.1
3.8939
25
19.4695
法
5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10
计
计算方法课件第六章最小二乘法与曲线拟合

例1: y aebx
ln y ln a bx
u ln y, A ln a, B b
u A Bx
例2: y
a
1 bx
u 1 y
1 a bx y u a bx
3.写出矛盾方程组。 4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。 6.将正则方程组的解带回到数学模型中,得到拟 合曲线。
Remark
1.同一问题可以有不同的拟合曲线,通常根据均方误
差 N [ (xi 和) 最yi大]2 偏差
max
1i N
( xi
t cos 0.669131 0.390731 0.121869 -0.309017 -0.587785
记 a 1 , b e ,得拟合模型:a bt y
p
p
则矛盾方程组为:
1 0.669131
0.370370
1
1 1
0.390731 0.121869 0.309017
a b
0.500000
一、曲线拟合模型
定义:依据某种标准选择一条“最好”的简单
曲线作为一组离散数据(
xi
,
yi
)
N i0
的连续模型。
确定曲线的类型:一般选取简单的低次多项式。
求一个次数不高于N-1次的多项式:
y (x) a0 a1x a2x2 amxm
(m N 1)
(其中a0,a1,…,am待定),使其“最好”的拟合
j 1
j 1
n a1 j x j b1
计算方法 第三章曲线拟合的最小二乘法20191103

§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法
法
18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘
计算方法实验三 不同曲线拟合比较讲解

计算方法C(2014-2015-2)【不同拟合曲线的比较】实验报告学号:******* 姓名:*****8课程教师:戴克俭教学班级:无实验三 不同拟合曲线的比较实验目的:掌握曲线拟合和最小二乘法的思想,比较不同拟合曲线的精度。
实验题目:下表给出了我国1949~1984年间的一些人口数据,分别按下述方案求最小二乘拟合函数及其偏差平方和Q ,求1969年人口并预测方案I 拟合函数取如下形式的三次多项式3322101)(x a x a x a a x F +++=方案II 用离散正交多项式求三次拟合多项式)(2x F 方案III 用离散正交多项式求四次拟合多项式)(3x F 方案IV 拟合函数为如下形式的函数10sin)(4xb a x F π+=算法流程图如下:i、方案1 ii、方案2iii、方案3iv、方案4源程序清单如下:i、方案1图1:求3次多项式图2:求偏差ii、方案2图3:求3次多项式iii、方案3图4:求4次多项式图5:求sin(π*X/10)图6:nafit函数M文件图7:命令行输入运算结果如下:⑴、方案1P(X)=745181.85611415-1135.160413656X+0.576328328X^2-0.000097520X^3 P(1969)= 11.4973750142380600 亿P(2000)=14.3408021503128110亿图8 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据误差很大⑵、方案2P(X)=732370.3125-1115.615844727X+0.566389024X^2-0.000095836X^3P(1969)= 4.1277828774182126亿P(2000)= 6.7190460005076602亿图9 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据误差很大⑶、方案3P(X)=30212.5+320.9404296875X-0.5357236862X^2+0.0002799341X^3-0.000000048X^4P(1969)= 627.7665998683078200 亿P(2000)= 671.4145749998278900 亿图10 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据蓝色线的数值全是上百亿与实际严重不符误差巨大⑷、方案4P(X)=0.2414+7.7753sin(π*X/10)P(1969)= 2.6441006951177228 亿P(2000)= 0.2413990828363674 亿图11 拟合曲线:蓝色线表示拟合曲线P(X),整体看该曲线具有和sin近似的周期性质,与实际数据不是很符合。
eigen库曲线拟合

eigen库曲线拟合(实用版)目录1.Eigen 库简介2.曲线拟合的概念与方法3.Eigen 库中的曲线拟合算法4.Eigen 库曲线拟合的实例与应用5.总结正文【1.Eigen 库简介】Eigen 库是一个开源的 C++库,主要用于线性代数、矩阵计算和其他相关领域。
它提供了大量的计算算法和工具,使得开发者可以更加高效地处理复杂的数学问题。
Eigen 库被广泛应用于各种领域,如计算机视觉、图形学、控制系统等。
【2.曲线拟合的概念与方法】曲线拟合是一种数学方法,通过寻找一条曲线来最佳地表示一组数据点。
拟合的方法有很多种,如最小二乘法、逆距离加权法、多项式拟合等。
曲线拟合在实际应用中有广泛的应用,例如在数据分析、信号处理、图像处理等领域。
【3.Eigen 库中的曲线拟合算法】Eigen 库提供了丰富的曲线拟合算法,包括线性拟合、多项式拟合、非线性拟合等。
这些算法都基于模板类,使用方便且高效。
(1)线性拟合:Eigen 库中的线性拟合算法主要使用Levenberg-Marquardt 算法,它是一种迭代算法,可以用于解决最小二乘问题。
(2)多项式拟合:Eigen 库中的多项式拟合算法可以用于拟合数据点,通过调整多项式系数来获得最佳拟合效果。
(3)非线性拟合:Eigen 库中的非线性拟合算法可以用于处理非线性数据关系,例如指数拟合、对数拟合等。
【4.Eigen 库曲线拟合的实例与应用】下面通过一个简单的例子来说明如何使用 Eigen 库进行曲线拟合。
假设我们有以下一组数据点:x: [1, 2, 3, 4, 5], y: [2, 4, 5, 8, 10]首先,我们需要将这些数据点表示为 Eigen 库中的矩阵或向量。
然后,我们可以使用 Eigen 库中的曲线拟合算法来拟合一条直线,如下所示:```cpp#include <iostream>#include <Eigen/Dense>using namespace Eigen;using namespace std;int main() {// 创建数据矩阵MatrixXd x(5, 1);VectorXd y(5);x << 1, 2, 3, 4, 5;y << 2, 4, 5, 8, 10;// 进行线性拟合double x_mean = x.mean();double y_mean = y.mean();double num = 0.0, den = 0.0;for (int i = 0; i < x.size(); ++i) {num += (x(i, 0) - x_mean) * (y(i) - y_mean);den += (x(i, 0) - x_mean) * (x(i, 0) - x_mean);}double k = num / den;double b = y_mean - k * x_mean;// 输出拟合结果cout << "拟合后的直线为:y = " << k << "x + " << b << endl;return 0;}```通过这个简单的例子,我们可以看到如何使用 Eigen 库进行曲线拟合。
计算方法 第三章 最小二乘法与曲线拟合

j1 i1
i1
称(2)为(1)的正规方程组(法方程组)。 (2)的解即为(1)的解,称此方法为最小二乘法。
例:利用最小二乘法求矛盾方程组:
2x+4y=11
3x 5y 3 x 2 y 6
4x 2 y 14
解:将原方程组改写为
4
1 2x 4 y 11 2 3x 5y 3 3 x 2 y 6
记
Q
n
i2
n
m
2
(aij x j bi ) (求Q的最小值)
i 1
i1 j1
Q
xk
n i 1
2
m
(aij x j
j 1
bi )aik
n
2
i 1
m
(aij x j
j 1
bi )aik
0
即
m
n
aij aik
x
j
n
aik bi
(k 1, 2,
, m)
——(2)
注:拟合时尽量使i 0
2. 常用方法:
m
m
(1)使偏差绝对值之和最小,即 | i | | (xi ) yi |最小。
i 1
i 1
(2)
使偏差最大绝对值最小,即max 1im
|
i
|
max
1im
|
( xi
)
yi
|
最小。
m
m
(3)使偏差平方和最小,即 i2 [(xi ) yi]2最小。
解得:x 2.977,y 1.226
§3.2 曲线拟合
一、已知 x x1 x2 xn
y y1 y2
yn
n-1的多项式 Q(x) a0 a1x
计算方法离散数据曲线拟合

第三章数据拟合知识点:曲线拟合概念,最小二乘法。
1 .背景已知一些离散点值时,可以通过构造插值函数来近似描述这些离散点的运动规律或表现这些点的隐藏函数观测到的数据信息• •*■*曲线拟合方法也可以实现这个目标,不同的是构造拟合函数。
两种方法的一个重要区别是:由插值方法构造的插值函数必须经过所有给定离散点,而曲线拟合方法则没有这个要求,只要求拟合函数(曲线)能“最好”靠近这些离散点就好。
2.曲线拟合概念实践活动中,若能观测到函数y=f(x)的一组离散的实验数据(样点):(x i,y),i=1,2…,n。
就可以采用插值的方法构造一个插值函数x),用「x)逼近f(x)。
插值方法要求满足插值原则xj=y i,蕴涵插值函数必须通过所有样点。
另外一个解决逼近问题的方法是考虑构造一个函数X)最优靠近样点,而不必通过所有样点。
如图。
即向量T= (「X1),X2),•••「x n))与丫= (y1, y2, )的某种误差达到最小。
按T和丫之间误差最小的原则作为标准构造的逼近函数称拟合函数。
曲线拟合问题:如何为f(x)找到一个既简单又合理的逼近函数X)。
曲线拟合:构造近似函数x),在包含全部基节点x<i=1 , 2…,n)的区间上能“最好”逼近f(x)(不必满足插值原则)。
逼近/近似函数y=「x)称经验公式或拟合函数/曲线。
拟合法则:根据数据点或样点(xy), i=1 , 2…,n,构造出一条反映这些给定数据一般变化趋势的逼近函数y=「x),不要求曲线■- x)经过所有样点,但要求曲线x)尽可能靠近这些样点,即各点误差S i= x i)-y i按某种标准达到最小。
均方误差/误差平方和/误差的2-范数平方:n卜||2八1i 4常用误差的2-范数平方作为总体误差的度量,以误差平方和达到最小作为最优标准构造拟合曲线的方法称为曲线拟合的最小二乘法(最小二乘原理)。
3.多项式拟合2012〜2013学年第2学期计算方法 教案 计1101/02 , 1181 开课时间:2012-02年4月第三版 第三章数据拟合 2h 3(1) 线性拟合给定一组(x i ,y i ), i=1 , 2…,n 。
线性曲线拟合程度计算公式

线性曲线拟合程度计算公式引言。
线性曲线拟合是一种常见的数据分析方法,它可以帮助我们找到数据中的趋势和规律。
在实际应用中,我们经常需要评估线性曲线拟合的程度,以确定拟合是否准确。
本文将介绍线性曲线拟合程度的计算公式,并讨论其在实际应用中的意义和应用。
线性曲线拟合程度计算公式。
线性曲线拟合程度的计算公式通常使用R方值(R-squared)来衡量。
R方值是一个统计量,用于评估拟合模型对观测数据的拟合程度。
它的取值范围在0到1之间,越接近1表示拟合越好,越接近0表示拟合越差。
R方值的计算公式如下:R方 = 1 (Σ(yi ŷi)²) / Σ(yi ȳ)²。
其中,yi表示观测数据的实际值,ŷi表示拟合模型的预测值,ȳ表示观测数据的平均值。
通过计算R方值,我们可以评估拟合模型对观测数据的解释能力,进而确定拟合的程度。
R方值的意义和应用。
R方值是一种常用的拟合程度衡量指标,它在实际应用中具有重要的意义和应用价值。
首先,R方值可以帮助我们评估拟合模型的准确性。
通过比较不同模型的R方值,我们可以确定哪个模型对观测数据的拟合效果更好,从而选择最合适的模型。
其次,R方值还可以帮助我们理解数据的变异性。
当R方值接近1时,说明观测数据的变异性大部分可以由拟合模型解释,反之则说明模型的解释能力较弱。
最后,R方值还可以用于预测模型的可靠性。
当R方值较高时,我们可以认为拟合模型的预测结果比较可靠,反之则需要对模型进行进一步的验证和调整。
实际应用。
线性曲线拟合程度计算公式在实际应用中具有广泛的应用。
例如,在金融领域,我们经常需要对股票价格走势进行拟合分析,以预测未来的价格变化。
通过计算R 方值,我们可以评估拟合模型对股票价格走势的拟合程度,从而确定预测结果的可靠性。
在医学领域,线性曲线拟合也常用于分析药物的剂量-效应关系。
通过计算R方值,我们可以评估拟合模型对药物剂量和效应之间的关系的拟合程度,从而确定最佳的用药方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 将方程组所需数据及计算结果列在下表的 第3,4,5列,最后一行数据是相应列数据求和, 右下角数据为偏差平方和。
7
xi
yi
xi2
xi yi
P(xi)=1.538xi - 0.360
1
1.3
1
1.3
1.18
2
3.5
4
7.0
2.72
3
4.2
9
12.6
4.25
4
5.0
14
20.0
5.79
5
7.0
25
35.0
0.25 1.2840 0.3210 0.0625 0.0803 0.0156 0.0039 1.2740 0.0100
0.50 1.6487 0.8244 0.2500 0.4122 0.1250 0.0625 1.6482 0.0004
0.75 2.1170 1.5878 0.5625 1.1908 0.4219 0.3164 2.1279 -0.0109
记
m
m
Q(a, b, c) [ p( xi ) yi ]2 (a bxi cxi2 yi )2
i 1
i 1
由微积分理论,要使Q(a,b,c)取极小值,必须:
10
Q(a, b, c)
a
Q(a, b, c)
b
2 2
m
i 1 m
i 1
(a (a
bxi bxi
cxi2 cxi2
xi4
c
i1
m i 1
xi2
yi
11
例5.2 数据点序列(xj,yj)(j=1,2,…,5)由 下表的第1,2两列给出,试用二次拟合得出拟合 抛物线,并给出各点处的偏差。
xj
yj
xjyj
0 1.0000 0
xj2
xj2yj
xj3
0Leabharlann 00xj4
P(xj) yj-P(xj)
0 1.0051 -0.0051
7.33
6
8.8
36
52.8
8.87
7 10.1 49
70.7
10.41
8 12.5 64 100.0
11.94
9 13.0 81 117.0
13.48
10 15.6 100 156.0
15.00
55 81.0 385 572.4 E=∑ (yi-P(xi))2≈2.34
8
则方程组为
10 55 a 81 55 385b 572.4
m
m
记 Q(a, b) ( p( xi ) yi )2 (a bxi yi )2
i 1
i 1
由微积分理论,要使Q(a,b)取极小值,应满足:
5
Q(a, b) m
a
Q(a,
b)
b
2 2
i 1 m
i 1
(a (a
bxi bxi
yi yi
) )xi
0
0
由此可得二元一次方程组
1
实际应用中,如果关于函数y=f(x)的插值节点xi 能所测得的函数值f(xi)比较精确,则以P(xi)= f(xi) 作为基本插值条件求插值函数P(x)近似替代f(x)。
反之,当数据点(xi , yi)含有误差时,即并不 一定有yi = f(xi),也就无法找到P(x) ,使所有的点 都满足P(xi)= f(xi) ,如何求取近似函数P(x) ?
1.00 2.7183 2.7183 1.0000 2.7183 1.0000 1.0000 2.7192 0.0054 ∑ 2.5 8.7680 5.4515 1.7850 4.4016 1.5625 1.3828
12
由表中数据可得线性方程组:
5
2.5 1.7850 a 8.7680
2.5 1.7850 1.5625 b 5.4515
m
m
m
i 1 m
a
bxi
i 1 m
i 1
yi
m
i1
axi
i 1
bxi2
i 1
xi yi
将上述方程组改写为矩阵形式:
6
m
m i 1
xi
m
m
i1
m
i1
xi xi2
a b
yi
i 1 m
xi yi
i 1
例5.1 数据点序列(xj,yj)(j=1,2,…,10) 由下表的第1,2两列给出,试用线性拟合得出拟 合直线,并给出偏差的平方和。
线,而求待求函数的拟合曲线的数值计算方法就 是曲线拟合法。
3
若将序列f(x1), f(x2), ... , f(xm)表示成向量形式: Y=(f(x1), f(x2), ... , f(xm))T,
将序列(x1), (x2), ..., (xm)表示成向量形式: Q=((x1), (x2), ..., (xm))T,
问题:对函数y=f(x),解析表达式未知,只测得
离散点列[xi , yi],并无法找到某特定的函数(x), 使所有xi都能严格满足(xi)=yi。
2
解决:求一条近似曲线y=(x),使函数y=f(x)离散 点列[xi , yi]中的绝大多数点能落在曲线y=(x)上或 在其附近,那么曲线y=(x)就称为y=f(x)的拟合曲
那么拟合曲线必须满足Q与Y之间的距离(误差)
最小,以保证点列中的大多数点落在曲线y=(x)
上或在其附近。
当上述向量Q与Y之间的距离用平方和
m
R2 [ ( xi ) f ( xi )]2 i 1
4
来表示,按使R2最小的原则构造拟合曲线的方法 也就是所谓——最小二乘法。
1、线性拟合
设某函数y=f(x),测得点列(xi , yi),i=1,2,...,m, 求一条直线p(x)=a+bx,使点列(xi , yi)中的大多数 点落在该直线上或在其附近。a , b为待定系数。
解得: a=-0.360 b=1.538
故所求拟合直线为 P(x)=-0.360+1.538x
2 4 6 8 10 12 14 16
y
o 2 4 6 8 10 x
9
2、二次拟合
设对某函数y=f(x),测得离散点列
(xi , yi),i=1,2,...,m, 求一条二次曲线 p(x)=a+bx+cx2,使点列(xi , yi) 中的绝大多数点都能落在该曲线上或在其附近。
1.7850 1.5625 1.3828 c 4.4016
解之得 a=1.0051, b=0.86468,c=0.84316
于是二次拟合的抛物线为
P2 (x) = 1.0051 +0.86468 x +0.84316 x2
yi yi
) )xi
0
0
Q(a, b, c)
c
m
2
i 1
(a
bxi
cxi2
yi
) xi2
0
由此可得三元一次方程组
m
m
xi
i1
m i 1
xi2
m
xi
i 1 m
xi2
i 1 m
xi3
i 1
m xi2
m
yi
i1 a i1
m
xi3
b
m
xi yi
i 1 m i 1