高中数学必修一 集合的概念及表示练习题及答案

合集下载

高中数学必修1课后习题答案

高中数学必修1课后习题答案
2 3 3 3
x x x 即{ | 3}, { | 2}A x x B x x
21A
{ 1}A A {1, 1}=A
2{ | 1 0} { 1,1}
A x x
7_______Q 223______N 3_______Q
42_______R 59_______Z 62( 5)_______N
112
3
7
Q 2
3
7是有理数 223N
23 9是个自然数
x得反比例函数2
y
x
的自变量的值组成的集合为{ | 0}
x x
3由不等式3 4 2
x x 得4
5
x即不等式3 4 2
x x 的解集为4
{ | }
5
x x
5选用适当的符号填空
1已知集合{ |2 3 3 }, { | 2}
A B
{3,5,6,8} {4,5,7,8} {3,4,5,6,7,8}
A B
2设2 2{ | 4 5 0}, { | 1}
A x x x B x x 求,A B A B
2解方程2
4 5 0x x 的两根为1 21, 5
即B是A的真子集B
A
3因为
4与10的最小公倍数是20所以A B 113集合的基本运算 练习第11页 1设{3,5,6,8}, {4,5,7,8}A B 求,A B A B
1解{3,5,6,8} {4,5,7,8} {5,8}
15_______A 27_______A 310
_______A
215A

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

人教A版高中数学必修一1.1.1《集合的含义与表示》同步练习题 答案和解析

人教A版高中数学必修一1.1.1《集合的含义与表示》同步练习题 答案和解析

人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)
故选:A
3.已知 , ,且 ,则( )
A. B. C. D.
答案:B
解析:根据集合的包含关系可求得 的取值范围.
详解:
, ,且 , .
故选:B.
4.能够组成集合的是( )
A.与2非常数接近的全体实数
B.很著名的科学家的全体
C.某教室内的全体桌子
D.与无理数π相差很小的数
答案:C
解析:由集合中元素的特征:确定性、互异性、无序性,进行判断即可
1.1 集合的概念
一、单选题
1.已知集合 ,集合 ,若 ,则实数 的值是( )
A.0B. C.0或 D.0或
答案:C
解析:计算 ,考虑 , , 三种情况,计算得到答案.
详解:
, ,
当 时, , ;当 时, , ;当 时, .
即 或 或 .
故选:C.
2.已知 小于 的自然数},则( )
A. B. C. D.
故答案为:
2.已知 ,则实数 的值是_________.
答案:-1
解析:试题分析:
考点:元素互异性
【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.
3.已知集合 ,则实数 的取值范围为__________.
答案:
解析:根据题意得 ,解不等式即可得答案
点睛:
本题考查了一元二次不等式的解法,属于基础题.
7.设集合 , ,则下列关系中正确的是( )
A. B. C. D.
答案:C
解析:根据元素与集合之间的关系,即可求出结果.
详解:
由题意可知, ,所以 ,故选C.
点睛:
本题主要考查了元素与集合之间的关系.

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(49)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(49)

1.1 集合的概念一、单选题1.集合24{|}M x x a b a Z b Z ==+∈∈,,,{}84,,N y y c d c Z d Z ==+∈∈,则( ) A .M NB .M N ⋂=∅C .M N ⊆D .N M ⊆答案:D解析:分别化简两集合得知集合M 为偶数集,集合N 为4的整数倍的数组成的集合,故N M ⊆.详解:()22x a b =+,当a Z b Z ∈∈,时,2+a b 可以取到所有整数,所以集合M 由所有偶数组成;同理由()42y c d =+知集合N 由所有4的整数倍的数组成. 因此N M ⊆. 故选:D.2.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-= B .{(-1,3)} C .{3,-1} D .{-1,3}答案:B解析:由题意知,集合A 代表点集,解方程组即可求解. 详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)}, 故选:B.3.下列关系中正确的是( )A .0∈∅B QC .0N ∈D .{}1(0,1)∈答案:C解析:根据空集是不含有任何元素的集合,得到A B 不正确; 由元素与集合的关系,得到D 不正确,即可求解. 详解:由题意,A 中,空集是不含有任何元素的集合,所以不正确;Q 不正确; 根据元素与集合的关系,{}1(0,1)∈不正确, 又由0是自然数,所以0N ∈,故选C. 点睛:本题主要考查了元素与集合的关系,着重考查了分析问题和解答问题的能力,属于基础题.4.已知方程()()()2221236660x x b x x b x x b -+-+-+=的所有解都为自然数,其组成的解集为{}12345,,,,A x x x x x =,则123b b b ++的值不可能为( )A .13B .14C .17D .22答案:A解析:当123,,b b b 分别取0,5,9时,{}0,6,1,5,3A =,12314b b b ++=,排除B , 当123,,b b b 分别取0,8,9时,{}0,6,2,4,3A =,12317b b b ++=,排除C , 当123,,b b b 分别取5,8,9时,{}1,5,2,4,3A =,12322b b b ++=,排除D ,故选A. 5.如果集合{|42,}S x x n n ==+∈N ,{|42,}T x x k k ==-∈Z ,则( ) A .S T B .T SC .S T =D .S T ⋂=∅答案:A解析:利用列举法,表示出两个集合的若干个元素,根据元素特征即可判断两个集合的关系. 详解:因为{|42,}S x x n n ==+∈N 则{2,6,10,14}S =⋅⋅⋅{|42,}T x x k k ==-∈Z则{6,2,2,6,10,14}T =⋅⋅⋅--⋅⋅⋅ 根据集合与集合的关系可知S T 故选:A 点睛:本题考查了集合与集合关系的判断,数集表示的意义,属于基础题. 6.下列元素与集合的关系表示正确的是( ) ①1-∈N *Z ;③32∈Q;④π∈Q A .①② B .②③C .①③D .③④答案:B解析:根据相关概念直接判断元素与集合关系. 详解:①1-不是正整数,∴1-∈N *错误;Z 正确; ③32是有理数,∴32Q ∈正确; ④π是无理数,∴π∈Q 错误; ∴表示正确的为②③. 故选:B 点睛:本题考查元素与集合关系,考查基本分析判断能力,属基础题.7.若{}22111a a ∈++,,,则a =( )A .2B .1或-1C .1D .-1答案:D解析:讨论212a +=和12a +=两种情况,计算并验证得到答案. 详解:当212a +=时,1a =±,当1a =时,集合为{}1,2,2不满足互异性,舍去,当1a =-时,集合为{}1,2,0,满足;当12a +=时,1a =,不满足互异性,舍去. 故选:D . 点睛:本题考查了根据元素和集合的关系求参数,意在考查学生的计算能力. 8.点的集合(){},0M x y xy =≥是指 A .第一象限内的点集 B .第三象限内的点集.C .第一、第三象限内的点集D .不在第二、第四象限内的点集.答案:D解析:0xy ≥指x 和y 同号或至少一个为零,结合象限的概念可得结果. 详解:0xy ≥指x 和y 同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.即不为第二、第四象限内的点,故选D . 点睛:本题主要考查对集合的概念和表示的理解,属于基础知识的考查.9.设P 是一数集,且至少含有两个数,若对任意,a b P ∈,都有a b +、-a b 、ab 、a P b∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是数域,数集{,}F a a b Q =+∈也是数域,则下列命题:① 整数集是数域;② 若有理数集Q M ⊆,则数集M 必为数域;③ 数域必为无限集;④ 存在无穷多个数域;其中正确的命题的序号( ) A .①②④ B .②③④ C .③④ D .②④答案:C解析:根据题中定义,结合特殊值法逐一判断即可. 详解:①例如a=1,b=2,除法为12Z ∉不满足条件,故①不正确;②若MM ,则集合M 就不是数域,②不正确;③因为数域中的元素可以任意取两个,进行连续的四则运算,可产生无数个元素,所以数域必为无限集,③正确;④因为任意两个数,即可产生一个数域,故数域有无穷多个,④正确; 故选择:C . 二、填空题1.有下列各组对象: (1)某校的年轻教师;(2)被5除余数是2的所有整数; (3)著名数学家; (4)直线l 上的所有点;(5)大于1且小于2的所有有理数.其中能构成集合的对象有_________(填写序号)答案:(2)(4)(5).解析:可看出(1)所说的“某校”和(3)所说的“著名”都不能确定,从而都不能构成集合的对象.而(2)(4)(5)所说的对象是可确定的,能构成集合的对象. 详解:(1)“某校”不确定,不能构成集合的对象;(2)”被5除余数是2的所有整数”是确定的,可以构成集合的对象; (3)“著名”是不确定的,不能构成集合的对象; (4)“直线l 上的所有点”是确定的,能构成集合的对象;(5)“大于1且小于2的所有有理数”是确定的,能构成集合的对象. 故答案为:(2)(4)(5). 点睛:本题考查元素是否可以构成集合的判断,注意确定性的应用,属简单题. 2.设三元集合,,1b a a ⎧⎫⎨⎬⎩⎭={}2,,0a a b +,则20142015a b +=___________ . 答案:解析:试题分析:集合,且,,则必有,即,此时两集合为,集合,,,当时,集合为,集合,不满足集合元素的互异性.当时, ,集合,满足条件,故201420151,0,1a b a b =-=∴+=,因此,本题正确答案是:.考点:集合相等的定义.3.已知非空集合{}|1A x ax ==,则a 的取值范围是____________. 答案:0a ≠ 详解: 略4.设集合A 、B 都是U =1,2,3,4}的子集,若(∁U A)∩(∁U B)=2},(∁U A)∩B=1},且A 中含有两个元素,则A =________.答案:{}3,4解析:根据集合的定义与性质,结合题意,写出集合A 的元素即可. 详解:解:集合A ,B 都是全集{}1,2,3,4U =的子集,(){}1UA B =,1A ∴∉,又()(){}2U U A B =,2A ∴∉,A 中元素有2个.{}3,4A ∴=故答案为:{}3,4 点睛:本题考查了集合的定义与运算问题,是中档题.5.给出下列说法:①平面直角坐标系中,第一象限内的点组成的集合为(){},0,0x y x y >>;20y +=的解集为{}2,2-;③集合{}21,y y x x =-∈R 与{}1,y y x x =-∈R 是不相等的.其中正确的是______(填序号).答案:①③解析:根据题意,结合集合的表示方法,逐项判定,即可求解,得到答案. 详解:对于①中,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(),x y ,所以①正确;20y +=的解为22x y =⎧⎨=-⎩,解集为(){}2,2-或()2,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=-⎩⎪⎪⎩⎭,所以②不正确;对于③中,集合{}{}21,1y y x x y y =-∈=≥-R ,集合{}1,y y x x =-∈=R R ,这两个集合不相等,所以③正确. 点睛:本题主要考查了集合的表示方法及其应用,其中解答中熟记集合的表示方法——列举法、描述法,以及集合表示方法的改写是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 三、解答题1.用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.答案:答案见解析.解析:由于(1)(3)表示的集合都是无限集,所以利用描述法表示,(2)表示的是有限的5个元素,所以利用列举法表示 详解:解:(1){(,)|0,0}x y x y <<,它是无限集;(2){}2,0,2,4,6,8-,共有6个元素,是有限集; (3){|107,}x x k k Z =+∈,它是无限集. 点睛:此题考查了集合的表示方法,属于基础题.2.已知集合A 有三个元素:3a -,21a -,21a +,集合B 也有三个元素:0,1,x . (1)若3A -∈,求a 的值; (2)若2x B ∈,求实数x 的值;答案:(1)0a =或1-;(2)1x =-.解析:(1)根据元素的确定性和互异性可得33a -=-或213a -=-,即可求解; (2)根据元素的确定性列方程,再检验互异性即可求解. 详解:(1)由3A -∈且211a +≥, 所以213a +≠-当33a -=-时,可得0a =,此时{}3,1,1A =--符合题意, 当213a -=-时,可得1a =-,此时{}4,3,2A =--符合题意, 所以0a =或1-,(2)若2x B ∈,则20x =或21x =或2x x =,解得:0x =或1x =或1x =-, 由元素互异性可得:0x ≠且1x ≠,所以1x =- 3.用描述法表示下列集合:(1)比1大又比10小的实数组成的集合; (2)不等式342x x +≥的所有解; (3)到两坐标轴距离相等的点的集合.答案:(1){}|110x R x ∈<<;(2){}|4x x ≥-;(3)(){},|x y y x =±. 解析:用描述方法逐项表示可得答案. 详解:(1)根据描述用不等式表示出即可,可以表示成{}|110x R x ∈<<. (2)先表示成{}|342x x x +≥,解不等式即{}|4x x ≥-.(3)到两坐标轴距离相等的点在坐标轴的角平分线上,即y x =,或y x =-,可以表示成(){},|x y y x =±.。

高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题(含解析)数学必修1(苏教版)1.1 集合的含义及其表示一位渔民专门喜爱数学,但他如何也不明白集合的意义,因此他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家专门难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家专门兴奋,快乐地告诉渔民:“这确实是集合!”你能明白得数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b} B.{a}{a,b}C.a{a} D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素差不多上正整数,且若aM,则6-aM,则所有满足条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素能够是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2 B.{xR|x2-1=0}C.{xR|x2+x+1=0} D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2 D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a =-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③能力提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,现在A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,现在A=-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2021+b202 1的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2021+b2021=(-1)2021+02021=1.17.设正整数的集合A满足:“若xA,则10-xA”.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)如此的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地显现在A中.同理,2和8,3和7,4和6成对地显现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(64)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(64)

1.1 集合的概念一、单选题1.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃答案:B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B2.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算3.方程组2219x y x y +=⎧⎨-=⎩的解集是( ) A .(){}5,4B .(){}5,4--C .(){}5,4-D .(){} 5,4-答案:D解析:把一次方程代入二次方程消去y 后求得x ,即可求得y.详解:把一次方程代入二次方程得22(1)9x x --=,整理得210x =,5x =5x =代入一次方程, 求得514y =-+=-故方程组的解集为{}(5,4)-,故选:D.本题主要考查了方程组的解集问题.涉及点集的表示方法及列举法..4.若2∈1,a ,a 2-a },则 a =( )A .-1B .0C .2D .2或-1答案:A解析:由题:分两种可能情况2a =或22a a -=,分别解出参数,得到集合,通过集合中元素的互异性进行排除.详解:由题22{1,,}a a a ∈-,若2a =,则22a a -=,与集合中元素的互异性矛盾,不合题意,舍去; 若22a a -=解得:2a =或1a =-,显然2a =不合题意(已分析),检验当1a =-时,集合为{1,1,2}-满足题意.故选:A点睛:此题考查通过元素与集合的关系求参数的值,对所有情况进行分类讨论,关键在于满足集合中元素的互异性,注意舍去不合题意的情况.5.设集合{}|1A x Z x =∈>-,则( )A .A ∅∉B AC AD .A ⊆答案:B解析:根据元素与集合的关系进行判断.详解:集合A=x∈Z|x>−1},集合A 中元素为整数,A ,故选:B.点睛:本题考查元素与集合关系的判断,属于基础题.6.若1{0,}a ∈,则实数a =( )A .1-B .0C .1D .0或1答案:C解析:根据集合的确定性,互异性,即可求得答案.因为1{0,}a ∈,根据集合性质可得:1a =.故选:C7.设59{137}U A B =,,,,,,为U 的子集,若{}{}3)7U A B C A B ==,(,()}()19{U U C A C B =,,则下列结论正确的是A .5,5AB ∉∉B .5,5A B ∉∈C .5,5A B ∈∉D .5,5A B ∈∈答案:C解析:根据{}()()()19U U U C A C B C A B ==,,得出{3,5,7}A B =,依次判断选项即可选出答案. 详解:因为{}()()()19U U U C A C B C A B ==,, 所以{3,5,7}A B =.即:集合A 、B 中至少有一个集合含有5.A 选项:5,5AB ∉∉,错误.B 选项:5,5A B ∉∈,{}5)7UC A B =∈(,不符合题意.D 选项:5,5A B ∈∈,{}53A B ∈=,不符合题意.故选:C点睛:本题考查集合的交,并,补集的运算,认真审题是解决本题的关键,属于简单题.8.若{}210,,a a ∈,则a 的值为( ) A .1-B .0C .1D .2答案:A 解析:本题首先可根据{}210,,a a ∈得出1a =或21a =,然后对1a =、21a =进行分类讨论,即可得出结果.详解:因为{}210,,a a ∈,所以1a =或21a =, 若1a =,则21a a ,不满足元素的互异性,排除;若21a =,则1a =-或1(舍去),1a =-,此时集合为{}0,1,1-,故选:A.点睛:本题考查根据元素与集合的关系求参数,集合中的元素需要满足确定性、互异性以及无序性,考查计算能力,是简单题.9.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.二、填空题1.用描述法表示图中阴影部分的点构成的集合为________.答案:(x ,y)|0≤x≤2且0≤y≤1}详解:由题意得,图中的阴影部分构成的集合是点集,则{(,)|02x y x ≤≤且01}y ≤≤.故答案为{(,)|02x y x ≤≤且01}y ≤≤.点睛:本题考查集合的描述法的概念及其应用,解答本题的关键是图中的阴影部分的点的坐标满足的条件为集合的元素的公共属性.2.若集合{}2A x ax x b =+=-是无限集,则a +b =_______.答案:1- 解析:根据集合{}2A x ax x b =+=-是无限集,求出a 和b 的值,从而可得+a b 的值. 详解: ∵集合{}2A x ax x b =+=-是无限集∴12a b =⎧⎨=-⎩∴1a b +=-故答案为:1-.点睛:本题考查了一元一次方程、无限集合的性质,考查了计算能力,属于基础题.3.能被2整除的正整数的集合,用描述法可表示为________.答案:x|x =2n ,n∈N *}详解:∵能被2整除的数都可写成2的整数倍,∴所有能被2整除的正整数的集合可表示为:{}|2,x x n n N *=∈ 故答案为{}|2,x x n n N *=∈4.已知M 是同时满足下列条件的集合:①0,1M M ∈∈;②若,x y M ∈,则x y M -∈;③x M ∈且0x ≠,则1M x∈. 下列结论中正确的是_____________.(1)13M ∈;(2)1M -∉;(3)若,x y M ∈,则x y M +∈;(4),x y M ∈,则xy M ∈答案:(1)(3)(4)解析:(1)根据该集合的条件可得011M -=-∈,1(1)2M --=∈,2(1)3M --=∈,即得13M ∈;(2)由(1)可得1M -∈;(3)根据条件可得0y y M -=-∈,()x y M --∈,即得证;(4)可得出当,x y M ∈时,22222(),,,22x y x y x y M ++∈,则222()22x y x y xy M ++-=∈. 详解:(1)由①0,1M M ∈∈,则由②011M -=-∈,1(1)2M ∴--=∈,2(1)3M --=∈,由③得13M ∈,故(1)正确;(2)由(1)可知1M -∈,故(2)错误;(3)由①知0M ∈,y M ∈,0y y M ∴-=-∈,x M ∈,()x y M ∴--∈,即x y M +∈,故(3)正确;(4),x y M ∈,则1x M -∈,由③可得11,1M M x x ∈∈-,111M x x ∴-∈-,即1(1)M x x ∈-,(1)x x M ∴-∈,即2x x M -∈,2x M ∴∈; 由(3)可知当,,x y M x y M ∈+∈,112M x x x∴+=∈,∴当,x y M ∈,可得22222(),,,22x y x y x y M ++∈,222()22x y x y xy M ++∴-=∈,故(4)正确. 故答案为:(1)(3)(4).点睛:关键点睛:本题考查元素与集合的关系,解决本题的关键是理解清楚该集合的三个条件,合理的利用好三个条件进行求解,根据有限的元素求出更多该集合中的元素.5.用描述法表示下列集合:所有被3整除的整数________.答案:{}3,x x k k Z =∈解析:根据题中条件,由描述法,可直接得出结果.详解:用描述法表示集合“所有被3整除的整数”,为{}3,x x k k Z =∈. 故答案为:{}3,x x k k Z =∈.点睛:本题主要考查集合的描述法,属于基础题型.三、解答题1.用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集; (2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+- 的图象上所有点的纵坐标组成的集合.答案:(1){(4,2)}-;(2)2{|210}x x x ∈-+=R ;(3){(,)|0x y x <且0}y >;(4)2{(,)|210}x y y x x =+-;(5){}2|210y y x x =+-. 解析:描述法或列举法表示(1)、(2),描述法表示(3)、(4)、(5).详解:(1)解方程组2314,328,x y x y -=⎧⎨+=⎩得4,2,x y =⎧⎨=-⎩ 故解集可用描述法表示为4,(,)2x x y y ⎧=⎧⎫⎪⎨⎨⎬=-⎩⎭⎪⎩,也可用列举法表示为{(4,2)}-. (2)方程2210x x -+=有两个相等的实数根1,因此可用列举法表示为{1},也可用描述法表示为2{|210}x x x ∈-+=R .(3)集合的代表元素是点,可用描述法表示为{(,)|0x y x <且0}y >.(4)二次函数2210y x x =+-的图象上所有的点组成的集合中,代表元素为有序实数对(,)x y ,其中x ,y 满足2210y x x =+-,则可用描述法表示为2{(,)|210}x y y x x =+-.(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合中,代表元素y 是实数,故可用描述法表示为{}2|210y y x x =+-.点睛:本题考查集合的表示方法,属于基础题.2.用描述法表示下列集合:(1)比1大又比10小的实数组成的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合.答案:(1)x∈R|1<x<10};(2)(x,y)|x<0,且y>0};(3)x|x=3n+1,n∈N}.解析:根据描述法的表示形式,(1)(3)都用x表示元素,再根据条件写出x满足的条件,从而表示出这两个集合,而(2)中的元素用(x,y)表示,表示点,然后写出x,y满足的条件,即可表示出该集合.详解:解:(1)x∈R|1<x<10};(2)集合的代表元素是点,用描述法可表示为(x,y)|x<0,且y>0};(3)x|x=3n+1,n∈N}.3.用另一种方法表示下列集合:(1)绝对值不大于2的整数};(2)能被3整除,且小于10的正数};(3)x|x=|x|,x<5且x∈Z};(4)(x,y)|x+y=6,x∈N+,y∈N+};(5)-3,-1,1,3,5}.答案:见解析解析:根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.详解:(1)-2,-1,0,1,2}.(2)3,6,9}.(3)∵x=|x|,∴x≥0.又∵x∈Z且x<5,∴x=0或1或2或3或4.∴集合可以表示为0,1,2,3,4}.(4)(1,5),(2,4),(3,3),(4,2),(5,1)}.(5)x|x=2k-1,-1≤k≤3,k∈Z}.点睛:考查集合的概念,集合的表示方法:列举法,描述法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标 集合的含义及其表示
姓名:_________
一、选择题:
1.下面四个命题:(1)集合N 中的最小元素是1:(2)若a N -∉,则a N ∈ (3)244x x +=的解集为{2,2};(4)0.7Q ∈,其中不正确命题的个数为 ( )
A. 0
B. 1
C.2
D.3
2.下列各组集合中,表示同一集合的是 ( ) A.(){}(){}3,2,2,3M N = B.{}{}3,2,2,3M N ==
C.(){},1M x y x y =+=,{}1N y x y =+=
D. {}(){}1,2, 1.2M N ==
3.下列方程的实数解的集合为12,23⎧⎫
-⎨⎬⎩⎭
的个数为 ( )
(1)224941250x y x y +-++=;(2)2620x x +-=; (3) ()()2
21320x x -+=;(4) 2
620x x --=
A.1
B.2
C.3
D.4
4.集合{}
(){}
2
2
10,6100
A x x x
B x N x x x =++==∈++=,{}450
C x Q x =∈+<,
{}2D x x =为小于的质数 ,其中时空集的有 ( ) A. 1个B.2个 C.3个 D.4个 5. 下列关系中表述正确的是 ( )
A.{}200x ∈=
B.(){}00,0∈
C. 0∈∅
D.0N ∈ 6. 下列表述正确的是( )
A.{}0=∅
B.{}{}1,22,1=
C.{}∅=∅
D.0N ∉
7. 下面四个命题:(1)集合N 中的最小元素是1:(2)方程()()()3
1250x x x -+-=的
解集含有3个元素;(3)0∈∅(4)满足1x x +>的实数的全体形成的集合。

其中正确命题的个数是 ( ) A.0 B. 1 C. 2 D.3 二.填空题:
8.用列举法表示不等式组240121x x x +>⎧⎨+≥-⎩的整数解集合为
9.已知集合12,6A x x N N x ⎧⎫
=∈∈⎨⎬-⎩⎭
用列举法表示集合A 为
10.已知集合241x A a
x a ⎧⎫-⎪⎪
==⎨⎬+⎪⎪⎩⎭
有惟一解,又列举法表示集合A 为 三、解答题:
11.已知{}{}2A=1,a,b ,,,B a a ab =,且A=B ,求实数a,b ;
12. 已知集合{}
2210,A x ax x x R =++=∈,a 为实数
(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值 (3)若A 中至多只有一个元素,求a 的取值范围
13. 设集合{}
22,M a a x y a Z ==-∈
(1)请推断任意奇数与集合M 的关系 (2)关于集合M ,你还可以得到一些什么样的结论
参考答案:DBBBDBC
8.{}1,0,1,2- 9{}0,2,3,4,5;10,17224⎧⎫
--⎨⎬⎩⎭
,,11,a= -1,b=0;12,(1)a>1(2)a=0or1(3)a=0 or a ≥113(1)任意奇数都是集合M 的元素(2)略。

相关文档
最新文档