2007年高考理科数学(上海)卷

合集下载

2007年高考理科数学试题及参考答案(上海卷)[精选多篇][修改版]

2007年高考理科数学试题及参考答案(上海卷)[精选多篇][修改版]

第一篇:2007年高考理科数学试题及参考答案(上海卷)城镇环境综合整治给镇区居民的一封信尊敬的居民朋友:为改善我镇镇区环境面貌,提高城镇环境卫生质量,营造一个干净、舒适、整洁、优美的人居环境,塑造“清洁家园、宜居城镇、生态蒋场”的良好形象,奋力推进全镇经济社会和谐发展,根据全市新型城镇建设会议和全市“双创”工作会议要求,镇委镇政府决定从4月份开始,在镇区范围内开展城镇环境综合整治活动。

城镇环境综合整改是建设社会主义新农村、构建和谐社会的根本要求,是贯彻落实市委市政府加快推进新型小城镇建设的重要举措,是跟上时代发展步伐、服务工作大局、塑造蒋场新面貌新形象的内在需要,是改善人居环境、提高人民群众生活质量的有效手段,是优化投资环境、提升城镇文明程度、增强城镇竞争力的重要途径,是保障交通通畅、清除安全隐患、巩固发展成果、维护广大人民群众生命财产安全的具体体现,也是全镇广干部群众的强烈愿望。

建设一个卫生整洁、环境优美的新型城镇是全体蒋场人民的共同心愿,关系到全镇人民的切身利益。

全民参与,身体力行,全镇居民都要为创建“环境卫生乡镇”和“环境卫生小区”献计献策,积极参与到环境综合整治中来,自觉维护公共卫生,养成良好的卫生生活习惯,做到不乱扔垃圾,不乱停车辆,不乱摆摊点,不乱搭乱建,不乱贴乱画,不破坏公共卫生设施,不破坏绿化,用实际行动支持环境整治工作。

镇区经营户和居民户朋友们,从现在开始,都应积极主动拆除乱搭乱建的违章建筑,流动摊点归店入市,彻底改变店外经营、店外加工、店外维修的现状;自觉服从城管人员的引导,改变乱堆乱放、乱吊乱挂、乱搭乱建的不良行为习惯;自觉规范户外广告、跨街横幅、霓虹灯、店招牌匾等设置,保持镇容环境整洁;自觉遵守交通规则,杜绝侵占公路、破坏公路设施和在公路上打草晒粮等现象,创造便捷高效、规范安全的交通环境,客运车辆一律实行车进站、人归点,禁止滞留街道、站外上下。

上述整治任务完成后,镇委镇政府将争取市交通运输局、市住房和建设委员会的支持,对镇区主干道全面实施刷黑改造和配套升级,我们相信,镇区环境综合整治必将带来城镇面貌的大改观和全镇经济社会的大发展。

2007年高考上海卷及答案

2007年高考上海卷及答案

2007年上海高考试卷考生注意:1.答卷前,考生务必将姓名、准考证号、校验码等填写清楚.2.本试卷共10页,满分150分. 考试时间120分钟. 考生应用蓝色或黑色的钢笔或圆珠笔将答案直接写在试卷上.3.本试卷一、四大题中,小题序号后标有字母A 的试题,适合于使用一期课改教材的考生;标有字母B 的试题,适合于使用二期课改教材的考生;其它未标字母A 或B 的试题为全体考生必做的试题。

不同大题可以选择不同的A 类或B 类试题,但同一大题的选择必须相同,若在同一大题内同时选做A 类、B 类两类试题,阅卷时只以A 类试题计分,4.第19、20、21、22、23题要求写出必要的文字说明、方程式和重要的演算步骤. 只写出最后答案,而未写出主要演算过程的,不能得分. 有关物理量的数值计算问题,答案中必须明确写出数值和单位. 一.(20分)填空题. 本大题共5小题,每小题4分. 答案写在题中横线上的空白处或指定位置,不要求写出演算过程.本大题中第1、2、3小题为分叉题;分A 、B 两类,考生可任选一类答题,若两类试题均做,一律按A 类题计分.A 类题(适合于使用一期课改教材的考生) 1A .磁场对放入其中的长为l 、电流强度为I 、方向与磁场垂直的通电导线有力F 的作用,可以用磁感应强度B 描述磁场的力的性质,磁感应强度的大小B =___________,在物理学中,用类似方法描述物质基本性质的物理量还有___________等。

2A .沿x 轴正方向传播的简谐横波在t =0时的波形如图所示,P 、Q 两个质点的平衡位置分别位于x =3.5m 和x =6.5m 处。

在t 1=0.5s 时,质点P 恰好此后第二次处于波峰位置;则t 2=_________s 时,质点Q 此后第二次在平衡位置且向上运动;当t 1=0.9s 时,质点P 的位移为_____________cm 。

3A .如图所示,AB 两端接直流稳压电源,U AB =100V ,R 0=40Ω,滑动变阻器总电阻R =20Ω,当滑动片处于变阻器中点时,C 、D 两端电压U CD 为___________V ,通过电阻R 0的电流为_____________A 。

5.2 上海数学(理)

5.2   上海数学(理)

2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数3)4lg(--=x x y 的定义域是 .【答案】 {}34≠<x x x 且【解析】 4030x x ->⎧⎨-≠⎩⇒ {}34≠<x x x 且2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 【答案】32- 【解析】 2123113m m =≠⇒=--- 3.函数1)(-=x x x f 的反函数=-)(1x f .【答案】)(11≠-x x x【解析】由(1)11x yy x y x y =⇒=≠⇒--()111x f x x x -=≠-() 4.方程 96370x x -∙-=的解是 . 【答案】3log 7x =【解析】 2(3)63703731x xxx-⋅-=⇒==-或(舍去),3log 7x ∴=。

5.已知x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 【答案】161【解析】 211414()44216x y xy x y +=⋅≤=,当且仅当x =4y=12时取等号. 6.函数⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T . 【答案】π 【解析】sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+2111cos 2sin cos cos sin 222422xx x x x +=+=+⋅1sin(2)23x π=++ T π∴=。

7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的 概率是 (结果用数值表示). 【答案】3.0【解析】 212335310C C C = 8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程 是 . 【答案】)3(122+=x y【解析】双曲线22145x y -=的中心为O (0,0),该双曲线的左焦点为F (-3,0),则抛物线的顶点为(-3,0),焦点为(0,0),所以p=6,所以抛物线方程是)212(3)y x =+ 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 【答案】②④【解析】 对于①:解方程10a a +=得 a =± i ,所以非零复数 a = ± i 使得10a a+=,①不成立;②显然成立;对于③:在复数集C 中,|1|=|i |,则a b = ↵a b =±,所以③不成立;④显然成立。

2007年普通高等学校招生全国统一考试数学卷(上海.理)含答案 (2)

2007年普通高等学校招生全国统一考试数学卷(上海.理)含答案 (2)

2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚. 2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -•-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y •的最大值是 .6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是. 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 .10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件:. 11.已知P 为圆1)1(22=-+y x 上任意 一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ, 为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程 02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,1C 1B1A13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b aa b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是( ) A.1 B.2 C.3 D.4 15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB .求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b , 114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.(1)若012F F F △是边长为1“果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆” 的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. {}34≠<x x x 且2. 32-3. )(11≠-x x x 4.7log 35. 161 6. π 7. 3.08. )3(122+=x y9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)题 号12131415答 案ACBD三、解答题(第16题至第21题)16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC , 51tan 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . CB1B1A A1C即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,,1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ, 则116cos 6A B n A Bn ϕ==-66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin . 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B , 10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-,)(x f ∴为偶函数. 当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数,xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k , ∴当13=k 时,12-k S 取得最大值. 12-k S 的最大值为626. (3)所有可能的“对称数列”是:① 22122122222221m m m ---,,,,,,,,,,; ② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,; ④ 1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m . 对于②,当2008m ≥时,1220082008-=S .当15002007m <≤时,2008S 122200821--=-+m m . 对于③,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 3222009-+=-m m . 对于④,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 2222008-+=-m m .21. 解:(1)()()012(0)00F c F F -,,,,,021211F F b F F ∴=====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b . 45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足 221,2a ct x b y t ⎧-⎪=-⎨⎪=⎩,得122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。

2007年上海高考理科数学真题及答案

2007年上海高考理科数学真题及答案

2007年上海高考理科数学真题及答案考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数的定义域是 .3)4lg(--=x x y 2.若直线与直线平行,则 . 1210l x my ++=:231l y x =-:=m 3.函数的反函数 .1)(-=x xx f =-)(1x f 4.方程 的解是 .96370x x -∙-=5.若,且,则的最大值是 . x y ∈+R ,14=+y x x y ∙6.函数的最小正周期 . ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y =T 7.在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 12345,,,, (结果用数值表示).8.以双曲线的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是15422=-y x . 9.对于非零实数,以下四个命题都成立: a b , ① ; ② ; 01≠+aa 2222)(b ab a b a ++=+ ③ 若,则; ④ 若,则.||||b a =b a ±=ab a =2b a =那么,对于非零复数,仍然成立的命题的所有序号是 . a b ,10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知是两个 αβ, 相交平面,空间两条直线在上的射影是直线,在上的射影是12l l ,α12s s ,12l l ,β直线.用与,与的位置关系,写出一个总能确定与是异 12t t ,1s 2s 1t 2t 1l 2l 面直线的充分条件:.11.已知为圆上任意 P 1)1(22=-+y x 一点(原点除外),直线 O OP 的倾斜角为弧度,记. θ||OP d = 在右侧的坐标系中,画出以 ()d θ, 为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知,且(是虚数单位)是实系数一元二次方程a b ∈R ,i ,i 2++b a i 的两个根,那么的值分别是( ) 02=++q px x p q , A. B. 45p q =-=,43p q =-=, C.D.45p q ==,43p q ==,13.设是非零实数,若,则下列不等式成立的是( ) a b ,b a < A. B. C.D. 22b a <b a ab 22<ba ab 2211<b a a b <14.直角坐标系中,分别是与轴正方向同向的单位向量.在直角三角形xOy i j,x y , 中,若,则的可能值个数是( )ABC j k i AC j i AB+=+=3,2k A.1 B.2 C.3 D.415.设是定义在正整数集上的函数,且满足:“当成立时,总可推 )(x f )(x f 2()f k k ≥ 出成立”.那么,下列命题总成立的是( ) (1)f k +≥2)1(+k A.若成立,则当时,均有成立 (3)9f ≥1k ≥2()f k k ≥ B.若成立,则当时,均有成立(5)25f ≥5k ≤2()f k k ≥CB1C 1B 1A AC.若成立,则当时,均有成立 49)7(<f 8k ≥2)(k k f < D.若成立,则当时,均有成立25)4(=f 4k ≥2()f k k ≥三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱中,.求111C B A ABC -1,90===∠BC AC ACB直线与平面所成角的大小(结果用反三角函数值表示). B A 1C C BB 11 17.(本题满分14分)在中,分别是三个内角的对边.若,ABC △a b c ,,A B C ,,4π,2==C a ,求的面积. 5522cos=B ABC △S18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数,常数.0()(2≠+=x xax x f )a ∈R (1)讨论函数的奇偶性,并说明理由;)(x f (2)若函数在上为增函数,求的取值范围. )(x f [2)x ∈+∞,a20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列(为正整数)满足条件,,…,123n a a a a ,,,,n n a a =112-=n a a ,即(),我们称其为“对称数列”.例如,由组合数组成的1a a n =1+-=i n i a a 12i n = ,,,数列就是“对称数列”.01mm m m C C C ,,,(1)设是项数为7的“对称数列”,其中是等差数列,且,{}n b 1234b b b b ,,,21=b .依次写出的每一项;114=b {}n b (2)设是项数为(正整数)的“对称数列”,其中是首项{}n c 12-k 1>k 121k k k c c c +- ,,,为,公差为的等差数列.记各项的和为.当为何值时,取得最大504-{}n c 12-k S k 12-k S 值?并求出的最大值;12-k S (3)对于确定的正整数,写出所有项数不超过的“对称数列”,使得1>m m 2依次是该数列中连续的项;当时,求其中一个“对称数列”前211222m - ,,,,m 1500>2008项的和. 2008S21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆 与半椭圆 合成的曲线称作12222=+b y a x (0)x ≥12222=+cx b y (0)x ≤“果圆”,其中,,.222c b a +=0>a 0>>c b 如图,点,,是相应椭圆的焦点,,和,分别是“果圆”与,0F 1F 2F 1A 2A 1B 2B x y轴的交点.(1)若是边长为1的等边三角形,求 012F F F △“果圆”的方程;(2)当时,求的取值范围;21A A >21B B ab(3的弦.试研究:是否存在实数,使斜率为的“果圆”k k 平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的值;若不存在,说明理k 由.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. 2. 3.4. {}34≠<x x x 且32-)(11≠-x x x7log 35.6. 7. 8. 9.②④161π3.0)3(122+=x y 10. ,并且与相交(,并且与相交)21//s s 1t 2t //1t 2t 1s 2s 11.二、选择题(第12题至第15题)题 号 1213 1415答 案ACB D三、解答题(第16题至第21题) 16.解法一: 由题意,可得体积,11111122ABC V CC S CC AC BC CC ==== △ .∴211==CC AA 连接. ,1BC 1111111A C B C A C CC ⊥⊥ ,平面,⊥∴11C A C C BB 11 是直线与平面所成的角. 11BC A ∠∴B A 1C C BB 11 ,52211=+=BC CC BC ,则 =. 51tan 11111==∠∴BC C A BC A 11BC A ∠55arctan CB1B 1A A1C即直线与平面所成角的大小为. B A 1C C BB 1155arctan解法二: 由题意,可得体积,11111122ABC V CC S CC AC BC CC ∆==== ,21=∴CC 如图,建立空间直角坐标系. 得点, (010)B ,,,. 则,1(002)C ,,1(102)A ,,1(112)A B =-- ,,平面的法向量为.C C BB 11(100)n =,, 设直线与平面所成的角为,与的夹角为, B A 1C C BB 11θB A 1nϕ 则 , 11cos A B n A B nϕ==66arcsin,66|cos |sin ===∴θϕθ 即直线与平面所成角的大小为. B A 1C C BB 1166arcsin17.解: 由题意,得为锐角,,3cos 5B B =,54sin =B , 10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A 由正弦定理得 , .710=c ∴111048sin 222757S ac B ==⨯⨯⨯= 18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 ,,,.%36%38%40%42则2006年全球太阳电池的年生产量为(兆瓦).8.249942.140.138.136.1670≈⨯⨯⨯⨯ (2)设太阳电池的年安装量的平均增长率为,则. x 441420(1)95%2499.8(142%)x ++≥解得.0.615x ≥ 因此,这四年中太阳电池的年安装量的平均增长率至少应达到. %5.6119.解:(1)当时,,0=a 2)(x x f = 对任意,, 为偶函数.(0)(0)x ∈-∞+∞ ,,)()()(22x f x x x f ==-=-)(x f ∴当时,, 0≠a 2()(00)af x x a x x=+≠≠, 取,得 , 1±=x (1)(1)20(1)(1)20f f f f a -+=≠--=-≠, ,(1)(1)(1)(1)f f f f ∴-≠--≠, 函数既不是奇函数,也不是偶函数. ∴)(x f (2)解法一:设, 122x x <≤ , 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121要使函数在上为增函数,必须恒成立. )(x f [2)x ∈+∞,0)()(21<-x f x f ,即恒成立. 121204x x x x -<> ,)(2121x x x x a +< 又,. 421>+x x 16)(2121>+∴x x x x 的取值范围是.a ∴(16]-∞, 解法二:当时,,显然在为增函数.0=a 2)(x x f =[2)+∞,当时,反比例函数在为增函数, 0<a xa[2)+∞,在为增函数. xax x f +=∴2)([2)+∞, 当时,同解法一.0>a 20.解:(1)设的公差为,则,解得 , {}n b d 1132314=+=+=d d b b 3=d 数列为.∴{}n b 25811852,,,,,, (2) 12112112-+--+++++++=k k k k k c c c c c c S , k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k 当时,取得最大值.∴13=k 12-k S 的最大值为626. 12-k S (3)所有可能的“对称数列”是:① ; 22122122222221m m m --- ,,,,,,,,,, ② ; 2211221222222221m m m m ---- ,,,,,,,,,,, ③ ; 122221222212222m m m m ---- ,,,,,,,,,, ④ . 1222212222112222m m m m ---- ,,,,,,,,,,, 对于①,当时,.2008m ≥1222212008200722008-=++++= S 当时,15002007m <≤200922122008222221----+++++++=m m m m S .2009212212---+-=m m m1222200921--+=--m m m 对于②,当时,.2008m ≥1220082008-=S 当时,.15002007m <≤2008S 122200821--=-+m m 对于③,当时,.2008m ≥2008200822--=m mS 当时,.15002007m <≤2008S 3222009-+=-mm对于④,当时,.2008m ≥2008200822--=m m S 当时,.15002007m <≤2008S 2222008-+=-mm21. 解:(1) ,()()012(0)00F c F F ,,,,,021211F F b F F ∴=====, 于是,所求“果圆”方程为22223744c a b c ==+=, ,.2241(0)7x y x +=≥2241(0)3y x x +=≤(2)由题意,得 ,即. b c a 2>+a b b a ->-222 ,,得. 2222)2(a c b b =+> 222)2(a b b a ->-∴54<a b 又. . 21,222222>∴-=>a b b a c b 45b a ⎫∴∈⎪⎪⎭, (3)设“果圆”的方程为,.C 22221(0)x y x a b +=≥22221(0)y x x b c+=≤ 记平行弦的斜率为.k当时,直线与半椭圆的交点是0=k ()y t b t b =-≤≤22221(0)x y x a b+=≥,与半椭圆的交点是. P t ⎛⎫⎪⎪⎝⎭22221(0)y x x b c +=≤Q t ⎛⎫-⎪ ⎪⎝⎭的中点满足∴P Q ,M ()x y ,2a c x y t ⎧-⎪=⎨⎪=⎩,得. 122222=+⎪⎭⎫ ⎝⎛-b y c a x , . b a 2<∴22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭综上所述,当时,“果圆”平行弦的中点轨迹总是落在某个椭圆上. 0=k 当时,以为斜率过的直线与半椭圆的交点是0>k k 1B l 22221(0)x y x a b+=≥. 22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭, 由此,在直线右侧,以为斜率的平行弦的中点轨迹在直线上,即不在l k x kab y 22-=某一椭圆上. 当时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.0<k。

2007年高考数学上海市理科(详细解答)

2007年高考数学上海市理科(详细解答)

(3)设“果圆”的方程为,. 记平行弦的斜率为. 当时,直线与半椭圆的交点是 ,与半椭圆的交点是. 的中点满足 得. ,.
综上所述,当时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.
当时,以为斜率过的直线与半椭圆的交点是.
由此,在直线右侧,以为斜率的平行弦的中点轨迹在直线上,即不在
某一椭圆上. 当时,可类似讨论得到平行弦中点轨迹不都在某一椭圆
19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满 分7分.
已知函数,常数. (1)讨论函数的奇偶性,并说明理由; (2)若函数在上为增函数,求的取值范围.
20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满 分6分,第3小题满分9分.
如果有穷数列(为正整数)满足条件,,…,,即(),我们称其 为“对称数列”.例如,由组合数组成的数列就是“对称数列”.
①;②;
③ 若,则; ④ 若,则.
那么,对于非零复数,仍然成立的命题的所有序号是

10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知 是两个
相交平面,空间两条直线在上的射影是直线,在上的射影是 直线.用与,与的位置关系,写出一个总能确定与是异
面直线的充分条件:

11.已 知 为 圆 上 任 意
共轭复数,b=2,a=-1,那么p==-4,q==5,∴ 选A。
13.设是非零实数,若,取a=-2,b=1,则选项A不成立,取a=1,
b=2,则选项B与D不成立,所以选C。实际上已知,则,∴ ,选项C成
立。
14.直角坐标系中,分别是与轴正方向同向的单位向量.在直角三角形
中,若,若∠A是直角,则,k=-6,若∠B是直角,则,,得k=-1,

2007年上海高考试卷

2007年上海高考试卷

2007年上海高考试卷一.(20分)填空题. 本大题共5小题,每小题4分. 答案写在题中横线上的空白处或指定位置,不要求写出演算过程.本大题中第1、2、3小题为分叉题;分A 、B 两类,考生可任选一类答题,若两类试题均做,一律按A 类题计分.A 类题(适合于使用一期课改教材的考生) 1A .磁场对放入其中的长为l 、电流强度为I 、方向与磁场垂直的通电导线有力F 的作用,可以用磁感应强度B 描述磁场的力的性质,磁感应强度的大小B =___________,在2A .沿x 轴正方向传播的简谐横波在t =0时的波形如图所示,P 、Q 两个质点的平衡位置分别位于x =3.5m 和x =6.5m 处。

在t 1=0.5s 时,质点P 恰好此后第二次处于波峰位置;则t 2=_________s 时,质点Q 此后位移为_____________cm 。

3A .如图所示,AB 两端接直流稳压电源,U AB =100V ,R 0=40Ω,滑动变阻器总电阻R =20Ω,当滑动片处于变阻器中点时,C 、D 两端电压U CD 为___________V ,通过电阻R 0的电流为_____________A 。

B 类题(适合于使用二期课改教材的考生)1B .在磁感应强度B 的匀强磁场中,垂直于磁场放入一段通电导线。

若任意时刻该导线中有N 个以速度v 做定向移动的电荷,每个电荷的电量为q 。

则每个电荷所受的洛伦兹力f =___________,该段导线所受的安培力为F =___________。

2B .在接近收费口的道路上安装了若干条突起于路面且与行驶方向垂直的减速带,减速带间距为10m ,当车辆经过着速带时会产生振动。

若某汽车的因有频率为1.25Hz ,则当该车以_________m/s 的速度行驶在此减速区时颠簸得最厉害,我们把这种现象称为_________。

3B .如图所示,自耦变压器输入端A 、B 接交流稳压电源,其电压有效值U AB =100V ,R 0=40Ω,当滑动片处于线圈中点位置时,C 、D 两端电压的有效值U CD 为___________V ,通过电阻R 0的电流有效值为_____________A 。

07年上海高考数学真题

07年上海高考数学真题

07年上海高考数学真题去年,即2007年,上海高考数学真题备受关注。

当年的高考数学试题被认为是一道具有挑战性的命题,旨在考察考生对数学知识的掌握能力以及解决实际问题的能力。

下面将围绕这一真题展开探讨和分析。

第一大题选修1-1设集合A={0,1,2,3,4},则集合A的非空子集共有()个。

解析:对于一个非空集合而言,它的子集个数为2的n次方减1。

所以A 的非空子集共有2的5次方减1个,即31个。

第一大题选择1-2若函数y=f(x)的图象经过点(3,e),并且所过的直线在点(1,-2)的切线斜率为1,则实数e的值为()。

解析:由题意可得,过点(1,-2)的切线斜率相当于1-2=2的斜率。

那么函数图像经过点(3,e)时,斜率为2应该为f'(3)。

由此可以列出方程,解得e=0。

第一大题选修1-3已知a,b是实数。

若直线y=ax-b与抛物线y=x^2相交于两个不同的点P、Q,则实数a的取值范围是()。

解析:直线与抛物线相交,意味着直线方程和抛物线方程同时成立。

进而利用韦达定理,计算抛物线与直线的交点坐标,求解得到a的取值范围。

第二大题解答题在笛卡儿坐标系中,试讨论函数y=2^x和y=log2(x+1)的图像关系。

解析:首先分别绘制y=2^x和y=log2(x+1)的图像,然后通过对称、平移等方式,讨论两者之间的关系,找出规律和特性。

根据图像可知,2^x和log2(x+1)是互为反函数的关系。

总结:上海高考数学真题中的考题不仅考察了基础知识的掌握程度,也注重了考生对数学问题的分析和解决能力。

通过练习和复习,考生可以更好地应对高考数学试题,取得优异成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m .3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x-∙-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是.9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个 相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件: .11.已知P 为圆1)1(22=-+y x 上任意一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ,为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是A.45p q =-=, B.43p q =-=, C.45p q ==, D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是 A.22b a < B.b a ab 22< C.ba ab 2211< D.b aa b <14.直角坐标系xOy 中,i j,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是 A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB.求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n = ,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m mC C C ,,,就是“对称数列”. (1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +- ,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m - ,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y轴的交点.(1)若012F F F △是边长为1(2)当21A A >21B B 时,求ab的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆”的弦. 试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.参考答案一、填空题(第1题至第11题) 1. {}34≠<x x x 且 2. 32-3.)(11≠-x x x4.7log 3 5.161 6. π 7. 3.0 8. )3(122+=x y 9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交) 11.二、选择题(第12题至第15题)三、解答题(第16题至第21题) 16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ==== △,∴ 211==CC AA .连接1BC . 1111111AC B C AC CC ⊥⊥ ,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得体积11111122ABC V CC S CC AC BC CC ∆==== ,21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, CB1B1A A1C平面C C BB 11的法向量为(100)n =,,.设直线B A 1与平面C C BB 11所成的角为θ,B A 1与n 的夹角为ϕ,则11cos A B n A B nϕ==, 66arcsin,66|cos |sin ===∴θϕθ, 即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯= .18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞ ,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f ff ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121,要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立. 121204x x x x -<> ,,即)(2121x x x x a +<恒成立. 又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数, xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k , ∴当13=k 时,12-k S 取得最大值.12-k S 的最大值为626. (3)所有可能的“对称数列”是: ① 22122122222221m m m --- ,,,,,,,,,,; ② 2211221222222221m m m m ---- ,,,,,,,,,,,; ③ 122221222212222m m m m ---- ,,,,,,,,,,; ④ 1222212222112222m m m m ---- ,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S .当15002007m <≤时,200922122008222221----+++++++=m m m m S2009212212---+-=m m m1222200921--+=--m m m .对于②,当2008m ≥时,1220082008-=S .当15002007m <≤时,2008S 122200821--=-+m m . 对于③,当2008m ≥时,2008200822--=m mS .当15002007m <≤时,2008S 3222009-+=-mm .对于④,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 2222008-+=-m m .21. 解:(1)()()012(0)00F c F F ,,,,,021211F F b F F ∴====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤. (2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b .45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足 2a c x y t ⎧-⎪=⎨⎪=⎩,得 122222=+⎪⎭⎫⎝⎛-b y c a x .b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。

相关文档
最新文档