植树问题常见的几种类型

合集下载

三年级植树问题知识点

三年级植树问题知识点

三年级植树问题知识点一、知识点回顾。

1. 植树问题的类型。

两端都植树:棵数 = 间隔数+1。

例如,在一条长10米的小路一旁每隔2米栽一棵树(两端都栽),间隔数为10÷2 = 5个,棵数就是5 + 1=6棵。

一端植树:棵数 = 间隔数。

比如在一条长10米的小路一端靠墙,每隔2米栽一棵树,间隔数为10÷2 = 5个,棵数也是5棵。

两端都不植树:棵数 = 间隔数 1。

例如在一条长10米的小路两旁每隔2米栽一棵树(两端不栽),间隔数为10÷2 = 5个,一旁的棵数为5-1 = 4棵,两旁就是4×2 = 8棵。

2. 关键是求出间隔数。

间隔数 = 总长度÷间隔长度。

二、题目与解析。

1. 在一条长20米的路的一边种树,每隔5米种一棵(两端都种),一共要种多少棵树?解析:首先求间隔数,间隔数=20÷5 = 4个。

因为两端都种树,棵数 = 间隔数+1,所以棵数为4 + 1 = 5棵。

2. 一条路长30米,每隔3米种一棵树(一端种),能种多少棵树?解析:间隔数=30÷3 = 10个,因为一端种树,棵数 = 间隔数,所以能种10棵树。

3. 有一条18米长的走廊,每隔2米放一盆花(两端都不放),一共要放多少盆花?解析:间隔数=18÷2 = 9个,因为两端都不放花,棵数 = 间隔数 1,所以一共要放9 1 = 8盆花。

4. 在一条长40米的道路两旁种树,每隔4米种一棵(两端都种),道路两旁共种多少棵树?解析:先求一旁的情况,间隔数=40÷4 = 10个,因为两端都种,棵数 = 间隔数+1,所以一旁种10 + 1 = 11棵树,那么道路两旁共种11×2 = 22棵树。

5. 学校操场边有一条长50米的小路,每隔5米栽一棵柳树(一端栽),可以栽多少棵柳树?解析:间隔数=50÷5 = 10个,因为一端栽树,棵数 = 间隔数,所以可以栽10棵柳树。

小学数学专项《应用题》经典植树问题基本知识-4星题(含解析)

小学数学专项《应用题》经典植树问题基本知识-4星题(含解析)

应用题-经典应用题-植树问题基本知识-4星题课程目标知识提要植树问题基本知识•植树问题的基本类型(1)不封闭的植树路线两端都植树——在直线上或者不封闭的曲线上植树,两端都植树两端都不植树——在直线上或者不封闭的曲线上植树,两端都不植树只有一端植树——在直线上或者不封闭的曲线上植树,只有一端植树(2)封闭的植树路线在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.•基本公式(1)不封闭的植树路线两端都植树:棵数=段数+1总长=株距×段数两端都不植树:棵数=段数−1总长=株距×段数只有一端栽(封闭曲线):棵数=段数总长=株距×段数(2)封闭路线总长=株距×段数精选例题植树问题基本知识1. 池塘周围栽了一些树,小明和小华一前一后朝着同一个方向绕着池塘走,边走边数池塘边树的棵树,小华数的第7棵在小明那里数到是第27棵,小明数的第7棵在小华那里数到是第87棵,那么池塘一共栽了棵数.【答案】100【分析】小华的第7棵树和第87棵树之间有87−7−1=79(棵)树,小明的第27棵树和第7棵树之间有27−7−1=19(棵)树,所以池塘一共栽了79+19+2=100(棵)树.2. 在高速公路的两旁每1千米设立一个大路标,每100米设立一个小路标,设立有大路标之处不再设立小路标.设立大路标每个花费1000元,设立小路标每个花费100元.一条50千米长的高速公路设立这两种路标共需花费多少元?(注意:公路的两侧及起、终点都要设立路标).【答案】192000【分析】设立大路标属于两端植树问题,共需大路标(50÷1+1)×2=102(个),在每两个大路标之间设立小路标属于两端不植树问题,共需小路标(1000÷100−1)×50×2= 900(个),两种路标共需花费102×1000+900×100=192000(元).3. 如果把一根木头截成3段要花8分钟,那么要把12根木头每根都截成6段,需要分钟.【答案】240【分析】因“刀数 + 1=段数”.根据题意列式:8÷(3−1)×(6−1)×12=240(分钟).4. 在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗面,黄旗面.【答案】50;150【分析】红旗:400÷8=50(面);黄旗:8÷2−1=3;3×50=150(面).5. 甲、乙、丙与他们的朋友们共25个,围着圆桌坐着,从甲开始数起,逆时针方向的第13个人是乙,顺时针方向的第17个人是丙.那么,乙和丙之间有个人.【答案】2或21【分析】从甲开始,乙是逆时针方向的第13个人,共25人,那么乙是顺时针方向的第25−(13−2)=14(人),那么乙和丙之间有2个人.因为是圆形,从另一个方向看乙、丙之间有25−2−2=21(人).6. 一个长60米,宽36米的长方形牧场的三面用篱笆围成,第四条边靠着一面长100米的墙,篱笆由木桩组成,包括与墙交界处每隔12米有一根木桩,那么这个牧场最少需要木桩根.【答案】12【分析】这三面的总长度至少为36+36+60=132(米),本题类似于“两端植树”问题,此时共需木桩132÷12+1=12(根).7. 有一个正方形池塘,在池塘边距离池边2米处围绕池塘种树,一共种了200棵,也围成一个正方形.若相邻两棵树之间的距离是2米,这个正方形池塘的边长是米.【答案】96【分析】一共种了200棵树,围成一个正方形,那么每一边上有(200+4)÷4=51(棵)树,相邻两棵树之间的距离是2米,那么每一边长(51−1)×2=100(米),所以正方形池塘的边长是100−2×2=96(米).8. 19名园林工人去植树,4人去A大街植树,其余15人去B大街植树.晚上下班,他们回到宿舍.工人甲说:“我们虽然人少,但和你们用的时间相同.”工人乙说:“虽然我们人多,但我们这条街的长度是你们那条街长度的4倍.”如果他们植树的间隔都一样且每人种的树都一样多,只在路一侧种树且在大街的两端都种,那么,这19名园林工人一共种了棵树.【答案】57【分析】本题默认大街两端均植树,且大街长度恰好是间隔的整数倍.假设植树间隔为1,设A大街长a,那么A大街共植树a+1棵;则B大街长4a,共植树4a+1棵,由于每个人种的树一样多,所以(a+1)÷4=(4a+1)÷15,解得a=11,所以共种树a+1+4a+1=5a+2=5×11+2=57(棵).9. 公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【答案】20;40;2【分析】以6米为一段,圆形花坛一圈可分的段数,即是栽丁香花的株数:120÷6=20(株),栽月季花的株数是:2×20=40(株),每段上丁香花和月季花的总株数是:2+2=4(株),4株花栽在6米的距离中,有3段相等的距离,每两株之间的距离是:6÷(4−1)=2(米).10. 如图所示,有一个长方形的“田”字道路,整个长方形的长为100米、宽为70米.现在需要在所有道路上种树,相邻两棵树之间的距离都相等,而且可以拐弯的地点(顶点或中点)都要种上树,那么最少要种多少棵树?【答案】99棵.【分析】每棵树的距离相等,间隔最长是5米,每条横线上种100÷5+1=21棵,每条竖线上种70÷5+1=15,扣除重复的9棵,共种21×3+15×3−9=99棵.11. 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?【答案】30;60;2【分析】共可栽芍药花:180÷6=30(棵);共种月季花:2×30=60(棵);两种花共:30+60=90(棵);两棵花之间距离:180÷90=2(米).12. 同学12人围着长480米的操场玩游戏,每两名同学间距离相等.如果在每两名同学间插入3名老师,使每两人间距离相等.请问:有多少名老师?每两人间距离是多少米?【答案】(1)36名;(2)10米.【分析】(1)12名同学相当于将环形分为12个间隔,每两名同学间插入3名老师相当于每个间隔插入3名老师,所以共需插入老师12×3=36名老师;(2)插入老师后,环形上共有12+36=48人,所以每两人之间的间隔是480÷48=10米.13. 马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【答案】9120米【分析】第一棵树到第153棵树中间共有153−1=152(个)间隔,每个间隔长8米,所以第一棵树到第153棵树的距离是:152×8=1216(米),汽车经过1216米用了4分钟,1分钟汽车经过:1216÷4=304(米),半小时汽车经过:304×30=9120(米),即小明的家距离学校9120米.14. 10个男生沿着300米的跑道站成一圈,并且和相邻两人之间的距离都相等.现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等.请问:一共加入了多少个女生?加入女生后,相邻两人之间的距离又是多少米?【答案】20个;10米.【分析】开始有10个间隔,加入了10×2=20个女生.后来总共30人,30个间隔,每个间隔长300÷30=10米.15. 一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树,每两棵树之间距离相等)【答案】24【分析】从家门口走到第11棵树是走了11个间隔,走一个间隔所用时间是:11÷11=1(分),那么走24分钟应该走了间隔:24÷1=24(个),所以老爷爷应该走到了第24棵树.16. 有如图三条马路,现在要在马路的一侧种树,且每条马路的两端都种树.已知北路长40米,东路和西路分别长80米,每隔5米种一棵树,问共种几棵树?【答案】41棵.【分析】北路有40÷5+1=9棵树,东路和西路各有80÷5+1=17棵树.交点处的树被重复计算了,要扣除,共9+17+17−2=41棵树.17. 北京市国庆节参加游行的总人数有60000人,这些人平均分为25队,每队又以12人为一排列队前进.排与排之间的距离为1米,队与队之间的距离是4米,游行队伍全长多少米?【答案】5071【分析】(1)每队的人数是:60000÷25=2400(人);(2)每队可以分成的排数是:2400÷12=200(排);(3)200排的全长米数是:1×(200−1)=199(米);(4)25个队的全长米数是:199×25=4975(米);(5)25个队之间的距离总米数是:4×(25−1)=96(米);(6)游行队伍的全长是:4975+96=5071(米).18. 一个街心花园如图所示,它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?【答案】48;69【分析】大三角形三条边上共栽花:(9×2-1-1)×3=48(棵),中间画斜线小三角形三条边上栽花:(9-2)×3=21(棵),整个花坛共栽花:48+21=69(棵).19. 元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【答案】300分米【分析】一共挂了21只彩灯说明彩灯中间的间距有:21−1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以实验中学学校的大门宽度为:15×20=300(分米).20. 园林工人要在周长300米的圆形花坛边等距离地栽上树.他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一颗树.这样,他们还要挖多少个坑才能完成任务?【答案】54【分析】从第1个坑到第30个坑,共有(30−1)×3=87(米);改为“每5米栽一棵树”,有87÷15=5⋯12;5+1=6(个)坑仍然有用.改为“每5米栽一棵树”,一共应挖300÷5=60(个)坑;还要挖60−6=54(个).21. 甲、乙俩人对一根3米长的木棍涂色,首先甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为多少厘米?【答案】75厘米【分析】考虑60厘米长的一段木棍中,没有被涂黑的部分长度总和为:1+3+5+4+2=15(厘米)如下图,所以3米长的木棍中共有15×(300÷60)=75(厘米)长未被涂黑.22. 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树).操场四周栽了多少棵树?【答案】48【分析】因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+4=13(棵).操场周围的树一共有:(13−1)×4=48(棵).23. 一条路的一边种树,并且两头都不种树,现要每隔12米种一棵树.(1)共种了6棵,请问马路长多少米?(2)若马路长120米,则要种多少棵树?【答案】(1)84米;(2)9棵.【分析】(1)因为两头不种,共种6棵树,所以共有7个间隔,每个间隔是12米,则长12×7=84米;(2)共有120÷12=10个间隔,两头不种,所以间隔比树多1,那么有10−1=9棵树.24. 周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【答案】28【分析】(40+30)×2=140(米),140÷5=28(棵).25. 马路的两边每相隔9米栽有一棵柳树.张军乘汽车3分钟两边共看到602棵树.问汽车每小时走多少千米?【答案】54【分析】3分钟汽车共走了:9×(602÷2−1)=2700(米),汽车每分钟走:2700÷3=900(米),汽车每小时走:900×60=54000(米),54000米=54千米,列综合式:9×(602÷2−1)÷3×60÷1000=54(千米).26. 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?【答案】54【分析】5分钟汽车共走了:9×(501−1)=4500(米),汽车每分钟走:4500÷5=900(米),汽车每小时走:900×60=54000(米),54000米=54千米,列综合式:9×(501−1)÷5×60÷1000=54(千米).。

【完整版】植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习

【完整版】植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习

植树问题最全应用题(专项讲义)六年级数学小升初总复习(五大类型+方法+练习+答案)植树问题是小数数学应用题的重难点问题,主要分为不封闭路线、封闭路线两种情况,可细分为五大考点。

【考点一】非封闭路线的两端都要植树【方法总结】若题目中要求在非封闭路线的两端都要植树,则植树棵数就比分成段数多1,可得到:植树棵数=间隔个数+1;植树棵数=植树全长÷间隔距离+1;间隔距离=植树全长÷(植树棵数-1);植树全长=间隔距离×(植树棵数-1)。

【典型例题】兴华学校为了建设美丽校园,决定在校园里一条长200米的路的两边从头到尾都种树,且每隔5米种一棵树,一共需要种几棵树?【解题分析】这道题是属于非封闭路线的两端都要植树的问题,那么植树棵数就比分成段数多1。

可直接采用公式:植树棵数=植树全长÷间隔距离+1;代入数据即可求出。

本题需要注意的是“路的两边都种树”,最后的棵数要“×2”。

【解答】300÷5+1=60÷1=61(棵)61×2=122(棵)答:一共需要种122棵树。

【跟踪练习】1、绿茵公园里有一条全长1000米的主干道路,现在打算在这条道路的一侧从头到尾等距离地放置6张长木凳供游人休息,每两张长木凳之间相距是多少米?2、宜安居小区为了打造最美绿化小区,计划在小区里的一条主干道进行绿化升级。

主干道长420米,在主干道的两边从头到尾都植树。

为了对称性美观,路的两边所种的树间隔和棵数一样,都是每隔6米种一棵树,则一共需要种多少棵树?3、在公路的一边立着等距离的电线杆,李华从第1根路灯下走到第9根路灯下用了4分钟。

如果李华走了10分钟,此时他走到了第几根路灯下? 5米 1棵 2棵 3棵0 5米 10米 15米 20米 4棵 5棵 …………4、校园里的林荫小道边上摆着一排花,每隔0.6米摆一盆,加上两端一共摆了82盆花。

现在改成每隔0.9米摆一盆花,那么剩下多少盆花?5、会议大楼从一楼走到四楼一共要走63级台阶。

植树问题

植树问题

植树问题类型一、不封闭线段两端都植树1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,两端都栽树,一共可以栽多少棵?2.要在100米的马路两旁植树,每隔5米种一棵,两端都植树,一共可以植多少棵?3、有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,两端都栽树,可种植垂柳多少棵?4.有一条长2000米的公路,在路的两边每相隔5米栽一棵白杨,从头到尾需要栽白杨多少棵?5.在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。

一共要安装多少座?二、算距离1.在一段公路的一旁栽95棵树,两头都栽。

每两棵之间相距5米,这段公路长多少米?2.同学们栽树,每棵树之间的距离是10米,照这样计算,种15棵树的距离是多少?3.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。

从第一棵到最后一棵的距离有多远?4.学校运动会要举行入场式,要求每班24名同学上场,排4路纵队,前后每两人间隔1米,每班队伍长几米?5.小明坐在火车里看外面的电线杆,从第一根到第16根共花了半分钟,如果火车时速为72千米,每两根电线杆相隔多少米?6.一条路原有木电线杆46根,每两根之间相隔12米.这条路有多长?7.一根木头锯成5段要付锯板费1元,6根木头,每根锯成4段,共要付锯板费多少元?8.东方旅店共15层,每层楼梯有20个阶梯.如果某人每上一阶梯需要0.5秒,问他上到顶层需要多少时间?9.一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?类型二、不封闭线段只在一端植树一、算棵树1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,两端只在一个端点栽树,一共可以栽多少棵?2.要在100米的马路两旁植树,每隔5米种一棵,两端只在一个端点植树,一共可以植多少棵?3.有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,两端只在一个栽树,可种植垂柳多少棵?4.有一条长2000米的公路,在路的两边每相隔5米栽一棵白杨,两端只在一端栽树,需要栽白杨多少棵?5.在一条全长2千米的街道两旁安装路灯(两端只有一端安装),每隔50米安一座。

小学三年级数学植树问题详解

小学三年级数学植树问题详解

小学三年级数学植树问题详解树问题是在一定的线路上,根据总路程、间隔长和树的棵数进行植树的问题。

生活中有一些问题可以用植树问题的方法来解答,例如锯木头、爬楼梯等。

在线段上的植树问题可以分为以下三种情形:1.线路不封闭。

⑴ 两端都种树:段数=棵数-1⑵ 一端种树一端不种树:段数=棵数⑶ 两端都不种树:段数=棵数+12.线路封闭。

段数=棵数其他等式关系:总线长=树距×段数段数=总线长÷树距树距=总线长÷段数例1:同学们在一条路的一旁植树,先植树一棵,以后每隔8米植一棵,问第1棵和第6棵相距多少米?分析:此题是不封闭路线上求总线长的问题。

因为两端都植树,因此:段数=棵数-1。

已知树距为8米,总线长=段数×树距,即可求解:解:⑴ 段数:6-1=5(段)⑵ 总线长:5×8=40(米)综合算式:8×(6-1)=8×5=40(米)答:第1棵和第6课相距40米。

例2:把一棵树据成段,一共用时30分钟,已知每锯开一处需要用时6分钟,这棵树被锯成了多少段?分析:此题是不封闭线路上求段数的问题。

相当于两端都没植树。

所以段数=棵数+1。

棵数指被锯了几处。

解:⑴ 被锯了几处:30÷6=5(处)⑵ 段数:5+1=6(段)综合算式:30÷6+1=5+1=6(段)答:这棵树被锯成6段。

例3:在一块操场四边种树,每边种6棵树,四边一共种多少棵树?分析一:如果按每边都植树6棵,则四个角上的树重复计算了1次,应从总数之中减去。

解法一:⑴ 四边共有数(包含重复计算的棵数):6×4=24(棵)⑵ 去除重复的棵数:24-4=20(棵)综合算式:6×4-4=20(棵)分析二:封闭线路上植树,棵数和段数相等。

解法二:⑴ 操场每边的段数:6-1=5(段)⑵ 四边共有的段数:5×4=20(段)综合算式:(6-1)×4=20(段)分析三:先不计算四角上的4棵树,最后再加上。

植树问题整理-植树问题梳理

植树问题整理-植树问题梳理

植树问题的三要素:总路线长.间距(棵距)长.棵数.只要知道这三个要素中随意率性两个要素,就可以求出第三个.植树问题的分类:⑴直线型的植树问题⑵关闭型植树问题⑶特别类型的植树问题①两头都植树:棵数比段数多1.三要素之间的关系如下:棵数=段数+1=全长÷株距+1; 全长=株距×(棵数-1); 株距=全长÷(棵数-1).②一端植树:棵数与段数相等.三要素之间的关系如下:棵数=全长÷株距; 全长=株距×棵数; 株距=全长÷棵数.③两头都不植树:棵数比段数少1棵.三要素之间的关系如下:棵数=段数-1=全长÷株距-1; 全长=株距×(棵数+1); 株距=全长÷(棵数+1).直线型的植树问题例题关闭型植树问题关闭型植树问题是指在圆.正方形.长方形.闭合曲线等上面植树,因为头尾两头重合在一路,所以种树的棵数等于分成的段数.根本关系式为:棵数=总距离÷棵距;总距离=棵数×棵距棵距=总距离÷棵数.特别类型的植树问题例题学与练➢例1.城中小学在一条大路边从头到尾栽树28棵,每隔6米栽一棵,这条路长若干米?同步精华精辟:在一条马路一边从头到尾植树36棵,每相邻两棵树之距离8米,这条马路有多长?➢例2.在一个周长是240米的泅水池四周栽树,每隔5米栽一棵,一共要栽若干棵?同步精华精辟:一个鱼塘的周长是1500米,沿鱼塘四周每隔6米栽一棵杨树,须要种若干棵杨树?➢例3.在一座长800米的大桥双方负伤灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等,求相邻两盏彩灯之间的距离.同步精华精辟:在一条长100米的大路两旁各栽一行树,起点和终点都栽,一共栽52棵,相邻的两棵树之间的距离相等.求相邻两棵树之间的距离.➢例4.一个木匠锯一根长19米的木柴,他先把一头破坏部分锯下来1米,然后锯了5次,锯成同样长的短木条,每根短木条长若干米?同步精华精辟:一个木匠锯一根长17米的木柴,他先把一头破坏的部分锯下来2米,然后锯了4次,锯成同样长的短木条,每根短木条长几米?➢例5.有一幢10层的大楼,因为停电电梯停开,或人从1层走到3层须要30秒,照如许盘算,他从3层走到10层须要若干秒?同步精华精辟:把6米长的木柴平均锯成3段要6分钟,照如许盘算,假如锯成6段,须要若干分钟?教室检测➢同窗们做早操.21个同窗排成一排,每相邻两个同窗之间的距离相等,第一小我到最后一小我的距离是40米,相邻两小我隔若干米?➢在圆形的水池边,每隔3米种一棵树,共种树60棵,这个水池的周长是若干米?➢一座长400米的大桥两旁负伤灯,每两个相隔4米,从桥头到桥尾一共装了若干盏灯?➢有一根钢筋长22米,先锯下来2米,剩下的锯成每根都是4米的小段,又锯了几回?➢时钟4点钟敲4下,6秒敲完,那么12点钟敲12下,若干秒钟敲完?课后功课:1.路长200米,在路的一旁从头至尾每隔5米植一棵树,一共要植若干棵?2.在一块长80米宽60米的长方形地的四周种树,每隔4米种一棵,一共要种若干棵?3.四年级学生介入广播操比赛,排了5路纵队,部队长20米,前后两排相距1米,四年级有学生若干人?4.一根木条长19米,先锯下3米,剩下的锯成都是2米的小段,又锯了几回?锯断一次要四分钟,共须要若干分钟锯完?5.一根木头锯成4段要12分钟.假如每次锯的时光雷同,那么锯成6段要若干分钟?6.两棵大树相距90米,筹划在两棵大树中央补栽14棵小树,每两棵树的距离距离相等,树的距离是若干米?7.时钟3点种敲3下,6秒种敲完,那么5点种敲5下,几秒钟敲完?。

植树问题(间隔问题)

植树问题(间隔问题)

植树问题(间隔问题)植树问题一、概念在一段路线上,每隔一定的距离种一棵树,一共可以种多少棵树,像这类型问题都是植树问题。

这段路线的长度就叫总长,相邻两棵树之间的距离就叫每段长,树把路线分成很多个间隔,叫段数;一共种了多少棵树叫棵数。

植树问题就是研究总长、每段长、段数、棵数四者之间的关系,在不同情况下,四者的关系都会不同。

解题关键就在于,分析是哪种把握情况及四者间关系。

思考方法就是画图初步判断属哪种情况及四者的关系(一般画最简单的情况,如种一棵或两棵来帮助理解)二、类型:(一)、非封闭路线1、非封闭路线两端都种树拓展:上楼梯问题段数=棵数-1 总长=段数×每段长例1、在一条长1000米的公路一边栽树,每隔4米栽一棵树,如果公路的起点和终点都栽树,问一共可以栽多少棵树?分析:由“如果公路的起点和终点都栽树”这句话我们就可以判断,它是属于非封闭路线两端都种树的情况;总长=1000米,每段长=4米,求棵数;要求棵数,必须先求段数,而要求段数,我们可以用这个公式“段数=总长÷每段长”2、非封闭路线一端种树段数=棵数总长=段数×每段长3、非封闭路线两端都不种树拓展:锯木问题段数=棵数+1 总长=段数×每段长例:两幢楼房相隔16米,每隔2米种一棵树,一共种多少棵树分析:种树的路线上,两端是楼房,不能种树,这时,段数会等于棵树+1,而题目告诉了我们总长(16米),每段长(2米),就可以求出段数(16÷2=8段),即棵数是:8+1=9棵练习:1.有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?1、在一条长300米的公路两边种树,每隔4米种一棵,一共可以种多少棵树?2、一条路上每隔10米有一根电线杆,连两端共有24棵,这条路有多长?7.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?8、一个老人以等速在公路上散步,从第一根电线杆走到第12根电线杆用了12分钟,这个老人用同样的速度走24分钟,应走到第几根电线杆?10、有一条道路,左边每隔5米种一棵杨树,右边每隔6米种一棵柳树,两端都种上树,共有5处杨树与柳树相对。

植树问题题型

植树问题题型

植树问题是一种与植树过程相关的数学问题,它主要涉及到以下几种题型:
1. 两端都栽:在一条线段上植树,两端都要栽上,总共需要栽的棵数是线段长度除以每段间距的整数倍。

2. 两端不栽:在一条线段上植树,两端不需要栽树,总共需要栽的棵数是线段长度减去两端间距的差的整数倍。

3. 一端栽一端不栽:在一条线段上植树,一端需要栽树,另一端不需要栽树,总共需要栽的棵数是线段长度减去两端间距的差除以2的整数倍。

4. 树间距问题:给定线段长度、树间距和每段间距,求需要栽的棵数。

5. 特殊情况:在特殊条件下,如线段长度为0、1、2等情况下,求需要栽的棵数。

6. 植树问题的拓展:除了简单的线段植树问题,还有树的高度、树的间距、树的数量等拓展问题。

7. 植树问题的应用:植树问题在城市规划、道路设计、绿化工程等领域都有应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植树问题常见的几种类型
在一段直线上植树,两端都植树,则棵树=段数+1
在一段直线上植树,两端都不植树,则棵树=段数-1
在一段直线上植树,一端植树,则棵树=段数
在一段封闭曲线上植树,棵树=段数
推荐阅读:
具体题目如下
1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?
2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?
3.有一条2000米的公路,每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?
4.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?
5.有一个等边三角形的花坛,边长20米。

每个顶点都要栽一棵月季花,每相隔2米再栽一棵月季花,花坛一周能栽多少棵月季花?
方阵问题
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题).
方阵的基本特点是:
①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,
②每边人(或物)数和四周人(或物)数的关系:
四周人(或物)数=[每边人(或物)数一1]×4;
每边人(或物)数=四周人(或物)数÷4+1.
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数.
方阵总人数计算公式
(最外层人数/4+1)的平方的
解析如下:
1.提示:由于是封闭路线栽树,所以棵数=段数,
150÷3=50(棵)。

2.提示:在正方形操场边上栽树.正方形边长都相等,四个角上栽的树是相邻的两条边公有的一棵,所以每边栽树的棵数为17-1=16(棵),共栽:(17-1)×4=64(棵)
答:共栽树64棵。

3.41根。

2000÷50+1=41(根)
4.248棵。

(1000÷8-1)×2=124×2=248(棵)
5.30棵。

20×3÷2=30(棵)
小王去开会,会前会后都看了表,发现前后时钟和分钟位置刚好互换,问会开了1小时几分()
A.51 B 49 C47 D45
这个题目我刚才做了一下我是这么做的
分针时针互换
因为时间不超过2小时也就是说。

分针转动的时间不超过120分钟
其时针走到分针的位置不超过30×2=60度
从顺时针角度看,分针在时针前面
我们根据位置互换,可以发现时针走的度数+分针走的度数是360度×n
要得在大于1小时小于2小时则 n=2
根据路程之和可知2者的路程是360×2=720度
答案是720÷(6+0.5)=1小时51分钟(估算值)
------------------------------------
会议开始时,小李看了一下表,会议结束时,又看了一下表,结果分针与时针恰好对调了位置.会议在3点至4点之间召开,5点至6点之间结束,请问会议何时召开?
【解析】
首先可以确定顺时针方向分针在时针的前面。

否则时针要转大半圈才能到达分针的位置。

其次可以发现分针时针走的路程之和是 360度×N因为时间是控制在1~2个小时内则N=2
720÷(6+0.5)=1440/13分钟说明会议时间是这么多分钟
根据时间的比例开始时的分针是5~6之间说明时针在3~4之间还没有过半即最后分针停留的位置应该不超过17~18分钟
那我们按照5点17分-1440/13分钟应该是3点26分钟左右
统筹问题在日常生活中会经常遇到,是一个研究怎样节省时间、提高效率的问题。

随着公务员考试数学运算试题越来越接近生活,注重实际,这类题目出现的几率也越来越大。

所以我们有重点研究统筹问题的必要。

下面让我们通过两道经典的题目来了解一下。

1.毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。

毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?
A.16
B.17
C.18
D.19
【答案】A。

【解析】:因为是允许两头牛同时过河的(骑一头,赶一头),所以若要时间最短,则一定要让耗时最长的两头牛同时过河;把牛赶道对面后要尽量骑耗时最短的牛返回。

我们可以这样安排:先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,故最少要用5+8+3=16分钟。

此题要求“最省时”,这时我们应该在头脑中反应出“若要最省时,则尽量把最耗时的几件事同时完成”。

2.甲乙两个服装厂每个工人和设备都能全力生产同一种规格的西服。

甲厂每月用5/3的时间生产上衣,5/2的时间生产裤子,全月恰好生产900套西服;乙厂每月用7/4的时间生产上衣,7/3的时间生产裤子,全月恰好生产1200套西服。

现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
A.30
B.40
C.50
D.60
【答案】D。

【解析】:两厂联合生产,尽量发挥各自特长。

因乙厂生产上衣的效率高,所以安排乙厂全力生产上衣。

由于乙厂用月生产1200件上衣,那么乙厂全月可生产上衣:1200÷ =2100件。

同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子:900÷ =2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250= 月,然后甲厂再用月单独生产西服;900× =60套,故现在比原来每月多生产2100+60-(900+1200)=60套。

此题要求“效率最高”,这时我们应想到“让精于做某事的一方只做此事”。

相关文档
最新文档