等离子体-原子发射光谱
电感耦合等离子体发射光谱实验报告

电感耦合等离子体发射光谱法1.基本原理1.1概述原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。
到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。
1.2方法原理原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。
1.2.1定性原理原子发射光谱法的量子力学基本原理如下:(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。
1.2.2半定量原理半定量是对样品中一些元素的浓度进行大致估算。
一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。
然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。
结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。
电感耦合等离子发射光谱技术及其应用

Title of Presentation Date
Agilent Restricted
Page 11
电离耦合等离子的形成
这种炬管由三个同心石英管组成,每层管路中流经的气 体也有所不同。
炬管的一端深入工作线圈中,工作线圈可以诱导产生用 于样品离子化的等离子体。为防止等离子体的高温将炬管 融化(等离子体的温度可以达到10,000K),系统向炬管的 最外层石英管中引入冷却气(又称等离子体气),其流量达 15L/min。等离子体气的主要作用是将等离子体推离炬管 内壁,避免炬管融化,同时也为等离子体的形成提供了支 持气。
检测系统
原子发射光谱的检测目前采用照相法和光电检测法 两种。前者用感光板而后者以光电倍增管或电荷耦合 器件(CCD)作为接收与记录光谱的主要器件。 在原子发射光谱中采用CCD的主要优点是这类检测 器的同时多谱线检测能力,和借助计算机系统快速处 理光谱信息的能力,它可极大地提高发射光谱分析的 速度。如采用这一检测器设计的全谱直读等离子体发 射光谱仪可在一分钟内完成样品中多达 70 多种元素 的测定;此外,它的动态响应范围和灵敏度均有可能 达到甚至超过光电倍增管,加之其性能稳定、体积小、 比光电倍增管更结实耐用,因此在发射光谱中有广泛 的应用前景。
分光系统
原子发射光谱的分光系统目前采用棱镜和光栅分光系 统两种。全谱直读等离子体发射光谱仪采用中阶梯光栅。 (1)棱镜分光系统的光谱测量范围主要受棱镜材料的透光 率和色散率影响,通常用于町见光,当采用特殊材料后也 可用于紫外区和红外区,但受材料一致性、稳定性,加工 性能影响很少采用。该系统不产生光谱叠级现象,即自由 光谱范与光谱测量范围一致。 (2)光栅分光系统的测量范围可从X射线直到微波,包含 整个光谱区,而且当采用闪耀光栅时,还可以加强所关注 光谱区的能量,因此被广泛采用。 从不同分光系统的测量和自由光谱范围来看,光栅分光 系统具有较强的适应性,棱镜则在无叠级方面有优势。
ICP-AES电感耦合等离子体原子发射光谱法

发射光谱分析
根据原子或分子的特征发射光谱研究 物质结构和化学成分
发射光谱的激发光源:火焰、光花、 弧光、激光、等离子体
发射光谱的波长与原子或分子的能级 有关
原子发射光谱定性分析依据
不同元素原子能级结构不同
不同能级间的跃迁产生的谱线有不 同的波长特征
Mg:I 285.21 nm ;II 280.27 nm;
Na (Z=11)能级图 由各种高能级跃迁到同 一低能级时发射的一系 列光谱线;
K 元 素 (Z=19) 的 能级图 由各种高能级跃 迁到同一低能级 时发射的一系列 光谱线;
Mg 元素的能级图
基本原理
激发态的原子或离子返回基态时放射 出相应的原子谱线或离子谱线
光谱知识
发射光谱
原子或分子吸收外界能量,以光能
形式发射辐射,形成的光谱 荧光光谱
原子或分子吸收光子能量,以光能
形式发射辐射,形成的光谱 吸收光谱
原子或分子吸收光子能量,不发射
辐射,把光能转变形成为热能或其 它形式的能量,形成的光谱
原子发射光谱--AES
atomic emission spectrometry,AES
(2)温度升高,谱线强度增大, 但易电离。
谱线的自吸与自蚀
self-absorption and self reversal of spectrum line
自吸
等离子体内中间的温度、激发态原 子浓度高,边缘反之。
中心发射的辐射被边缘的同种基态 原子吸收,使辐射强度降低的现象 为自吸
谱线的自吸与自蚀
由光谱中各谱线波长特征右确定元 素种类
谱线强度
原子由某一激发态 i 向低能级 j 跃迁,所发射的谱线 强度与激发态原子数成正比。
等离子体-原子发射光谱总结

2、谱线呈现法
谱线强度与元素的含量有关。元素含量低时,
仅出现少数灵敏线,随元素含量增加,谱线随之出 现。可编成一张谱线出现与含量关系表,依此估计 试样中该元素的大致含量。
例如,铅的光谱 Pb含量(%) 谱线λ(nm) 0.001 0.003 0.01 0.1 1.0 3 10 283.3069清晰可见,261.4178和280.200很弱 283.306、261.4178增强,280.200清晰 上述谱线增强,另增266.317和278.332,但 不太明显。 上述谱线增强,无新谱线出现 上述谱线增强,214.095、244.383、244.62出 现,241.77模糊 上述谱线增强,出现322.05、233.242模糊可见 上述谱线增强,242.664和239.960模糊可见
特征谱线检验,称其为分析线。一般是灵敏线或最后线。
自吸:由弧焰中心发射出来的辐射光,被外围 的基态原子所吸收,从而降低了谱线的强度。 此现象叫自吸。
自蚀:自吸严重时,中心部分的谱线 这个现象叫自蚀 。
将被吸收
很多,从而使原来的一条谱线分裂成两条谱线,
2. 定性方法 标准试样光谱比较法
铁光谱比较法:最常用的方法,以铁谱作为标准(波长标尺)。
将上式取对数,得:
lgI=lga+blgc 谱线强度的对数与被测元素浓度的对数具有线性关系。
2. 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以 获得准确结果,实际工作多采用内标法(相对强度法)。 在被测元素的光谱中选择一条作为分析线 ( 强度 I1) ,再选 择内标物的一条谱线(强度I2),组成分析线对。则:
第五章 等离子体-原子发射光谱
1 2 3
原子发射光谱分析法
原子发射光谱分析资料

离子体。
2018/10/22 感耦等离子体原子发射光谱分析 19
2.3 等离子体炬焰
2.3.1 等离子体炬焰的产生 形成稳定的等离子体炬焰必须满足下列三 个条件:高频电磁场、工作气体及能维持气体放 电的石英炬管。下图是典型的等离子体炬焰示意 图。其主体是一个直径为2.53cm的石英炬管, 外面套有由紫铜管(内通冷却水)绕成的高频线圈 (25匝),线圈与高频发生器相连。炬管是由三层 同心石英管构成,有三股气流(通常为氩气)分别 通入这三层石英管中,从外而内分别叫冷却气、 辅助气和载气。样品溶液变成气溶胶后随载气一 起通入炬管。
2018/10/22 感耦等离子体原子发射光谱分析 18
等离子体又有高温等离子体和低温等离子体 之分。当温度达到106108 K时,几乎所有的分 子和原子都完全离解并电离,称之为高温等离子 体;当温度低于105K时,气体只是部分电离,称
之为低温等离子体。本文的ICP放电所产生的等
离子体的温度大约为60008000K,属于低温等
2018/10/22 感耦等离子体原子发射光谱分析 2
第一节 历史回顾
2018/10/22
感耦等离子体原子发射光谱分析
3
1860 年 , 克 希 霍 夫 (G. Kirchoff) 和 本 生 (R. Bunsen) 用钠光灯照射含有食盐的火焰,发现这 些火焰中的钠原子具有原子吸收现象时,首先就 已经知道钠光灯中钠原子具有原子发射现象。他 们还利用原子发射现象首先发现了铯和铷两个新 元素。 其实在更早时候, 1826 年泰尔博 (Talbot) 就说 明某些波长的光线是某些元素的特征。从此以后, 原子发射光谱就为人们所注视。 最早原子发射光谱的光源是火焰,后来出现 了电弧光源和火花光源,但是这些经典光源都有 基体干扰严重、灵敏度不高等缺点,限制了原子 发射光谱的应用。
04 等离子体原子发射光谱

ICP光谱仪的发展
后全谱直读时代 全谱直读 单道+多通道 多通道 单道扫描 摄谱仪
全谱直读 开机即用
中阶梯光栅+固体检测器
凹面光栅+光电倍增管 直读,但不能同时测量背景,不是全谱 平面光栅+光电倍增管 直读,但不能同时测量背景,不是全谱
平面光栅+相板 (1970)
全谱,但不能直读
19
3. AES特点 1)多元素检测(multi-element); 2)分析速度快: 多元素检测; 可直接进样; 固、液样品均可 3)选择性好:Nb与Ta;Zr与Ha,Rare-elements; 4)检出限低:10-0.1µg/g(µg/mL); ICP-AES可达ng/mL级; 5)准确度高:一般5-10%,ICP可达1%以下; 6) 所需试样量少; 7) ICP-AES性能优越:线性范围宽(linear range) 4~6数量 级,可测高、中、低不同含量试样;
研究范围
稀薄气体状态的 原子
14
2.原子光谱的发展历史
物质燃烧会发光,火药是我国四大发明之一 焰火—— 物质原子的发年代
Kirchhoff G.R. Bunsen R.W. 《利用光谱观察的化学分析》 奠定原子发射光谱定性分析基础
利用分光镜研究盐和盐溶液在火焰中加热时所产生的特征光辐射,从而发现了Rb (铷)和Cs(铯)两元素
美国瓦里安技术中国有限公司(VARIAN)
技术参数 1.波长范围:175785nm波长连续覆 盖,完全无断点 2.RF发生器频率: 40.68MHz 3.信号稳定性: ≤1%RSD 4.杂散光: 〈2.0ppm As 5.完成EPA 22个元 素系列测定时间小于 5分钟
6
7
电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。
样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。
根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。
本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。
1、对仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。
样品引入系统按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。
样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分一般为蠕动泵,也可使用自提升雾化器。
要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。
雾化部分包括雾化器和雾化室。
样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。
要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。
常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。
实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。
电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。
样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。
根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。
等离子体发射光谱法

等离子体发射光谱法等离子体发射光谱法,又称原子发射光谱法,是一种广泛应用的光谱分析技术。
它基于原子或分子内部能态的电子跃迁过程,利用激发能将样品中原子或分子中的电子激发到高电子能态,再由高电子能态跃迁到低电子能态时所释放的光能进行分析。
该技术具有高分辨率、灵敏度高、适用范围广、无需前处理等优点,广泛应用于材料检测、环境监测、医学诊断等领域。
等离子体发射光谱分析主要分为电弧放电、射频感应等离子体、电感耦合等离子体(ICP)发射光谱法。
电弧放电法是最早应用的等离子体发射光谱法之一。
该方法将样品放置在一对电极间,通过电弧放电的方式激发样品原子,利用分析样品所产生的光谱来确定其中元素的存在和含量。
该方法简便易行,但存在容易形成烟雾、易污染仪器的缺点。
射频感应等离子体法是一种非接触式等离子体发射光谱法,它通过射频电磁场在样品中产生等离子体,使样品原子或分子激发并发射光谱信号。
该方法具有射频感应器简单、样品可以传送等优点,但对于高浓度盐类或有机物质等强吸收样品存在分析复杂度较高的缺点。
电感耦合等离子体发射光谱法是目前广泛应用的一种光谱分析技术,该方法使用射频辐射场激励样品,将样品原子或分子离子化,形成等离子体,由此提供较高的分辨率和灵敏度,同时可以扩展到更广泛的化学元素范围,并具有较低的背景信号和较高的重现性等优点。
ICP还可以与质谱仪结合,形成ICP-MS系统,进一步提高检测的极限和精度。
在等离子体发射光谱分析中,还经常使用样品前处理技术来提高检测结果的准确性。
如氧化、还原、燃烧、溶解、虑滤等处理方法,以及结合色谱和电化学分析等技术。
等离子体发射光谱法是一种重要的光谱分析技术,具有广泛应用的前景,在工业检测、环境检测、医药等行业的研究中发挥着重要作用。
在环境监测领域,等离子体发射光谱法可以用于测定地下水、土壤和大气中各种元素的含量,以评估环境污染状况。
利用ICP-OES测定土壤中的重金属含量,可以确定污染源和污染程度,为环境治理决策提供了有力的数据支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 3
原子发射光谱分析法
等离子体发射光谱分析法 ICP-AES仪器 ICP-
(Atomic Emissive Spectrometry,AES) 一、原子发射光谱的原理
在正常状态下,元素处于基态,元素在受到热(火焰)
或电(电火花)激发时,由基态跃迁到激发态,返回到基态 时,发射出特征光谱(线状光谱)。 热能、电能 基态元素M E 特征辐射 激发态M*
标准加入法 测定微量元素,不易找到不含被分析元素的物质作为配制标 准样品的基体时 ,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物(ci),浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。 R=Acb b=1时,R=A(cx+ci ) R=0时, cx = – ci
第二节 电感耦合等离子体发射光谱分析法
一、ICP-AES分析方法及特点 1、ICP-AES的发展历程
20世纪60年 代提出、70 年代迅速发 展
1975年推出 第一台ICP 同时型(多道) 商品仪器 80~90年代仪 器的性能得 到迅速提高 成为元素分 析常规手段 固态成像检 测器和中阶 梯光栅应用 于新一代的 ICP光谱仪
几个概念 激发电位(或激发能):原子由基态跃迁到激发态时 所需要的能量 。 电离:当外加的能量足够大时,原子中的电子脱离原子 核的束缚力,使原子成为离子,这种过程称为电离。 一级电离电位:原子失去一个电子成为离子时所需要的 能量称为一级电离电位。
离子的激发电位:离子中的外层电子也能被激发,其所
需的能量即为相应离子的激发电位。
2、ICP-AES基本原理 等离子体(Plasma) 电离度超过0.1%被电离了的气体,这种气体不仅含有中 性原子和分子,而且含有大量的电子和离子,且电子和 正离子的浓度处于平衡状态,从整体来看是出于中性的。
等离子体光源的类型 等离子体喷焰作为发射光谱的光源主要有以下三种形式:
(1)直流等离子体喷焰(direct currut plasmajet,DCP)
ICP光源的装置及其形成 当高频发生器接通电源后,高频电流I
通过感应线圈产生交变磁场。
开始时,管内为Ar气,不导电,需要 用高压电火花触发,使气体电离后,
在高频交流磁场的作用下,带电粒子
高速运动,碰撞,形成“雪崩”式放电, 产生等离子体气流。在垂直于磁场方
向将产生感应电流,其电阻很小,
电流很大,产生高温。又将气体加热、 电离,在管口形成稳定的等离子体焰炬。
特征谱线检验,称其为分析线。一般是灵敏线或最后线。
自吸:由弧焰中心发射出来的辐射光,被外围 的基态原子所吸收,从而降低了谱线的强度。 此现象叫自吸。
自蚀:自吸严重时,中心部分的谱线 这个现象叫自蚀 。
将被吸收
很多,从而使原来的一条谱线分裂成两条谱线,
2. 定性方法 标准试样光谱比较法
铁光谱比较法:最常用的方法,以铁谱作为标准(波长标尺)。
ICP光源特点
(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物的
分解和元素激发,对大多数元素有很高的灵敏度和稳定性; (2)“趋肤效应”,涡电流在外表面处密度大,使表面温度高
,轴心电流密度最小,温度低,中心通道进样对等离子的稳
定性影响小。有效消除自吸现象,线性范围宽(4~5个数量 级);
(3) ICP中电子密度大,碱金属电离造成的影响小;
检测系统:
常用的检测记录光谱的方法 摄谱法:用来测量感光板上所记录的谱线黑度。测微光
度计(黑度计)主要用于光谱定量分析,光谱投影仪
(映谱仪), 用于定性和半定量分析。 光电直读法:利用光电倍增管、阵列检测器将光强度转
换成电信号来检测谱线强度的方法。
三、光谱定性分析 定性依据:元素不同→电子结构不同→光谱不同→特征光谱
与标样光谱中分析线黑度,若黑度相等,样品中欲测元素的
含量近似等于该标准样品中该元素的含量。 例如,分析矿石中的铅,即找出试样中灵敏线283.3nm,
再以标准系列中的铅283.3nm线相比较,如果试样中的铅线
的黑度介于0.01% ~ 0.001%之间,并接近于0.01%,则可表 示为0.01% ~ 0.001%。
(4) 工作气体Ar气产生的背景干扰小; (5) 无电极放电,无电极污染;
30
上述谱线增强,311.890和269.750出现
3.均称线对法
以测定低合金钢中的钒为例。合金钢中,铁为主要成分,
其谱线强度变化不大,可认为恒定。钒的谱线强度与铁有如
下关系: 钒含量(%) 钒谱线强度与铁谱线强度的关系
0.2
0.3 0.4
V438.997=Fe437.593nm
V439.523=Fe437.593nm V437.924=Fe437.593nm
确度较差;只能用于元素分析,不能进行结构、形态的测定 ;非金属元素灵敏度低。
2. 应用 原子发射光谱分析在鉴定金属元素方面(定性分析)具 有较大的优越性,不需分离、多元素同时测定、灵敏、快捷 ,可鉴定周期表中约70多种元素,长期在钢铁工业(炉前快 速分析)、地矿等方面发挥重要作用; 在定量分析方面,原子吸收分析有着优越性; 80年代以来,全谱光电直读等离子体发射光谱仪发展迅 速,已成为无机化合物分析的重要仪器。
原子的共振线与离子的电离线 • 主共振线:具有最低激发电位的谱线叫主共振线。主 共振线一般是由最低激发态回到基态时发射的谱线。 • 原子线:原子外层电子的跃迁所发射的谱线,以I表示,
如Mg Ⅰ285.21nm为原子线。
• 离子线:离子的外层电子跃迁发射的谱线。以II,III, IV等表示。如MgⅡ280.27nm为一次电离离子线。
4)背景应尽量小。
3. 摄谱法光谱定量分析
S = lgR = b1lgc + lgA
在完全相同的条件下,将标准样品与试样在同一感光板上 摄谱,由标准试样分析线对的黑度差(S )对lgc作标准曲线( 三个点以上,每个点取三次平均值),再由试样分析线对的黑 度差,在标准曲线上求得未知试样lgc ,该法即三标准试样法。
式中:E2为终止能级的能量;
E1为起始能级的能量;
h为普朗克常数(6.626×10-34J·s); λ 为谱线的波长;
ν 为谱线的频率;
c为光速(3×1010cm/s)
发射光谱分析的过程 1.蒸发、原子化和激发。 2.分光,按波长顺序记录在感光板上。 3.定性或定量分析。
二、原子发射光谱分析仪器 原子发射光谱仪通常由三部分构成:光源、分光、检测。
四、光谱半定量分析 测量试样中元素的大致含量、浓度范围。 应用:钢材、合金等的分类、矿石品位分级等大批
量试样的快速测定。
方法:谱线呈现法、谱线强度比较法、均称线对法。
1、谱线强度比较法
采用摄谱法中的比较黑度法,配制一个基体与试样组成 近似的被测元素的标准系列(如,1%,0.1%,0.01%, 0.001%)。在相同条件下,在同一块感光板上标准系列与 试样并列摄谱,然后在映谱仪上用目视法直接比较被测试样
光源
作用:提供试样的蒸发、原子化和激发所需能量; 要求:有较高的灵敏度,稳定性和再现性强,背景低, 干扰少,操作简便。 常用的光源:直流电弧、交流电弧、电火花及电 感耦合高频等离子体。
分光系统
作用:将原子发射出的辐射分光后观察其光谱。
按接受光谱方式分:看谱法、摄谱法、光电法。
按仪器分光系统分:棱镜光谱仪、光栅光谱仪。
0.6
判断元素的大致含量。
V439.523>Fe437.593nm
这些线都是均称线对,即激发电位接近。用目视观察既可
五、 光谱定量分析
1.谱线强度与试样中被测元素浓度的关系 I=acb 式中:I为发射光谱线的强度; a为同谱线性质、实验条件有关的常数;
b为与谱线的自吸有关的常数,
当无自吸时,b=1,当有自吸时,b<1; c为被测元素浓度。
六、 原子发射光谱分析法特点与应用
1. 特点 优点: (1)可多元素同时检测 (2)分析速度快
(3)选择性高
(4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 相对误差 5%~10% (一般光源); <1% (ICP)
缺点:影响谱线强度的因素较多;含量(浓度)较大时,准
原子离子发射光谱的产生
离子化(游离)
E2 E1 E0 激发状态
离子化
2 1 离子 电子 原子核 能级 エネル ギ- E2 E1 ΔE
hν
频率ν
◆在等离子体中元素原子化、离子化 ◆在等离子体中元素原子、离子发射特征波长的谱线
ICP组成 a.高频发生器和高频感应线圈; b.炬管和供气系统; c.雾化器及试样引入系统。
2、谱线呈现法
谱线强度与元素的含量有关。元素含量低时,
仅出现少数灵敏线,随元素含量增加,谱线随之出 现。可编成一张谱线出现与含量关系表,依此估计 试样中该元素的大致含量。
例如,铅的光谱 Pb含量(%) 谱线λ(nm) 0.001 0.003 0.01 0.1 1.0 3 10 283.3069清晰可见,261.4178和280.200很弱 283.306、261.4178增强,280.200清晰 上述谱线增强,另增266.317和278.332,但 不太明显。 上述谱线增强,无新谱线出现 上述谱线增强,214.095、244.383、244.62出 现,241.77模糊 上述谱线增强,出现322.05、233.242模糊可见 上述谱线增强,242.664和239.960模糊可见
弧焰温度高 8000-10000K,稳定性好,精密度接近ICP,装 置简单,运行成本低; (2)电感耦合等离子体(inductively coupled plasma, ICP) ICP的性能优越,已成为最主要的应用方式 ; (3) 微波感生等离子体(microwave induced plasma, MIP) 温度5000-6000K,激发能量高,可激发许多很难激发的非金 属元素:C、N、F、Br、Cl、C、H、O 等,可用于有机物 成分分析,测定金属元素的灵敏度不如DCP和ICP。