运筹学4单纯形法迭代原理
运筹学单纯形法各个步骤详解

运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
第四讲 单纯形法基本原理

则选取对应的基变量 xl
为换出变量。
假设 B 是线性规划 min z CX , AX b, X 0 的可行基
C ( 5, 2, 3,1, 1)
1 2 2 1 0 A= 3 4 1 0 1 8 b 7 解: (1)确定初始的基本可行解。
1 B=(P4P5 )= 0 0 ,基变量 1
x4 , x5 ,非基变量 x1 , x2 , x3。
x1 CB =(1, 1) x4 1 0 1 2 2 XB = ,X N = x 2 ,B= ,N= , C =( 5, 2, 3) x 0 1 3 4 1 N 5 x 3 8 X N =0 X B =B1b= X=(0,0,0, 8, 7)T 7
如果确定Xm+k 为换入变量,方程
X B B1b B1 NX N X B B1b B1 Pm k xm k
其中 Pm+k 为A中与 Xm+k 对应的系数列向量。 现在需在XB=(x1,x2,…,xm)T 中确定一个基变量为换出变 量。 当 xm+k由零慢慢增加到某个值时,为保持解的非负 性,可以按最小比值原则确定换出变量:
的检验向量,它的各个分量称为检验数。 若 N 的每一个检验数均大于等于0,即 N 0 则目前的基本可行解就是最优解。 ,
1 如果向量 的第 k 个分量 k 0 ,且向量 B Am k 0,
定理 2 设 x 是对应基 B ( p1, p2, , pm ) 的基可行解,
单纯形法迭代原理

xm bm a mm1 xm 1 ... a mn xn
上页
下页
返回
2、最优性检验与解的判别
代入目标函数,有: Z c1 x2 c2 x2 ... cn xn c1 (b1'
j m 1 ' ' a x ) ... c ( b 1j j m m n j m 1 ' a mj x j ) n
1, 2 0, x1 , x2 均可换入。
一般选取 max( 1, 2 ) 对应的变量
(即选最大非负检验数对应的变量)
换入变量
x2
上页 下页 返回
x3 使换入的变量越大越好 x4 同时,新的解要可行。 x5 • 换出变量 选非负 i 的最小者对应的变量换出 x2 min( 8 / 2
均可作为换入变量
上页 下页 返回
3、基变换
Z大 xm k 大 • 换出变量确定 ' ' (在可行的范围内) x1 b1 a 1m k xm k 0
Z Z 0 m k xm k
x2 b2 a 2 m k xm k 0
'
'
........
上页
下页
返回
1、初始基可行解的确定
• 观察法:直接观察得到初始可行基 • ≤约束条件: 加入松弛变量即形成 可行基。(下页) • ≥约束条件: 加入非负人工变量, 以后讨论.
上页
下页
返回
1、初始基可行解的确定
不妨设 x1 , x2 , , xm为松弛变量, 则约束方程组可表示为
x1 a1m 1 xm 1 ... a1n xn b1 a2 m 1 xm 1 ... a2 n xn b2 x2 .......................................... xm amm1 xm 1 ... amn xn bm x1 , x2 ,..., xn 0
运筹学课件 单纯形法的迭代原理

因为p1,…,pm,是一个基,其他向量pj可以这个基 的线性组合表示:
pj
a
i 1
m
ij
pi
(pj
a
i 1
m
运筹学教程
ij
p i ) 0
pj
a
i 1
(0)
m
ij
p i 相减,然后乘上一个正数θ ,加上
i 1
m
pi xi
b
经过整理得到:
( p j a ij p i )
rL×(-al-1j) +rL-1
0 -(bL/aLj)+bL-1 L alj×(1/alj)=1
运筹学教程
所以,P1,P2,…,Pl-1,Pj,Pl+1,…,Pm,是一个基。
进行初等行变换,将第L行乘上1/alj,再分别乘以
-aij,(i=1,…,l-1,l+1,…,m)加到各行,增广矩阵
的左边变成一个单位矩阵,
cj
…
cn
CB
c1 c2 . cm cj-zj
基
x1 x2 . xm
b
b1 b2 . bm
x1
1 0 . 0
…
xm …
xj
a1j a2j . amj
…
xn
a1n a2n . amn
j c n c i a in
i 1 m
0
…
0
…
运筹学教程
第二步:最优性检验
计算检验数,检查:
所有检验数是否≤ 0?
运筹学教程
式中p1,„,pm 为基变量,同其所对应的 x1,x2,„..,xm为基变量;其它变量 xm+1,xm+2,„„,xn为非基变量。令所有的非基变量 等于零。
单纯形法原理

单纯形法原理及步骤单纯形法,求解线性规划问题的通用方法。
单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。
它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。
顶点所对应的可行解称为基本可行解。
单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。
因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
如果问题无最优解也可用此法判别。
单纯形法是从某一基可行解出发,连续地寻找相邻的基可行解,直到达到最优的迭代过程,其实质是解线性方程组。
概述:根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n的值称为一个解,满足所有的约束条件的解称为可行解。
使目标函数达到最大值(或最小值)的可行解称为最优解。
这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。
求解线性规划问题的目的就是要找出最优解。
最优解可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解;③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大)。
单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。
②若基本可行解不存在,即约束条件有矛盾,则问题无解。
③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。
用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。
第4章 单纯形法

不为0,是否会带来目标函数值变大? 需要最优性
检验,即如果x1或x2不论取其他任何非负值都不会
带来目标函数值增大,那该基本可行解就是最优解。
管理运筹学
18
§1 单纯形法的基本思路和原理
所谓最优性检验就是判断已求得的基本可行解是否是最优解。 (1) 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求 只用非基变量来表示目标函数,或者说目标函数中基变量的系数都为零了。 此时目标函数中所有变量的系数即为各变量的检验数,把变量xi的检验数 记为σ i。显然所有基变量的检验数必为零。在本例题中目标 函数为3x1+5x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知 σ 1=3,σ 2=5,σ 3=0,σ 4=0,σ 5=0。 检验数:用非基变量来代换基变量,使得目标函数只用非基变量来表示。
• Z=3x1+5x2 • 非基变量的检验数都大于0,说明增加x1或x2都可以使目标
函数值变大。故非最优解。 • 3、基变换。 通过检验,我们知道这个初始基本可行解不是最优解。下面
介绍如何进行基变换找到一个新的可行基,具体的做法是从
可行基中换一个列向量,得到一个新的可行基,使得求解得
到的新的基本可行解,其目标函数值更优。为了换基就要确
§1 单纯形法的基本思路和原理
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个
基,令这个基的非基变量(n-m个)为零,再求解这个m元线性方程组就可得 到唯一的解了,这个解我们称之为线性规划的基本解(基解)。
在此例中我们不妨找到了
运筹学单纯形法

X2
Q4 3 2 1
0
x1+2x2 =8 4x1=16
Q3
4x2=12
Q2
Q1
X1
1
2
3
4
解: 首先:将该问题化成标准形
max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3 8
s.t
.
4 4
x1 x2
x4 x5
16 12
xj 0, j 1, 2 ,, 5
基向量、非基向量、基变量、非基变量: 称pj(j=1,2,…,m)为基向量,其余称为非基向量; 与基向量pj(j=1,2,…,m)对应的xj称为基变量,其全体写成 XB=(x1,x2,…,xm)T;否则称为非基变量,其全体经常写 成XN。
基解:对给定基B,设XB是对应于这个基的基变量 XB=(x1,x2,…,xm)T; 令非基变量xm+1=xm+2=…=xn=0, 由(2)式得出的解X=(x1,x2,…,xm,0,…,0)T 称为基解。
(xi0 aij )Pi Pj b
(5)
i 1
由(5)式可以找到满足约束方程的另一个点X(1),其中是点X(1)的第j 个坐标值
X (1) x10 - a1j xm0 - amj 0 0
j
要使X(1)是一个基本可行解,则要求 xi0 - aij 0
§3 单纯形法(Simplex Method)
线性规划问题的最优解,可以从基可行解中找到 图解法有局限性; 枚举法计算量大;
§3.1 单纯形法的引入
例子:求解线性规划问题
max z 2x1 3x2
x1 2x2 8
单纯形法求解原理过程

单纯形法求解原理过程第一篇:单纯形法求解原理过程单纯形法需要解决的问题:如何确定初始基本可行解;如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降;如何判断一个基本可行解是否为最优解。
min f(X)=-60x1-120x2 s.t.9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 xi≥0(i=1,2,3,4,5)(1)初始基本可行解的求法。
当用添加松弛变量的方法把不等式约束换成等式约束时,我们往往会发现这些松弛变量就可以作为初始基本可行解中的一部分基本变量。
例如:x1-x2+x3≤5 x1+2x2+x3≤10xi≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10xi≥0(i=1,2,3,4,5)令x1=x2=x3=0,则可立即得到一组基本可行解x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵⎡94100⎤⎥A=[P1,P2,P3,P4,P5]=⎢310010⎢⎥⎢⎣45001⎥⎦中可以看出其中有个标准基,即⎡100⎤⎥B=⎢010⎢⎥⎢⎣001⎥⎦与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x20 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 TX=[0,0,360,300,200]判别初始基本可行解是否是最优解。
此时可将上式代入到目标函数中,得: F(X)=-60x1-120x20对应的函数值为f(X)=0。
0由于上式中x1,x2系数为负,因而f(X)=0不是最小值。
因此所得的解不是最优解。
011(2)从初始基本可行解X迭代出另一个基本可行解X,并判断X 是否为最优解。
从一个基本可行解迭代出另一个基本可行解可分为两步进行:第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量;第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X(0)(b 1,b2,.b .m .,0 ,,.0 .)T .,
2.建立判别准则
判断:初始基本可行解或经过若干次迭代后得到的新基 本可行解—当前解—是否为最优解?
一般(经过若干次迭代),对于基B,用 非基变量表出基变量的表达式 为:
Axb BB xNN xb
xBB1bB1NN x 典式
n
xi bi' ai'jxj, jm1
xik1bi' ai',mtxmt xik ai',mtxmt
xik1xikai',mtxmt 0
n
Z Z0 jxj
jm1
a' i,m t < =
xmt
xik ai',mtxmt
若mt 0且pm' t 0
则该LP无最优解。
>
当
a' i,mt
0 时,为使
xik ai',mtxmt 0,需要
?
x1
a1m1xm1 a1nxn b1
x2
a2m1xm1 a2nxn b2
xm amm1xm1 amnxn bm xj 0 ( j 1,2,,n)
➢观察法 ——观察系数矩阵中是否含有现成的单位阵? ➢LP限制条件中全部是“≤”类型的约束 ——将新增的松弛变量(+)作为初始基变量,对应的 系数列向量构成单位阵; ➢LP限制条件有“≥”类型的约束 ——左端新增剩余变量(-)后,再加上一个非负的新 变量—人工变量。 ➢LP限制条件有“=”类型的约束 ——直接在左端加上人工变量。
ciai'jxj cjxj
n
xi bi' ai'jxj
jm1
i1
i1jm1
jm1
m
nm
n
cibi'
ciai'jxj cjxj
i1
jm1i1
jm1
典式
m
n
m
cibi' (cj ciai' j)xj
zj
Z0
i1
jm 1
i1
n
n
n
Z0 (cj zj)xjZ0 jxj
Z
Z0 jxj
于是,若某线性规划只有唯一的一个最 优解,这个最优解所对应的点一定是可行域 的一个顶点;若该线性规划有多个最优解, 那么肯定在可行域的顶点中可以找到至少一 个最优解。
转移条件?
转移结果?
使目标函数值得到改善
得到LP最优解,目标函数达到最优值
2.需要解决的问题:
(1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优——
最小比 值原则
xmt
x
k i
a' i,m t
x k 1 mt
x 从而, m t
最大可取到mi inaix',mikt
a' i,mt
0
x
k l
a' l ,m t
xik1xikai',mtxmt
x k 1 mt
x
k l
a' l ,m t
x ik 1 x ik a i',m tx m k 1 t,i 1 ,.m .,i. ,l
xm amm1xm1 amnxn bm
xj 0 ( j 1,2,,n)
将目标函数改写为:-Z+c1x1+c2x2+…+cnxn=0
写成增广矩阵的形式
Z x1 x2 ... xm xm1 ... xn 右端
0 1 0 ... 0 a1,m1 ... a1n b1
i1,2 ,m
n
BI, 若
xi bi aijxj
jm1
用非基变量表示目标函数的表达式:
n
m
n
m
n
Z c j x j cjxj cjxj cixi cjxj
j 1
m
j1
n
jm1
i1
n
jm1
ci(bi' ai'jxj) cjxj
i1
jm1
jm1
m
mn
n
cibi'
是否还是基本解?是
Z(k1) Z0
n
jxj
Z0
xk
mt mt
jm1
Z 0 Z(k)
从而,目标函数得到了改善。
第四节 单纯形表
(1)建立初始单纯形表,假定B=I,b≥0
设maxx1Z=c1x1+ac12mx21+x…m1+cnxna1nxn b1
s.t.
x2
a2m1xm1 a2nxn b2
jmn
Z Z0 jxj
m
其中 Z0 cibi',
i 1
jm1
j cj zj,
m
z j ciai'j
i 1
(1)最优性判别定理
j 0,jm1,..n.,
(2)有无穷多个“最优解”的判别定
理
j 0 且mt 0
n
3、进行基变换
Z Z0 jxj
jm1
(1)进基变量的确定——原则:正检验数(或最大正检验
数)所对应的变量进基,目的是使目标函数得到改善。
xmt
(2)离基变量的确定——在保持解的可行性的前提下, 使目标函数较快增大。
X(k)(x1 k,x2 k,.x .m k.,0 ,,.0 .)T .,
n
xi bi' ai'jxj
jm1
xj 0; j m 1,...,n
xik bi'
xm t 0 xj0;jm 1,.m .. ,t1,m t1,.n ..,
判断标准是什么?
解LP问题单纯形法的基本思路: 初始可行基:设法在约
束矩阵 ARmn 中
构造出一个m阶单位阵
初始基本可行解
检验数
进基变量:检验数 离基变量:最小比值准则
1.确定初始基本可行解
LP:
n
maxz cjxj
j1
n
s.t. j1
Pj xj
b
xj 0( j 1,2,3,n)
希望在化LP的标准形 式时,A中都含有一 个m阶单位阵。
xk1 l
0
x 离基变量: l
X(k)(x1 k,x2 k,.x .m k.,0 ,,.0 .)T ., X ( k 1 ) ( x 1 k 1 ,x .l k 1 1 .,0 , .x l k 1 1 ,0 .0 .,x .m k 1 t,,0 ,.0 ) T .是 解.可 !,行
三. 单纯形法的基本思想
1、顶点的逐步转移
即从可行域的一个顶点(基本可行解) 开始,转移到另一个顶点(另一个基本可 行解)的迭代过程,转移的条件是使目标 函数值得到改善(逐步变优),当目标函 数达到最优值时,问题也就得到了最优解。
顶点转移的依据?
根据线性规划问题的可行域是凸多边形 或凸多面体,一个线性规划问题有最优解, 就一定可以在可行域的顶点上找到。
在引入人工变量后,与原先的约束方程不完全等价,为此, 需要在目标函数上做些“修正”——大M法或两阶段法
x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm amm1xm1 amnxn bm xj 0 ( j 1,2,,n)
非基变量取0,算出基变量,搭配在一起构成 初始基本可行解: