数控加工中心刀具选用探讨(doc 20页)
CNC加工中心刀具选用

加工中心上用的立铣刀一般有三种形式:球头刀(R=r)、端铣刀(r=0)和R刀(r图1 立铣刀结构示意图
加工空间曲面和变斜角轮廓外形时,由于球头刀具的球面端部切削速度为零,而且在走刀时,每两行刀位之间,加工表面不可能重叠,总存在没有被加工去除的部分,每两行刀位之间的距离越大,没有被加工去除的部分就越多,其高度(通常称为“残留高度”) 就越高,加工出来的表面与理论表面的误差就越大,表面质量也就越差。加工精度要求越高,走刀步长和切削行距越小,编程效率越低。因此,应在满足加工精度要求的前提下,尽量加大走刀步长和行距,以提高编程和加工效率。而在两轴及两轴半加工中,为提高效率,应尽量采用端铣刀,由于相同的加工参数,利用球头刀加工会留下较大的残留高度。因此,在保证不发生干涉和工件不被过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀或R刀(带圆角的立铣刀)。不过,由于平头立铣刀和球头刀的加工效果是明显不同的,当曲面形状复杂时,为了避免干涉,建议使用球头刀,调整好加工参数也可以达到较好的加工效果。在选择刀刃长度和刀杆长度时,应考虑机床的情况及零件的尺寸是否会干涉。在可能的情况下,应尽量选短一些,以提高刀具的刚度。
(7)刀杆长度 刀尖到刀柄之间的距离。刀杆长度应大于刀刃有效长度。并且一般刀杆长度要大于工件总切深。如果不大于总切深,一定要检查刀柄是否会与工件相接触。
加工中心机床刀具是一个较复杂的系统,如何根据实际情况进行正确选用,是编程人员必须掌握的。只有对加工中心刀具结构和选用有充分的了解和认识,在实际工作中才能灵活运用,提高工作效率和安全生产。
铣削盘类零件的周边轮廓一般采用立铣刀。所用的立铣刀的刀具半径一定要小于零件内轮廓的最小曲率半径。一般取最小曲率半径的0.8到0.9倍即可。零件的加工高度(Z方向的吃刀深度)最好不要超过刀具的半径。若是铣毛坯面时,最好选用硬质合金波纹立铣刀,它在机床、刀具、工件系统允许的情况下,可以进行强力切削。
浅析数控加工刀具的正确选择及运用

加工中心刀具怎么选择合适的?

加工中心刀具怎么选择合适的?加工中心刀具怎么选择合适的?加工中心刀具主要分为铣削刀具和孔加工刀具两大类。
铣削刀具的选择主要是铣刀型别和铣刀尺寸的选择。
铣刀型别应与工件表面形状与尺寸相适应。
加工较大的平面应选择面铣刀;加工凹槽或者是较小的台阶及平面轮廓时应选择立铣刀;加工曲面应选择球头铣刀;加工模具型腔或凸模成形表面等多选用模具铣刀;加工封闭的键槽选择键槽铣刀;加工变斜角面应选用鼓形铣刀;加工各种直的或圆弧形的凹槽、斜角面、特殊孔等应选用成形铣刀。
当粗铣或铣不重要的加工平面时,可使用粗齿铣刀;当精铣时,可选用密齿铣刀,用小进给量达到低的表面粗糙度;当铣材料较硬的金属时,必须选用密齿铣刀,同时进给量要小,以防止振动。
铣刀尺寸也应与被加工工件的表面尺寸和形状相适应。
刀具直径的选用主要取决于装置的规格和工件的加工尺寸,另外还要考虑刀具所需功率应在机床功率范围之内。
粗铣时铣刀直径要小些,精铣时铣刀直径要尽量大些,最好能够包容整个加工宽度。
表面要求高时,还可以选择使用具有修光效果的刀片。
而孔加工刀具可分为钻孔刀具、镗孔刀具、扩孔刀具和铰孔刀具。
(1)钻孔刀具较多,主要有普通麻花钻、可转位浅孔钻以及扁钻。
用加工中心钻孔通常都会采用普通麻花钻,普通麻花钻主要由工作部分和柄部组成的。
刀具柄部分为直柄和锥柄两种。
直柄工具的刀柄主要是弹簧夹头刀柄,其具有自动定心、自动消除偏摆的优点,所以小规格的刀具最好选用该型别。
而工作部分包括切削部分和导向部分,所示,麻花钻的切削部分有2个主切削刃、2个副切削刃、1个横刃。
麻花钻的导向部位起导向、修光排屑和输送切削液作用。
麻花钻一般用于精度较低孔的粗加工,由于加工中心所用夹具没有钻套定心导向,钻头在高速旋转切削时容易会发生偏摆运动,而且钻头的横刃长,所以在钻孔时,要用中心钻打中心孔,用以引正钻头。
(2)镗削的主要特点是获得精确的孔的位置尺寸,得到高精度的圆度、圆柱度和表面粗糙度,所以,对精度较高的孔可用镗刀来保证。
加工中心刀具的选择

加工中心刀具的选择(摘录)采用顺铣时,首先要求机床具有间隙消除机构,能可靠地消除工作台进给丝杆与螺母间的间隙,以防止铣削过程中产生的振动。
如果工作台是由液压驱动则最为理想。
数控机床一般采用顺铣,手工操作的铣床一般采用逆铣。
其次,要求工件毛坯表面没有硬皮,加工中心工艺系统要有足够的刚性。
如果以上条件能够满足时,应尽量采用顺铣。
切削用量的确定切削用量包括切削深度(背吃刀量)、主轴转速(切削速度)、进给量。
对于不同的加工方法,需要选择不同的切削用量,并应编人程序单内。
合理选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本首先选取尽可能大的背吃刀量;其次要根据机床动力和刚性的限制条件等,选取尽可能大的进给量;最后根据刀具耐用度确定最佳的切削速度。
半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
首先根据粗加工后的余量确定背吃刀量;其次根据已加工表面的粗糙度要求,选取较小的进给量;最后在保证刀具耐用度的前提下,尽可能选取较高的切削速度。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
①切削深度dp。
主要根据机床、夹具、刀具和工件的刚度来决定,在刚度允许的情况下,应该以最小的次数切除加工余量,最好一次切尽余量,以提高生产率。
在数控机床上,精加工余量可小于普通机床,一般0.2—0.5mm。
②主轴转速,1(r/rain)。
主要根据允许的切削速度oc (m/min)选取。
数控机床式中,wc为切削速度,由刀具的寿命决定;D为工件或刀具直径,mm。
主轴转速n要根据计算值在机床说明书中选取标准值,并填人程序单中。
③进给量(mm/r)或进给速度(mm/min)。
它是数控加工切削用量中的重要参数,主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料性质选取。
影响切削速度的因素很多,加工中心概括起来有如下几点。
a.刀具材质。
刀具材料不同,允许的最高切削速度也不同。
数控加工刀具的比较与选择

数控加工刀具的比较与选择摘要:数控加工技术越来越被广泛应用,而刀具作为数控加工过程中不可缺少的一环,对于加工效果和效率具有至关重要的影响。
在刀具选择方面,应考虑到材料、形状、刃口结构、切削力和切削速度等因素。
本文探讨了常见的几种数控加工刀具类型及其特点,分析它们的优缺点,并提出了在不同的加工情况下如何选择适合的刀具。
关键词:数控加工、刀具、选择正文:随着现代制造业的发展,数控加工技术已得到广泛应用。
在数控加工过程中,刀具是实现高效加工和质量保障的关键所在。
因此,在选择数控加工刀具时需要考虑到多个因素。
1. 刀具材料优秀的刀具材料应具有高硬度、高韧性和较高的耐磨性。
目前市面上常见的刀具材料包括高速钢、硬质合金、陶瓷和多晶体立方石。
高速钢刀具是质量较高、价格较低的选项,但其硬度和耐磨性相对较低。
硬质合金刀具具有较高的硬度和耐磨性,但韧性较差。
陶瓷刀具则可以用于高速加工,但其价格较高。
2. 刀具形状刀具形状对其能否在处理中达到良好的效果和性能起着重要作用。
目前市场上较为常见的刀具形状有直刀、球头刀、圆弧刀和T形刀等。
不同的刀具形状适用于不同的加工类型和材料。
3. 刃口结构刃口结构是决定刀具切削效果的关键所在。
常用的刃口结构包括单刃、双刃、三刃和四刃刀等。
三刃刀比单刃刀具有较高的切削效率,但相应地也会产生更大的切削力。
4. 切削力和切削速度刀具的切削力取决于刀具的形状和材料。
对于高硬度的材料,需要选择较为坚硬的刀具来保证其稳定性和耐用性。
切削速度和动力也应根据不同的加工工件进行适当调整以获得最佳的加工效果。
综合上述因素,目前市场上常见的几种数控加工刀具包括高速钢刀具、硬质合金刀具、陶瓷刀具和多晶体立方石刀具。
在实际操作中,应根据具体的加工需求选择最合适的刀具。
例如,在加工新材料时,可以尝试使用陶瓷刀具或多晶体立方石刀具,因其具有更好的切削性能和质量保证。
总之,刀具的选择是数控加工过程中的一项重要决策。
除了上述因素,应还考虑到刀具的生产厂家、质量和价格等方面,以获得最佳的加工效果和经济效益。
数控加工中心刀具和切削用量的挑选讨论

数控加工中心刀具和切削用量的挑选讨论
数控加工中心刀具和切削用量的选择对加工品质、效率和成本都有着重要的影响。
因此,在选择刀具和切削用量时,需要考虑以下几个方面。
1. 材料类型和硬度
不同材料的硬度和切削性能不同,需要选择适合切削材料的刀具和切削用量。
例如,对于硬度较高的金属材料(如不锈钢、钛合金等),需要选择具有高刚性和耐磨性的刀具,并采用适当的切削用量,以保证加工效率和品质。
2. 刀具形状和尺寸
刀具的形状和尺寸应根据加工零件的几何形状和尺寸来选择。
例如,对于复杂的零件,可以选择具有多个刀片的刀具,可以实现高效的加工。
此外,还应根据加工要求选择切削刃数和角度等参数。
3. 切削用量
切削用量的选择应根据材料的硬度、加工精度要求、机床的刚度等因素来决定。
一般来说,大切削深度和进给速度可以提高加工效率,但会降低加工精度和表面质量。
因此,需要根据加工要求进行合理的切削用量选择。
4. 刀具磨损和寿命
刀具的磨损和寿命也是选择刀具和切削用量的重要因素。
对于磨损严重的刀具,应及时更换或修复。
同时,还应采取合理的加工策略,如降低切削用量、选择高质量的刀具等,以延长刀具的使用寿命。
总之,数控加工中心刀具和切削用量的选择应综合考虑工件材料、形状和尺寸、加工要求等因素,以达到高效、精确和经济的加工效果。
数控铣(加工中心)的刀具选用

千里之行,始于足下。
数控铣(加工中心)的刀具选用
在数控铣床(加工中心)中,刀具的选择对加工效率和加工质量有着重要的
影响。
下面将就刀具材料、刀具形状、刀具涂层等几个方面来探讨数控铣床刀
具的选用。
1. 刀具材料:常见的刀具材料有高速钢、硬质合金和刚玉等。
高速钢刀具具有较好的塑性和切削性能,适用于切削材料比较软的工件;硬质合金刀具具
有较高的硬度和耐磨性能,适用于切削材料比较硬的工件;刚玉刀具则在超硬
材料加工中具有较好的切削性能。
2. 刀具形状:常见的刀具形状有平头刀、球头刀、角形刀和弧形刀等。
平头刀适用于平面铣削和侧面铣削,常用于粗加工;球头刀适用于曲面加工和球
面加工,常用于精加工;角形刀适用于开槽和切割等操作;弧形刀适用于轮廓
加工和复杂曲线加工。
3. 刀具涂层:刀具涂层能够提高刀具的硬度、耐磨性和润滑性,从而延长刀具寿命和提高加工质量。
常见的刀具涂层有TiN、TiC、TiCN、AlTiN等。
TiN 涂层主要用于加工不锈钢、铸铁和铝合金等材料;TiC涂层适用于加工高硬度
材料;TiCN涂层具有较好的耐磨性和润滑性能;AlTiN涂层具有良好的耐热性
和耐磨性能,适用于高温和高硬度材料加工。
在选择刀具时,还需考虑工件材料、加工要求和加工稳定性等因素。
另外,刀具的刃数、刀具直径和切削参数等也需要根据具体情况进行选择。
在刀具的
使用过程中,还需注意及时更换磨损的刀具、合理设置刀具余量和刀具进给速
度等,以保证加工效率和加工质量。
第1页/共1页。
CNC数控加工中刀具的选用

CNC数控加工中刀具的选用刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。
CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划与编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。
现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如刀具选择、加工路径规划、切削用量设定等,编程人员只要设置有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。
因此,数控加工中的刀具选用和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选用和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。
本文对数控编程中必须面对的刀具种类、特点和选择问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。
一、数控加工常用刀具的种类数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。
刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。
数控刀具的分类有多种方法。
根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具、减震式刀具等。
根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具、陶瓷刀具,等等。
从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。
为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%—40%,金属切除量占总数的80%—90%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工中心刀具选用探讨(doc 20页)合肥通用职业技术学院毕业论文论文题目: 控加工中心刀具选用研究系别:数控与材料工程系专业:数控技术学制:三年be qualified to make numerically-controlled machine tool's function get reasonable application and sufficient play. Nc machine is a kind of efficient automation equipment, it is more efficient than the conventional machine tools of 2 ~ 3 times, to give full play to the characteristics of CNC programming, must be in process analysis of workpiece before, according to the specific conditions, the choice of economic and reasonable process scheme. Nc machining process thoughtfulness is the effect of nc machine tools machining quality, production efficiency and machining cost of important factor. This article from the production practice, discusses and summarizes some of the numerical control turning process process problems.关键词(Keywords):工序划分;刀具选择;刀具特点;发展趋势;生产实践目录第一章前言 (3)第二章数控机床的组成和工作原理 (4)2.1孔加工刀具类 (4)2.2数控铣刀类 (4)2.3拉削刀具类 (5)2.4其它刀具 (5)第三章控刀具及选用 (6)3.1 数控机床刀具的特点 (6)3.2 金属切削刀具的主要角度 (6)3.3刀具常用材料 (6)3.4 数控机床刀具分类 (9)3.5常用数控刀具结构 (9)3.6数控机床刀具的选择 (10)3.7数控加工刀具选择的典型实例 (12)第四章数控刀具材料新产品科技近况与发展趋势 (13)4.1超硬材料领域 (13)4.2W、C O类涂层和细颗粒(超细颗粒)硬质合金材料领城 (14)4.3含CO类粉末冶金高速钢材料领城 (14)第五章结论 (16)参考文献 (17)致谢 (18)前言毕业设计(论文)是学生在导师指导下,就其某一学术课题在实验性、理论性或观察上具有新的科学研究成果或创新见解和知识的科学记录;或是某种已知原理应用于实际中取得新进展的科学总结。
毕业设计(论文)应能表明确已较好地掌握了本专业的基础理论、专门知识和基本技能,并具有从事科学研究工作或者担负专门技术工作的能力。
现代制造技术的发展及数控加工设备的广泛使用,极大地推动了切削技术的进步。
随着生产加工过程数控化和自动化的需要,对金属切削刀具提出了高可靠度、高精度、长寿命、快速转位更换、断屑良好等更高要求。
自80年代以来,可转位不重磨刀具已被各国广泛应用,但是可转位不重磨刀片及刀具CAD/CAM 技术的应用和发展,使刀具结构设计及切削部分的形状种类变得十分繁多,给机械加工和刀具设计人员合理选择刀具带来一定困难。
同时,刀片型号的增加也给刀片采购和销售带来不便,为用户快速、高效及正确选择刀具增加困难。
为使企业对市场需求迅速做出响应,在切削加工中,快速高效选择刀具成为切削加工系统的客观需求。
根据不同加工特征,自动选择所需刀具对实现高度自动化切削加工或无人加工具有十分重要的意义。
第二章常见几类数控刀具2.1孔加工刀具类:在刀具门类中,孔加工刀具是一大家族,其小改小革层出不穷,在此就其主要突出的新结构、新品种简要分述如下:2.1.1 数控钻头:2.1.1.1 整体式钻头:钻尖切削刃由对称直线型改进为对称圆弧型(r=1/2D),以增长切削刃、提高钻尖寿命;钻芯加厚,提高其钻体刚度,用"S"型横刃(或螺旋中心刃)替代传统横刃,减小轴向钻削阻力,提高横刃寿命;采用不同顶角阶梯钻尖及负倒刃,提高分屑、断屑、钻孔性能和孔的加工精度;镶嵌模块式硬质(超硬)材料齿冠;油孔内冷却及大螺旋升角(≤40°)结构等。
最近研制出整体式细颗粒陶瓷(Si3N4)、Ti基类金属陶瓷材料钻头。
2.1.1.2 机夹式钻头:钻尖采用长方异形专用对称切削刃、钻削力径向自成平衡的可转位刀片替代其它几何形状、钻削力径向总体合成平衡的可转位刀片,以减小钻削振动,提高钻尖自定心性能、寿命和孔的加工精度。
2.1.2 复合(组合)孔加工数控刀具:集合了钻头、铰刀、扩(锪)孔刀及挤压刀具的新结构、新技术,整体式、机夹式、专用复合(组合)孔加工数控刀具研发速度很快。
总体而言:采用镶嵌模块式硬质(超硬)材料切削刃(含齿冠)及油孔内冷却、大螺旋槽等结构是其目前发展趋势。
2.1.3 数控铰刀:大螺旋升角(≤45°)切削刃、无刃挤压铰削及油孔内冷却的结构是其总体发展方向,最大铰削孔径己达φ≤400mm。
2.1.4 镗刀:单刃微调精密镗刀正被多刃扩(锪)孔刀、铰刀及复合(组合)孔加工专用数控刀具替代。
国外研制出采用工具系统内部推拉杆轴向运动或高速离心力带平衡滑块移动,一次走刀完成镗削球面(曲面)、斜面及反向走刀切削加工零件背面的数控智能精密镗刀,代表了镗刀发展方向。
2.1.5 丝锥:研发出大螺旋升角(≤45°)丝锥,其切削锥视被加工零件材料软、硬状况,设计专用刃倾角、前角等。
2.1.6 扩(锪)孔刀:多刃、配置各种数控工具柄及模块式可调微型刀夹的结构形式是目前扩(锪)孔刀具发展方向。
2.2 数控铣刀类:2.2.1 整体式立铣刀硬质合金立铣刀侧刃采用大螺旋升角(≤62°)结构,立铣刀头部的过中心端刃往往呈弧线(或螺旋中心刃)形、负刃倾角,增加切削刃长度,提高了切削平稳性、工件表精度及刀具寿命。
适应数控高速、平稳三维空间铣削加工技术的要求。
2.2.2 机夹式立铣刀由各类机夹立铣刀的由可转位刀片(往往设有三维断屑槽形)组合而成的侧齿、端齿与过中心刃端齿(均为短切削刃),可满足数控高速、平稳三维空间铣削加工技术要求。
数控铣刀均已采计算机辅助设计、切削摸拟仿真及数控加工技术成形制造。
2.2.3 机夹式数控面铣刀刀体趋向于用轻质高强度铝、镁合金制造,切削刃采用大前角、负刃倾角,可转位刀片(几何形状多种)带有三维断屑槽形。
数控铣刀、专用复合孔加工刀具均应用了高速迴转体动平衡及安全夹固技术,一些高速迴转刀体上还应用空气动力学原理,利用旋风冷切削刃,在干式切削加工时降低切削刃的温度,提高刀具寿命。
2.3 拉削刀具类:在现代数控加工技术的支持下,研发出各种专用外轮廓精密成形、组合拉刀及车-拉组合成形拉削刀具,配以专用数控机床。
使汽车部分工件批产效率成几十倍提高,而且产品质量、精度十分稳定。
2.4 其它刀具:汽车、摩托车专用的小模数渐开线外齿轮、花键轴零部件批产工艺采用滚压、搓挤无屑加工工艺技术,研发出专用刀具及特种数控机床,使特定的工件批产效率提高几十倍,而且质量、精度十分稳定。
第三章数控刀具及选用3.1 数控机床刀具的特点数控机床刀具的特点是标准化、系列化、规格化、模块化和通用化。
为了达到高效、多能、快换、经济的目的,对数控机床使用的刀具有如下要求:(1)具有较高的强度、较好的刚度和抗振性能;(2)高精度、高可靠性和较强的适应性;(3)能够满足高切削速度和大进给量的要求;(4)刀具耐磨性及刀具的使用寿命长,刀具材料和切削参数与被加工件材料之间要适宜;(5)刀片与刀柄要通用化、规格化、系列化、标准化,相对主轴要有较高位置精度,转位、拆装时要求重复定位精度高,安装调整方便。
3.2 金属切削刀具的主要角度从属切削刀具的种类繁多,但它们的切削部分都可以近似地用外圆车刀的切削部分来描述。
确定刀具角度的正交平面参考系和车削刀具几何角度如图所示。
车刀的五个基本角度:(1)前角γo :是前刀面切削平面之间的夹角,表示前刀面的倾斜程度。
(2)后角αo :是主后刀面与切削平面之间的夹角,表示主后刀面倾斜的程度。
(3)主偏角κτ:是主切削刃在基面上的投影与进给方向之间的夹角;(4)副偏角κτˊ:是副切削刃在基面上的投影与进给运动方向之间的夹角;(5)刃倾角λ0:是主切削刃与基面之间的夹角。
刀具主要角度的选择原则:前角。
增大前角,切屑易流出,可使切削力减少,切削很轻快。
但前角过大,刀刃强度降低。
后角。
增大后角可减少刀具后刀面与工件之间的摩擦。
但后角过大,刀刃强度降低。
主偏角。
在切削深度和进给量不变的情况下,增大主偏角,可使切削力沿工件轴向力加大,径向力减小,有利于加工细长轴并减小振动。
刃倾角。
增大刃倾角有利于承受冲击。
刃倾角为正值时,切屑向待加工方向流动;刃倾角为负值时,切屑向已加工面方向流动。
通常,精车时取0~4°;粗图 正交平面参考系图 车削刀具几何角度加工时取-10°~-5°。
3.3 刀具常用材料刀具切削部分的材料应具备如下性能:高的硬度,足够的强度和韧性,高的耐磨性,高的耐热性,良好的加工工艺性。
刀具材料:高速钢(俗称白钢刀条),硬质合金,陶瓷,立方氮化硼(CBN),聚晶金刚石(PCD)。
数控机床上常用高速钢刀具和硬质合金刀具。
材料越硬就越脆,越耐磨,在使用时需要高速平稳,防止冲击和振动。
碳素工具钢和合金工具钢的红硬性较差,已很少使用。
3.3.1高速钢高合金工具钢,具有良好的工艺性,能制成复杂的刀具。
高速钢刀具使用前需要使用者自行刃磨,因此,适合于特殊需要的非标准刀具。
3.3.2 硬质合金比高速钢硬得多。
允许的切削速度比高速钢高4~10倍,切削速度可达100m/min以上。
国际标准化组织规定,切削加工用硬质合金按其排屑类型和被加工材料分为三大类:K类、P类、和M类,类似于国家标准中的YG类、YT类、和YW类。
根据被加工材料及适用的加工条件,每大类中又分为若干组,用两位阿拉伯数字表示,每类中组号数字越大,其耐磨性越低、韧性越高,因此,组号数字越大,可选用越大的进给量和切削深度,而切削速度则应越小。
从另一个方面讲,组号数字越小,硬度越高,韧性越差,适用于精加工;反之,组号数字越大,适用于粗加工。