分形曲线与面积计算

合集下载

Koch分形雪花图的面积计算

Koch分形雪花图的面积计算

Koch 分形雪花图的面积计算一、问题叙述分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似。

在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。

而本文我们要分析的是Koch 分形雪花图,包含以下三个问题:1.描述Koch 分形雪花2.证明Koch 分形雪花图K n 的边数为n 1L 34n -=⨯3.求Koch 分形雪花图的面积(数据),求n n lim A rea (K )→∞二、问题分析在分析Koch 分形雪花图之前,我们首先介绍Koch 分形曲线。

Koch 分形曲线的绘制原理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图2.1所示:图2.1 对一条线段进行第一次Koch 分形然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。

这种迭代继续进行下去可以形成Koch 分形曲线。

在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。

设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1,Q2,Q3以产生第一次迭代图形。

显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理Q Q 13经过正交变换而得到Q Q 12 。

算法如下: (1)Q1P 1+P P Q P 1+P P /3;←←(2-1)/3;32(2-1)(2)TQ 2Q 1+Q 3-Q A ←⨯(1); (3)P 5P 2P 2Q1P 3Q P Q 3←←←←;;2;4。

在算法中,用正交矩阵A 构造正交变换,其功能作用是对向量作旋转,使之成为长度不变的另一向量。

在绘制Koch 曲线的过程中,取旋转的角度为3π,则正交矩阵A 应取为:c o s ()s in ()33A =s in ()c o s ()33ππππ⎛⎫- ⎪⎪⎪⎪⎝⎭1.Koch 分形雪花的描述Koch 分形雪花的原始图形是等边三角形,它是由三条相等的线段围成的三角形。

Koch分形雪花图地面积计算

Koch分形雪花图地面积计算

Koch 分形雪花图的面积计算一、问题叙述分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似。

在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。

而本文我们要分析的是Koch 分形雪花图,包含以下三个问题:1.描述Koch 分形雪花2.证明Koch 分形雪花图K n 的边数为n 1L 34n -=⨯3.求Koch 分形雪花图的面积(数据),求n n lim Area(K )→∞二、问题分析在分析Koch 分形雪花图之前,我们首先介绍Koch 分形曲线。

Koch 分形曲线的绘制原理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图2.1所示:图2.1 对一条线段进行第一次Koch 分形然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。

这种迭代继续进行下去可以形成Koch 分形曲线。

在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。

设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1,Q2,Q3以产生第一次迭代图形。

显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理Q Q 13经过正交变换而得到Q Q 12 。

算法如下: (1)Q1P1+P P Q P1+P P /3;←←(2-1)/3;32(2-1)(2)T Q2Q1+Q3-Q A ←⨯(1); (3)P5P2P2Q 1P3Q P Q3←←←←;;2;4。

在算法中,用正交矩阵A 构造正交变换,其功能作用是对向量作旋转,使之成为长度不变的另一向量。

在绘制Koch 曲线的过程中,取旋转的角度为3π,则正交矩阵A 应取为: cos()sin()33A=sin()cos()33ππππ⎛⎫- ⎪⎪ ⎪ ⎪⎝⎭ 1.Koch 分形雪花的描述Koch 分形雪花的原始图形是等边三角形,它是由三条相等的线段围成的三角形。

分形曲线与面积计算-精品

分形曲线与面积计算-精品

sinx1 cos x2
cos sin
Asin
cos

(1, 0)
1

0


cos sin


(0, 1)

0 sin

1

cos

5/11
MATLAB代码
function koch0(P,N)
end
plot(P(:,1),P(:,2)),axis off axis image
6/11
Kn的边数: Kn的周长:
Sn 4n
Ln

1 3n
4n
L0
Kn的维数: Dnln4/ln31.2618
Dn

lnN
/
ln
1

相邻两次的边数比和边长比
参考资料: 分形论——奇异 性探索,作者:林鸿溢
第 k 条边: x y((tt)) ((1 1 tt))x yk k ttyx kk 11,t(0,1)
1
L kyd 0 x [1 ( t)yk tk y 1](x k 1x k)dt
1 2(xk1xk)(ykyk1)
x L k
9/11
面积计算的数学实验报告(三选一,或题材自选)
一、 Koch分形雪花 1.算法描述Koch分形雪花
2.证明Koch分形雪花图 Kn 的边数为
Ln 34n1
3.求Koch分形雪花图 Kn 的面积
ln im Are(aKn)
10/11
二、竞赛题的实验设 (第一届全国大学生数学夏令营第6题 )
课外作业:完成面积计算的 数学实验报告(电子文档)

分形几何

分形几何

11
分形几何
12
分形几何
上图是曼德布洛特集最常见的表现形式,它给我
们提供了一种理解周围世界的粗糙程度的方式。
这一以数学家贝努瓦· 曼德布洛特命名的理论观察
到,不管是在物理、生物和经济等各种领域中的
许多复杂现象,都可以“以严格而有力的定量形
式逼近。”
13
分形几何
14
分形几何
15
分形几何
16
4
分形几何
2. 科赫曲线 给定线段AB,科赫曲线可以由以下步骤生成:
① 将线段分成三等份(AC,CD,DB); ② 以CD为底,向外(内外随意)画一个等边三角 形DMC ;
③ 将线段CD移去;
④ 分别对AC,CM,MD,DB重复1~3。
5
分形几何
6
分形几何
7
分形几何
3. 康托三分集合 取一条长度为1的直线段E0,将它三等分,去掉中间一 段,剩下两段记为E1,将剩下的两段再分别三等分,各 去掉中间一段,剩下更短的四段记为E2,……,将这样 的操作一直继续下去,直至无穷,由于在不断分割舍弃
|z2| 的等高线地图。
27
分形几何
f(z) = |z2|
28
分形几何
可以看到,这一操作让模的变化更剧烈了,
等高线变得更加密集了。外面浩瀚的蓝色空 间,就对应着那些模已经相当大了的复数。
29
分形几何
如果对上图中的每个点再加上某个数,比如 0.3 , 那么整个图会怎样变化呢?
对于模相同的复数来说,给实数部分加上 0.3 , 这对实数部分本来就较大的数影响会更大一些。 因此,上图将会变得更扁,整个图形会在水平方 向上拉伸。这也就是 f(z) = |z2 + 0.3| 的等高线地 形图。见下图(为便于观察,对图像进行了旋 转)。

分形理论在无机材料中的应用

分形理论在无机材料中的应用

分形理论在材料中的应用1 分形理论简介Fractal 一词,源于拉丁文Fractus。

原译为“不规则的”或“破碎的”,但通常把它译为“分形”。

近年来,分形一直是国内外有关学者们的研究热点,它的应用性研究逐渐被渗透至物理、数学、化学、生物、医药、地震、冶金,甚至哲学、音乐与绘画等各个领域。

1. 1 分形理论的提出众所周知,普通的几何对象具有整数维数。

例如:点为零维,线为一维,面为二维,立方体为三维。

然而,自然界中真实的线、面并不总是光滑的,许多物体的形状也是极不规则的,例如连绵起伏的山脉轮廓线、曲折蜿蜒的江河川流、变幻无常的浮云,以及令人眼花缭乱的繁星等等。

同样,这种现象在材料科学中也很普遍,如:高分子的凝聚体结构、材料固体裂纹、电化学沉积等等,这些都是难于用欧氏几何学加以描述的。

对于诸如具有此类几何结构的体系,如何进行定量表征呢? 随着人类对客观世界认识的逐步深入,以及科学技术的不断进步,象传统数学那样把不规则的物体形状加以规则化,然后进行处理的做法已不能再令人满意了。

于是,在七十年代中期,分数维几何学应运而生[1 ] 。

整数与分数维集合的几何测度理论,早在本世纪初已由纯数学家们发展起来。

但谈到分数维几何学的创始人,则首先当推法国数学家曼德尔布罗,他在总结了自然界中的非规整几何图形后[2 ] ,于1975 年第一次提出分形这个概念。

此后,分形在不同学科领域中被广泛地应用起来; 直至1982 年德尔布罗出版了他的专著《The Fractal Geomet ry of Nature》则表明分形理论已初步形成[3 ] 。

1. 2 自相似性分形结构的本质特征是自相似性或自仿射性。

自相似性是指:把考察的对象的一部分沿各个方向以相同比例放大后,其形态与整体相同或相似。

简单地说,就是局部是整体成比例缩小的性质。

形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的(统计意义) ,而从相片上也无法断定所用相机的倍数,故又称标度不变性或全息性。

正三角形的两种分形的面积和周长

正三角形的两种分形的面积和周长

正三角形的两种分形的面积和周长四川省德阳中学(618000) 刘桂林在华师大版数学八年级(下)第85页上有正三角形的两种分形。

学生在阅读这部分材料时,对图形的自相似现象发生了浓厚的兴趣,提出了较多问题。

尤其希望知道等边三角形的外部相似图形(最后得雪花曲线)和内部自相似图形的周长和面积。

下面就此问题作出探讨。

1、将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形。

然后以其两腰代替底边。

再将六角形的每边三等分,重复上述作法。

如此继续下去,就得到雪花曲线(如下图所示)。

下面求雪花曲线所围图形的面积和雪花曲线的周长。

图1解:①设正三角形的边长为a,原正三角形的面积为2213224S a a a ==,第一次分形后的总面积为1S ,第二次分形后的总面积为2S ,…,第n 次分形后的总面积为n S ,则有: 214221126332212111343()34913443()()34913443()()34913443()()349n n n n n n S S S S S S S S S S S S S S S S S S S S ---=+=+⨯=+⨯=+⨯=+⨯=+⨯=+⨯=+⨯因为 …… 2334444[()()()]49999n n S S S =+++++所以 …2244[1()]399441934[1()]593343[1()]55948343[()]559n n n n S S S S a a ⨯-=+-=+-=+-=-所以雪花曲线所围图形的面积为 228lim 5n n S →∞== .②设正三角形的边长为a ,原正三角形的周长为3a ,第一次分形后的周长为1C ,第二次分形后的周长为2C ,…,第n 次分形后的周长为n C ,则有:1222123332111114333331443()()3331443()()333144443()()3()()33333n n n n n n n C a a a C C a a C C a a C C a a a a ----=+==+⨯==+⨯==+⨯=+=……由分形后的周长通项公式4()33n n C a =可知,数列{}n C 为一个无穷递增数列,所以雪花曲线的周长为无穷大。

分形几何

分形几何

第3章 英国的海岸线有多长海岸线的长度问题,按传统科学方法来考虑是极其简单的.可是美籍法国数学家曼德尔布罗特1967年在国际权威的美国《科学》杂志上发表的论文《英国的海岸线有多长?统计自相似性与分数维数》中,得出的答案却令人惊异:英国的海岸线长度是不确定的!它依赖于测量时所用的尺度.原来,海岸线由于海水长年的冲涮和陆地自身的运动,形成了大大小小的海湾和海岬,弯弯曲曲极不规则.测量其长度时如以公里为单位,则几米到几百米的弯曲就会被忽略不能计入在内,设此时得长度L 1;如改用米作单位,结果上面忽略了的弯曲都可计入,但仍有几厘米、几十厘米的弯曲被忽略, 此时得出的长度L 2>L 1;同样的,用厘米作单位,所得长度L 3>L 2>L 1,….采用的单位越小,计入的弯曲就越多,海岸线长度就越大(图19).可以设想,用分子、原子量级的尺度为单位时,测得的长度将是一个天文数字.这虽然没有什么实际意义,但说明随测量单位变得无穷小,海岸线长度会变得无穷大,因而是不确定的.所以长度已不是海岸线的最好的定量特征,为了描述海岸线的特点,需要寻找另外的参量.图19海岸线长度问题,曼德尔布罗特最初是在英国科学家理查逊(L .F .richardson )的一篇鲜为人知的文章中遇到的.这个问题引起他极大的兴趣,并进行了潜心的研究.他独具慧眼地发现了1961年理查逊得出的边界长度的经验公式 L (r)= Kr 1-a 中的a 就可以作为描述海岸线特征的这种参量,他称之为“量规维数”,这就是著名的分数维数之一.这一问题的研究,成为曼德尔布罗特思想的转折点,分形概念从这里萌芽生长,使他最终把一个世纪以来被传统数学视为“病态的”、“怪物类型”的数学对象,——康托尔三分集、科赫曲线等统一到一个崭新的几何体系中,让一门新的数学分支——分形几何学跻身于现代数学之林.例 A 、B 两国有一段共同的陆地边界线,并向B 国呈弧形弯曲(图20). 横跨边界线有一战略高地原属两国所共有. 20世纪80年代,A 国对边界重新进行测量,测得的边界长度比原记载长度大,按新测长度这块高地完全落在A 国境内. 于是A 国向B国提出,要求将高地全部归属A 国,引起两国争端. 为维护该地区和平,联合国派员往A 、B 两国斡旋,请你为联合国特使设计一调解方案.方案:向两国指出,国境线是一种分形曲线,用传统测量方法无法得到确定的长度,随着测量单位的减小,测得的长度会增大. A 国新测得的长度比原记载长度大,正是她测量时采用了较原测量单位更小的码尺. 所以一方面可用分形几何理论向两国解释,另一方面还可同两国到边界进行测量演示. 习题三1.为什么长度已不是海岸线的特征量?2.为什么在测量海岸线长度时,随测量单位的减小,海岸线长度会越来越大?图20研究性课题:科赫雪花曲线的周长与面积1.台湾1995年联考试题:在如下的雪花曲线T 1,T 2,…,T n ,…中(图21),求第n 条雪花曲线的长度.为本课题研究的需要,增加一个问题:并求面积,且可设原三角形T 1的周长为L ,面积为S.(周长序列:L ,34L ,(34)2 L ,…,(34)n-1L ,…. 面积序列:S ,(1+43×94) S ,(1+43×94+43×94×94)S ,…, {1+43[94+(94)2 + … + (94)n -1]}S ,….) 2.考察科赫雪花曲线的周长与面积的关系:⑴取L =3cm ,用CZ 1206型计算器计算n = 5,9,17时L n 和S n 的值.(L 5=9.48cm ,L 9=29.97cm ,L 17=299.32cm ;S 5=0.6827cm2,S 9=0.6924cm2,S 17=0.6928cm2.显然,随n 的无限增大,(34)n -1×3也无穷大, {1+43[94+(94)2+…+(94)n -1]} 43×12 =(1+43×94194-)①×43×12=0.6928(cm 2 ) ) (2)从以上计算得出的数值或数值变化的趋势你发现什么结论?(科赫雪花曲线周长趋于无穷大而面积为定值.)3.设正三角形与圆的周长分别为L 和C ,探索各自的面积S 与周长的关系并叙述出来.(S 正三角形=363L 2 ,S 圆 =241πC 2,它们的面积与周长是一种正比例关系,随周长的增大面积也增大.) 将2、3中的结论相比较,体会曼德尔布罗特为什么把科赫雪花曲线作为海岸线的数学模型.4.撰写研究小论文:课题:科赫雪花曲线的周长与面积.提纲:⑴问题的提出:科赫雪花曲线周长与面积的探求,发现它周长趋于无穷大而面积为定值.⑵问题的研究:寻求正三角形与圆的周长与面积关系的结论,将结论与⑴中结论比较,发现科赫雪花曲线与欧氏几何图形不同的性质.⑶研究结论的应用:谈谈对用科赫雪花曲线作为海岸线模型的认识.(说明:建议用小组合作的形式撰写. )① 等比数列求和公式S n =q q a n --1)1(1,当n 为无穷大,│q │<1时S =q a -11图21。

不规则图形的面积怎么算

不规则图形的面积怎么算

不规则图形的面积怎么算
面积计算方法:1、曲线拟合法,这个方法是大学学的一个比较高级的方法,用曲线拟合边界,然后用积分求面积;2、蒙特卡洛法,将物体放在规则图形上,随机撒点,计算落在目标物体上的概率,然后乘规则图形的已知面积;3、分割法,对于不规则的形状,我们可以把物体分割成若干规则图形,不规则区域用规则图形近似。

常见面积定理
1.一个图形的面积等于它的各部分面积的和;
2.两个全等图形的面积相等;
3.等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;
4.等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;
5.相似三角形的面积比等于相似比的平方;
6.等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Koch分形曲线与面积计算
分形图形的基本特征 正交矩阵与正交变换 Koch分形曲线 Koch分形雪花面积计算
1/11
分形概念始现于数学家曼德勃罗 1967 年发表于美国《科学》杂志一篇论文
“英国海岸线有多长” 。
分形(Fractal)图形最基本特征是自相 似性,即某一对象的局部与整体在形 态、功能、信息、时间、空间等方面 具有相似性。
end
plot(P(:,1),P(:,2)),axis off axis image
6/11
Kn的边数: Kn的周长:
Sn 4n
Ln
1 3n
4n
L0
Kn的维数: Dn ln 4 / ln 3 1.2618
1
Dn ln N / ln
相邻两次的边数比和边长比
参考资料: 分形论——奇异 性探索,作者:林鸿溢
2.证明Koch分形雪花图 Kn 的边数为
Ln 3 4n1
3.求Koch分形雪花图 Kn 的面积
lim
n
Area(
K
n
)
10/11
二、竞赛题的实验设计 (第一届全国大学生数学夏令营第6题 )
设P1为边长等于1的等边三角形,P2是由P1之各边3等 分点连接成的六边形,······,Pn+1是由Pn之各边3等分 点连成的多边形
1 cos
5/11
MATLAB代码
function koch0(P,N)
if nargin==0,P=[0 0;1 0];N=3;end n=max(size(P))-1; A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)];
试证Pn的边数为:
Ln 3 2n1
求 Pn 所围面积和面积数列的极限
lim
n
Area
(
Pn
)
11/11
三、矿区面积计算
在某矿区的地图上建立 平面坐标系,设定矿区 最西南处为坐标原点, 取自西向东方向为X轴 正向,自南向北方向为 Y轴正向。试计算面积
同类问题: 杭州西湖面积、 洞庭湖面积、 ·······················
12/11
课外作业:完成面积计算的 数学实验报告(电子文档)
格林公式导出的面积计算方法
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
取 P y Q x
区域 D 的面积公式 A 1 ydx xdy 2L
设 D 是平面多边形, 顶点为:
Pk ( xk , yk ) (k 1,2, , n)
第 k 条边:
Lk ydx xdy xk yk1 xk1 yk (k 1,2, , n)
多边形面积计算公式:
An
1 2
n k 1
xk xk1
yk yk 1
MATLAB函数: polyarea(x,y)
9/11
面积计算的数学实验报告(三选一,或题材自选)
一、 Koch分形雪花 1.算法描述Koch分形雪花
x(t) y(t )
(1 (1
t t
) )
xk yk
txk 1 tyk 1
,
t
(0,1)
1
Lk ydx 0 [(1 t) yk tyk1]( xk1 xk )dt
1 2
( xk1
xk
)( yk
yk1 )
Lk
xdy
[(1
01
1
t ) xk
txk1]( yk1
yk
)dt
2 ( yk1 yk )(xk xk1 )
Koch分形曲线
Koch岛
基本算法
Q2
P1
P2
P1 Q1
Q3 P2
(1) Q1 ← P1 + (P2-P1)/3; Q3 ← P1 + 2(P2-P1)/3; (2) Q2 ← Q1 + (Q3-Q1)×AT; (3) P5 ← P2; P2 ← Q1; P3 ← Q2; P4 ← Q3.
A是正交矩阵.
cos / 3 sin / 3
A sin / 3
cos
/
3
功能:对向量做旋转变换.
x1
x2
1 x1 0
x2
0 1
x1
x2
cos
x1
sin
sin
x2 cos
cos sin
sin x1
cos
x2
cos sin
A sin
cos
(1, 0)
1 0
cos
for k=1:N
p1=P(1:n,:);p2=P(2:n+1,:); d=(p2-p1)/3; q1=p1+d;q3=p1+2*d;q2=q1+d*A'; n=4*n;II=1:4:n-3; P(II,:)=p1;P(II+4,:)=p2; P(II+1,:)=q1;P(II+2,:)=q2;P(II+3,:)=q3;
在自相似的图形中,局部只是整 体的缩影,而整体则是局部的放 大。适当的放大或缩小几何尺寸, 整个结构并不改变。
Mandelbrot 1924- 2010
2/11
Koch分形曲线
算法描述:将一条直线段三等分,删除中间三分之一 部分,用一等边三角形的腰代替,形成四条线段的折 线.每一线段重复以上操作,迭代产生曲线 Kn
相关文档
最新文档