第四章-纳米压印技术
纳米压印技术

纳米压印技术纳米加工技术—纳米压印摘要:半导体器件的特征尺寸必需急剧减小才能满足集成电路迅速发展的需要,采用纳米加工技术可制备出纳米量级的图案及器件。
纳米压印作为纳米加工技术中具有较大潜力的一种工艺,采用非光学技术手段实现纳米结构图形的转移,有望打破传统光刻技术的分辨率极限。
本文从原理入手,介绍了纳米压印技术的分类、发展及应用。
文中所述内容有助于快速理解纳米压印技术的整体概况,对进一步改善纳米压印工艺的性能有着较重要的意义。
1 引言21世纪以来,由半导体微电子技术引发的微型化革命进入了一个新的时代,即纳米技术时代[1]。
纳米技术指的是制备和应用纳米量级(100nm以下)的结构及器件。
纳米尺度的材料性质与宏观尺度的大为不同。
比如块状金的熔融温度为1063℃,而2nm-3nm的纳米金粒子的熔融温度为130℃-140℃等。
功能结构的纳米化不仅节约了能源和材料,还造就了现代知识经济的物质基础。
纳米技术依赖于纳米尺度的功能结构与器件,而实现结构纳米化的基础是先进的纳米加工技术。
在过去几十年的发展中,纳米加工技术不仅促进了集成电路的迅速发展,实现了器件的高集成度,还可以制备分子量级的传感器操纵单个分子和原子等等。
纳米加工技术是人类认识学习微观世界的工具,通过理解这一技术可以帮助我们更好认识纳米技术以及纳米技术支撑的现代高科技产业。
纳米加工技术与传统加工技术的主要区别在于利用该工艺形成的器件结构本身的尺寸在纳米量级。
可以分为两大类[1]:一类是自上而下(top-down)的加工方式,即复杂的微观结构由平面衬底表面逐层建造形成,也可以理解为在已经存在材料的基础上进行特定加工实现纳米结构和器件。
目前发展较为成熟的纳米加工技术,如光刻(平面工艺)、纳米压印(模型工艺)、探针工艺等都属于此类加工技术。
此类加工方式大多涉及到某种方式的光刻制作图形与图形转移技术,可加工的结构尺寸受限于加工工具的能力。
传统的纳米加工工艺相当成熟,可基本满足各种微观结构的研究与生产需要。
机械制造与自动化专业《纳米压印技术》

基板
硅晶园
模版层沉积
二氧化硅 硅晶园
光阻
模
光阻涂覆/烘烤版硅晶园制来自备流程
电子束曝光
硅晶园
RIE蚀刻 光阻去除
硅晶园 硅晶园
二热压、印热的优压点及印存在技的术问题
优点:热压印具有方法灵活、本钱低廉和生物相容的特点,并且可以得到高分辨
率、高深宽比结构。
缺点:是需要高温、高压、且即使在高温、高压很长时间,对于有的图案,仍然
支撑滚轴
ETFE模板
涂胶滚轴
紫外光源 支撑滚轴
柔性底板 支撑滚轴
液体压印胶
紫外光源
刚性底板
目前,许多兴旺国家都把纳米压印技术列入重点开展领域,很多公司都在 投入大量人力、物力开展纳米压印设备制造,模板制造以及纳米压印的应 用的。纳米压印技术在虽然起步很晚,但进展非常迅速,相信随着社会的 开展和进步,我国的在纳米压印技术上会更上一层楼。
硅晶圆 PMMA涂覆/烘烤
置入模版
对准/热压 脫模
光阻蚀刻 硅蚀刻
光阻去除
二、热压印技术
热压印关键工艺:模版的制备 压模的制作通常用高分辨电子束刻印 术制备,压模通常用二氧化硅、氮化 硅、金刚石等材料制备。具有:高硬度 、大压缩强度、大抗拉强度,可以减 少压模的变形和磨损;高热导率和低热 膨胀系数,使得在加热过程中压模的 热变形很小。
紫外压印工艺过程 准备纳米图案的模版,UV-NIL的模版材料必须使用可以让 紫外线穿透的石英; 硅基板涂布一层低粘度、对UV感光的液态高分子光刻胶; 在模版和基板对准充成后,将模版压入光刻胶层并且照射 紫外光使光刻胶发生聚合反响硬化成形; 然后脱模、进行刻蚀基板上残留的光刻胶便完成整个UVNIL。
硅晶园 底层涂覆/烘烤 紫外线硬化型 高分子 置入 透明模版
纳米压印技术进展及应用

纳米压印技术进展及应用一、概述纳米压印技术,作为一种前沿的微纳加工技术,近年来在科研与工业界引起了广泛的关注。
该技术通过机械转移的方式,将模板上的微纳结构高精度地复制到待加工材料上,从而实现了对材料表面的纳米级图案化。
与传统的光刻技术相比,纳米压印技术不仅具有超高的分辨率,而且能够大幅度降低加工成本,提高生产效率,因此在微电子、生物医学、光学等众多领域展现出了广阔的应用前景。
纳米压印技术的发展历程可追溯至20世纪90年代中期,由美国普林斯顿大学的_______教授首次提出。
随着研究的深入和技术的不断完善,纳米压印技术已经逐渐从实验室走向了产业化。
纳米压印技术已经能够实现对各种材料的微纳加工,包括硅、金属、聚合物等,并且在加工精度和效率方面均取得了显著的进步。
在应用领域方面,纳米压印技术已经在半导体器件制造、生物医学传感器、光学元件制造等多个领域取得了成功的应用案例。
在半导体器件制造中,纳米压印技术可用于制造微处理器、存储器等微纳器件,提高器件的性能和可靠性;在生物医学领域,纳米压印技术可用于制造仿生材料、生物传感器等,为疾病的诊断和治疗提供新的手段;在光学领域,纳米压印技术可用于制造微纳透镜、光纤等光学元件,提高光学系统的性能。
纳米压印技术作为一种新型的微纳加工技术,具有广泛的应用前景和巨大的市场潜力。
随着技术的不断进步和应用领域的不断扩展,纳米压印技术将在未来发挥更加重要的作用,推动科技和工业的快速发展。
1. 纳米压印技术的定义与基本原理纳米压印技术,作为一种前沿的微纳加工技术,正逐渐在微电子、材料科学等领域展现出其独特的优势。
该技术通过机械转移的方式,实现了对纳米尺度图案或结构的高效、精确复制,为制备具有纳米特征的结构和器件提供了强有力的手段。
纳米压印技术的基本原理在于利用压力和热力学效应,将具有纳米结构的模具上的图案转移到待加工材料表面。
制备一个具有所需纳米结构的模具,这一步骤通常依赖于电子束或光刻技术等高精度加工方法。
纳米压印技术

摘要半导体加工几十年里一直采用光学光刻技术实现图形转移,最先进的浸润式光学光刻在45 nm节点已经形成产能,然而,由于光学光刻技术固有的限制,已难以满足半导体产业继续沿着摩尔定律快速发展。
在下一代图形转移技术中,电子束直写、X射线曝光和纳米压印技术占有重要地位。
其中纳米压印技术具有产量高、成本低和工艺简单的优点,是纳米尺寸电子器件的重要制作技术。
介绍了传统纳米压印技术以及纳米压印技术的新进展,如热塑纳米压印技术、紫外固化纳米压印技术、微接触纳米压印技术等。
关键词:纳米压印;气压辅助压印;激光辅助压印;滚轴式压印AbtractTransfer of graphics is achived by oplical lithography for several decades in semiconductorprocess. The prodution capacity of 45 nm node has been formed. But now semiconductor industry is difficult to be developed according toMoore law because of the inherent limitations of oplical lithograhy. Nowelectron - beam directwriting, X - ray exposure and nanoimprint technology are the main technologies fornext generation graphics transfer technology. Nanoimprint technology has the advantages of high yield, lowcost and simple process. Introduce the traditional nanoimprint technology and its development, includinghot embossing lithography technology, ultraviloet nanoimprint,micro - contact nanoimprint.Key words:Nanoimprint lithography;Pressure-assisted nanoimprint;Laser-assisted nanoimprint;Roller-type nanoimprint- i -目录第1章绪论 (1)第2章纳米压印的技术方法..........................错误!未定义书签。
纳米压印技术PPT模板

4.3.3压印胶中的缺 陷
4纳米压印 结果分析
4.4正交法对纳米压印 工艺的优化
壹
4.4.1正交法的意义与原 理
贰
4.4.2热压印工艺中正交 法的因子和水平
叁
4.4.3正交法对工艺的优 化研究
4纳米压印结果分析
4.5石英模具室温压印 hybrane
4.5.1hy brane胶
介绍
4.5.2hy brane胶
印印章的制备
3章纳米印 制备新方法
3.6旋涂法制备pdms 印章
3.6.1旋涂法制 备pdms印章的 原理和工艺流程
3.6.2旋涂法制 备pdms印章的
具体实例
3.6.3旋涂法制 备pdms印章的
实验结果
3章纳米印制备新方法 3.7热压法大规模制备pdms印章的新方法
9,300 million
单击此处添加标题
2
7.7.2纳米压印技术加工探针
8
纳 米 压 景印 发 展 前
8纳米压印发展前景
8.1纳米压印技术面临的挑战 8.1.1纳米压印自身技术面临的挑战
8.1.2纳米压印技术面临的其他技术挑战 8.2纳米压印技术的发展前景
8.2.1纳米压印技术的创新技术 8.2.2纳米压印技术的研究方向 8.2.3纳米压印技术展望
202x
纳米压印技术
演讲人
2 0 2 x - 11 - 11
目录
01. 1绪论
02. 2纳米压印工艺概述
03. 3章纳米印制备新方法 04. 4纳米压印结果分析
05. 5纳米压印理论
06. 6纳米压印仿真
07. 7纳米压印技术的应用 08. 8纳米压印发展前景
1
绪 论
纳米压印技术

2.3 软模板压印(SCIL)
软模板压印技术主要是为了解决在大面积基底 上使用硬质石英模板实现大面积均匀压印这一问题
由于使用很低的压力,很难在 大面积基底上实现均匀的接触
采用常规(PDMS)软模在大面积的直接接触过程中 也需要一定的压力去产生形变来配合基底的 不平整表面,均匀接触和压力下模板的变形成为 一种不可调和的矛盾
1.3 关键工艺步骤
• 1.模板制造 • 2.压印过程(模板处理,加压,脱模过 程) • 3.图形转移过程 • 4.相关材料研究(模板材料,衬底材料, 纳米压印胶)
2. 纳米压印工艺
2.1 热压印
• 首先在某一衬底 上涂一层胶,然 后在一定温度, 一定压力下,把 模板用机械力压 在胶上,降温后 把模板脱出,形 成所需图案。
2.4 逆压印技术
把光刻胶涂在模板上,然后在压在衬底 上利用这种方法非常容易实现多层压印 2.5 滚筒压印技术 把压印技术和滚轴印刷技术结合起来, 实现几平方米面积高产量压印
2. 纳米压印技术应用领域及 前景
应用领域 1.光刻技术替代者 2.集成电路领域 3.光学领域
制作高密度亚波长光栅,应用在金属起偏器上; 制备光子晶体等
4.存储领域
希捷公司采用热压印技术制备高密度光盘位 存储器
5.生物领域
目前,许多发达国家都把纳米压印 技术列入重点发展领域,很多公司都 在投入大量人力、物力开展纳米压印 设备制造,模板制造以及纳米压印的 应用的。纳米压印技术在中国虽然起 步很晚,但进展非常迅速,相信随着 社会的发展和进步,我国的在纳米压 印技术上会更上一层楼。
纳米压印技术
主要内容
1.纳米压印技术简介
1.1 压印技术 1.2 纳米压印技术 1.3 纳米压印关键工艺步骤 2.纳米压印工艺 2.1 热压印技术 2.2 紫外光固化压印(步进-闪光工艺) 2.3 软模板压印技术(SCIL) 2.4 逆压印技术 2.5 滚筒压印技术 3.纳米压印技术应用领域及前景
纳米压印技术

①
③
微 接 触
②
纳米压印技术 以上
• 首先在衬底上涂上一层薄层热塑形高分子材料(如PMMA)。升温并达到 此热塑性材料的玻璃化温度Tg(Glass transistion temperature)之上。热 塑性材料在高弹态下,黏度降低,流动性增强,随后将具有纳米尺度的 模具压在上面,并施加适当的压力。热塑性材料会填充模具中的空腔, 在此过程中,热塑性材料的厚度应较模具的空腔高度要大,从而避免模 具与衬底的直接接触而造成损伤。模压过程结束后,温度降低使热塑性 材料固化,因而能具有与模具重合的图形。随后移去模具,并进行各相 异性刻蚀去除残留的聚合物。接下来进行图形转移。图形转移可以采用 刻蚀或者剥离的方法。刻蚀技术以热塑性材料为掩膜,对其下面的衬底 进行各向异性刻蚀,从而得到相应的图形。剥离工艺先在表面镀一层金 属,然后用有机溶剂溶解掉聚合物,随之热塑性材料上的金属也将被剥 离,从而在衬底上有金属作为掩膜,随后再进行刻蚀得到图形。
模具 高分子热塑性材料 ①衬底 ③
热 塑
②
④
填充模具
各向异性刻蚀
紫外固化——S-FIL (Step-Flash Imprint Lithography)
• 采用对紫外透明的石英玻璃(硬模)或PDMS(软模),光阻胶 采用低粘度、光固化的单体溶液。先将低粘度的单体溶液滴在要 压印的衬底上,结合微电子工艺,薄膜的淀积可以采用旋胶覆盖 的方法,用很低的压力将模版压到晶圆上,使液态分散开并填充 模版中的空腔。透过模具的紫外曝光促使压印区域的聚合物发生 聚合和固化成型。最后刻蚀残留层和进行图形转移,得到高深宽 比的结构。最后的脱模和图形转移过程同热压工艺类似。
纳米压印技术
ห้องสมุดไป่ตู้念
纳米压印技术

高保真度
几乎无差别的将掩模板上的图形转移到wafer上.
纳米压印可望成为一种工业化生产技术,从根本上解决各种纳米器件
生产。
2020/3/13
7
微纳科学技术
一.为什么研究纳米压印技术
应用领域:
半导体加工 作量子磁碟 DNA 电泳芯片 GaAs 光检测器 波导起偏器 硅场效应管 2020/3/13
纳米压印技术
(Nanoimprint Lithography)
微纳加工技术及微纳器件
段智勇 2020/3/13
微纳科学技术
主要内容
1. 为什么要研究纳米压印技术.
2. 纳米压印技术实现的方式.
3. 纳米压印技术亟待解决的问题.
4. 课题组研究工作及进展.2020/3132微纳科学技术
一.为什么研究纳米压印技术
2. 图形转移(pattern transfer)
在一块基片(通常是硅片) 上“涂”( spin :旋覆) 上一层聚合物(如 PMMA ,聚甲基丙烯酸甲脂)。
已刻有目标纳米图形的硬“印章”(如二氧化硅“图章”) 在一定的 温度(必须高于聚合物“软化”温度(glass - transition temperature) ,和压力下去“压印”(imprint ) PMMA 涂层。
2020/3/13
Appl. Phys. Lett., 67 (21), 3114 (1995).
14
微纳科学技术
二.纳米压印技术实现方式
超声纳米压印技术
热压印的改进,利用超声波加热介质聚合物。 中国台湾清华大学首次提出。
2020/3/13
15
微纳科学技术
二.纳米压印技术实现方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
微米纳米加工技术
1.2 纳米压印技术
普 林 士 顿 大 学 : Stephen Y.Chou 教授,将一具有纳米图
第三章:纳米压印技术
来的模版以机械力(高温、高压)
在涂有高分子材料的硅基板上 等比例压印复制纳米图案. 压印示意图 优点:其加工分辨力只与模版图案的尺寸有关,而不受光学 光刻的最短曝光波长的物理限制。 MicroNano System Research Center
长的模板材料作为大规模生产,研究人员研究更具灵活性和适应性
的材料作为模板材料。一般通过实验来测试这些通过纳米加工技术 得到的模板的耐用性。
MicroNano System Research Center
12
微米纳米加工技术
1)硬度: 分别进行不同的硬度试验测试,包括硬度划痕试验
第三章:纳米压印技术
第三章:纳米压印技术
MicroNano System Research Center
电沉积Ni 模版
11
微米纳米加工技术
模板材料的选择:
第三章:纳米压印技术
选择模板材料的关键在于它们的机械特性。包括硬度,热膨胀
系数和导热性。通常要求模板材料硬度和拉伸强度高,热膨胀系数
小,抗腐蚀性好,确保模版耐磨,变形小,从而保证其压印精度和 使用寿命。 由于不同压印工艺对模板材料的要求不同,为了寻找使用周期更
微米纳米技术
纳米压印技术 2015.05
MicroNano System Research Center
微米纳米加工技术
第三章:纳米压印技术
MicroNano System Research Center
2
微米纳米加工技术
第三章:纳米压印技术
普林斯顿大学电机系华裔教授,
1978年从中国科技大学物理系毕
MicroNano System Research Center
3
微米纳米加工技术
主要内容
第三章:纳米压印技术
1.纳米压印技术简介 1.1 压印技术 1.2 纳米压印技术 1.3 纳米压印关键工艺步骤 2.纳米压印工艺 2.1 热压印技术 2.2 紫外光固化压印(步进-闪光工艺) 2.3 软模板压印技术(SCIL) 2.4 逆压印技术 2.5 滚筒压印技术 3.纳米压印技术应用领域及前景 MicroNano System Research Center
第三章:纳米压印技术
MicroNano System Research Center
23
微米纳米加工技术
实例 2 :
第三章:纳米压印技术
材料:4 m Plex 6792 熱壓:(79+90)C, 125 bar, 15 min
材料:50 nm mr-I 8030 熱壓:(115+90)C, 125 bar, 15 min
15
MicroNano System Research Center 热压印法的工艺过程分三步 : 压模制备、压印过程、图形转移。
微米纳米加工技术
第三章:纳米压印技术
纳米压印与图形转移技术
MicroNano System Research Center
16
微米纳米加工技术
热压印工艺流程:
第三章:纳米压印技术
MicroNano System Research Center
熱壓溫度:175C 熱壓時間:30min
26
PMMA热压后形状松弛
微米纳米加工技术
热压印的优点及存在的问题 :
第三章:纳米压印技术
优点:热压印相对于传统的纳米加工方法,具有方法灵活、成
本低廉和生物相容的特点,并且可以得到高分辨率、高深宽比结构。
MicroNano System Research Center
热压印模版的制备
8
微米纳米加工技术
第三章:纳米压印技术
MicroNano System Research Center
9
微米纳米加工技术
第三章:纳米压印技术
MicroNano System Research Center
பைடு நூலகம்10
微米纳米加工技术
紫外纳米压印示意图
28
微米纳米加工技术
紫外纳米压印工艺流程:
第三章:纳米压印技术
1. 首先都必须准备一个具有纳米图
案的模版,而 UV-NIL 的模版材料必
须使用可以让紫外线穿透的石英; 2. 并且在硅基板涂布一层低粘度、 对UV感光的液态高分子光刻胶; 3. 在模版和基板对准充成后,将
模版压入光刻胶层并且照射紫外光使
MicroNano System Research Center
14
微米纳米加工技术
第三章:纳米压印技术
基本概念:利用电子束刻印技术或 其他先进技术,把坚硬的压模毛坯加
工成一个压模: 然后在用来绘制纳米
图案的基片上旋涂一层聚合物薄膜, 将其放人压印机加热并且把压模压在 基片上的聚合物薄膜上,再把温度降 低到聚合物凝固点附近并且把压模与 聚合物层相分离,就在基片上做出了 凸起的聚合物图案(还要稍作腐蚀除去 热压印示意图 凹处残留的聚合物)
第三章:纳米压印技术
Temperature) 以上,利用机械力将模版压入高温软化的光刻胶层内,
并且维持高温、高压一段时,使热塑性高分子光刻胶填充到模版的
纳米结构内;
MicroNano System Research Center
热压印流程
热压印温度与时间曲线
18
微米纳米加工技术
3. 待光刻胶冷却固化成形之后,释放压力并且将模版脱离硅基板; 4. 最后对硅基板进行反应离了刻蚀(Reactive Ion Etching )去除残留 的光刻胶,即可以复制出与模版等比例的纳米图案。
近十年间 , 各种创新的NIL工艺的研究陆续开展,其实验结果越 来越令人满意,目前,大概归纳出四种代表技术: 热压印光刻技术 、紫外硬化压印光刻技术、软压印、激光辅助直接光刻技术。
2.1 热压印(HE-NIL ) 2.1.1热压印
热压工艺是在微纳米尺度获得并行复制结构的一种成本低而速 度快的方法,仅需一个模具,完全相同的结构可以按需复制到大 的表面上。
7
微米纳米加工技术
1.3 关键工艺步骤: 模版的制备:
第三章:纳米压印技术
压模的制作通常用高分辨电子束刻印术(EBL)制备,压模通常
用Si, SiO2.氮化硅、金刚石等材料制备。这些材料具有:高硬度、大
压缩强度、大抗拉强可以减少压模的变形和磨损;高热导率和低热
膨胀系数,使得在加热过程中压模的热变形很小。
热压印的缺点是需要高温、高压、且即使在高温、高压很长时间,
对于有的图案,仍然只能导致聚合物的不完全位移,即不能够完全 填充印章的腔体。 存在的问题:使用热压印光刻技术的热朔性高分子光刻胶必须经 过高温、高压、冷却的相变化过程,在脱模之后压印的图案经常会 产生变形现象,因此使用热压印技术不易进行多次或三维结构的压 印,为了解决此问题,有人开始研发一些可以在室温、低压下使用 的压印光刻技术。
光刻胶发生聚合反应硬化成形; 4.
MicroNano System Research Center
然后脱模、进行刻蚀基板上残
29
留的光刻胶便完成整个UV-NIL。
微米纳米加工技术
1. Spin coating the polymer of PMMA (bottom layer); 2. Sputtering the metal of Germanium;
4
微米纳米加工技术
第三章:纳米压印技术
1. 纳米压印技术简介
1.1 压印技术
说到压印技术,其实并不神秘,中国
古代四大发明之一的活字印刷术就是最 初压印技术的原型。通俗的说,压印就 是把一个刻有凸凹图案的印章盖在橡皮 泥上,然后在其上面留下与章的图形相
反的图案。 MicroNano System Research Center
MicroNano System Research Center
27
微米纳米加工技术
3. 紫外光固化压印技术(UV-NIL)
化高分子的压印光刻技术,其前处理与热压印类似。
第三章:纳米压印技术
M.Bender和M.Otto提出一种在室温、低压环境下利用紫外光硬
MicroNano System Research Center
1)软压印术先用硅作为母板,然后采用聚二甲基硅氧烷(PDMS )浇铸母板,最后得到PDMS模板(或模具);
2)热压印一般采用镍(Ni)、铬(Cr)或碳化硅(厚度5.5mm)作为模板;
MicroNano System Research Center
13
微米纳米加工技术
2. 纳米压印技术原理和分类
第三章:纳米压印技术
1. 首先,利用电子束直写技术(EBDW)制作一片具有纳米图案的Si 或SiO2模版,并且准备一片均匀涂布热朔性高分子光刻胶 (通常以
PMMA为主要材料)的硅基板;
MicroNano System Research Center
模版的制备
17
微米纳米加工技术
2. 将 硅 基 板 上 的 光 刻 胶 加 热 到 玻 璃 转 换 温 度 (Glass Transfer
业; 1986年获麻省理工学院博士后; 先后在斯坦福大学及明尼苏达大 学任教;
Stephen Y.Chou
(/~chouweb/)
1997年应聘至普林斯顿大学主持 “纳米结构实验室”。
2007年当选为美国国家工程院院士,被称为改革开放后中国大
陆高校毕业生获取美国国家工程院院士的第一人。
第三章:纳米压印技术
脱模及刻蚀过程
热压印温度与时间曲线