立体几何知识点+经典习题

合集下载

高中数学立体几何知识点及练习题

高中数学立体几何知识点及练习题

点、直线、平面之间的关系㈠平面的根本性质公理一:假如一条直线上有两点在一个平面内,那么直线在平面内。

公理二:不共线的三点确定一个平面。

推论一:直线及直线外一点确定一个平面。

推论二:两条相交直线确定一个平面。

推论三:两条平行直线确定一个平面。

公理三:假如两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。

㈡空间图形的位置关系1 直线及直线的位置关系(相交、平行、异面)1.1 平行线的传递公理:平行于同始终线的两条直线互相平行。

即:a∥b,b∥c a∥c1.2 异面直线定义:不在任何一个平面内的两条直线称为异面直线。

1.3 异面直线所成的角⑴异面直线成角的范围:(0°,90°].⑵作异面直线成角的方法:平移法。

留意:找异面直线所成角时,常常把一条异面直线平移到另一条异面直线的特别点(如中点、端点等),形成异面直线所成的角。

2 直线及平面的位置关系(直线在平面内、相交、平行)3 平面及平面的位置关系(平行、斜交、垂直)㈢平行关系(包括线面平行和面面平行)1 线面平行1.1 线面平行的定义:平面外的直线及平面无公共点,那么称为直线和平面平行。

1.2 断定定理:1.3 性质定理:2 线面角:2.1 直线及平面所成的角(简称线面角):假设直线及平面斜交,那么平面的斜线及该斜线在平面内射影的夹角θ。

2.2 线面角的范围:θ∈[0°,90°]3 面面平行3.1 面面平行的定义:空间两个平面没有公共点,那么称为两平面平行。

3.2 面面平行的断定定理:⑴ 断定定理1:假如一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行。

即:推论:一个平面内的两条相交直线分别平行于另一个平面的两条线段,那么这两个平面平行。

即:⑵ 断定定理2:垂直于同一条直线的两平面互相平行。

即:3.3 面面平行的性质定理⑴ (面面平行线面平行)⑵⑶ 夹在两个平行平面间的平行线段相等。

立体几何知识点归纳和例题

立体几何知识点归纳和例题

P.F. Productions
例3、已知不共点的三条直线两两相交, 求证:这三条直线共面。
l2
A
l3
C

l1
B
P.F. Productions
例4、已知:一条直线和两条平行线都相交, 求证:这三条直线共面。
A l a

B
b
证明直线共面的常用方法:
1、①先由这些直线中的某些直线确定一个平面; ②然后证明其他直线都在这个平面上。
平行直线
异面直线 不同在任何一个平面内: 有一个公共点:相交直线
按公共点个数分
无 公 共 点
平行直线 异面直线
P.F. Productions
2、异面直线的画法
b a α β b b β a
a α α
说明: 画异面直线时 , 为了体现它们不共面的特点。 常借助一个或两个平面来衬托.
P.F. Productions
P.F. Productions
14.2(3)空间直线与直线的位置关系
P.F. Productions
1、异面直线所成的角: 对于异面直线a和b,在空间任取一点P,过P分别作 a 和b的平行线 a′和b′,我们把 a′与b′所成的锐角(或 直角)叫做异面直线a与b所成的角。
b a′ a P P b′ a′
5
4、立体几何的主要思想方法
①类比法:
要善于与平面几何做比较,认识其相同点,发现 其不同点,这种思想方法称之为类比思想。 ②转化法: 把空间图形的问题转化为平面图形问题去解决, 这是学习立体几何的很重要的数学思想方法。 ③展开法:
将可展的空间图形展开为平面图形,来处理问题 的思想方法称为展开思想。
记作: l P

立体几何基础题题库(360道附详细答案)

立体几何基础题题库(360道附详细答案)

S P
S
SS
S
PP
P
R
RR
Pபைடு நூலகம்
Q
R Q
QR
R
P
QR P PQ
Q
R
P
R
Q
QS
R
SS
Q
R
S
SQ R
Q
Q
RP
Q
P
R
S SQ R
P S
R Q
(A)
(B)
(C)
(D)
D
解析: A 项: PS 底面对应的中线,中线平行 QS,PQRS 是个梯形
D'
P
A'
S
C'
B'
R
D
A
B 项: 如图
Q
C B
C 项:是个平行四边形
EG2 FH 2 =2 (EF 2 FG2 ) = 1 ( AC2 BD2 ) 1 (a2 2b)
2
2
27. 如图,在三角形⊿ABC 中,∠ACB=90º, AC=b,BC=a,P 是⊿ABC 所在平面外一点,PB⊥AB, 点,AB⊥MC,求异面直 MC 与 PB 间的距离.
M 是 PA 的中
四边形矛盾。∴EF 和 AD 为异面直线.
26. 在空间四边形 ABCD 中,E,H 分别是 AB,AD 的中点,F,G 分别是 CB,CD 的中点,若 AC + BD
= a ,AC BD =b,求 EG2 FH 2 . A
解析:四边形 EFGH 是平行四边形,…………(4 分)
E H
B F
D
G C
得 OX2+OY2+OZ2=37,OP= 37 .

立体几何知识点和例题(含有答案)

立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。

平面的基本性质。

平面图形直观图的画法。

2.两条直线的位置关系。

平行于同一条直线的两条直线互相平行。

对应边分别平行的角。

异面直线所成的角。

两条异面直线互相垂直的概念。

异面直线的公垂线及距离。

3.直线和平面的位置关系。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

4.两个平面的位置关系。

平面平行的判定与性质。

平行平面间的距离。

二面角及其平面角。

两个平面垂直的判定与性质。

二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。

对于异面直线的距离,只要求会计算已给出公垂线时的距离。

2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。

对于异面直线上两点的距离公式不要求记忆。

3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。

能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。

三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。

(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。

高中数学第八章立体几何初步知识总结例题(带答案)

高中数学第八章立体几何初步知识总结例题(带答案)

高中数学第八章立体几何初步知识总结例题单选题1、如图,点N为正方形ABCD的中心,ΔECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B解析:利用垂直关系,再结合勾股定理进而解决问题.如图所示,作EO⊥CD于O,连接ON,过M作MF⊥OD于F.连BF,∵平面平面ABCD.EO⊥CD,EO⊂平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,∴ΔMFB与ΔEON均为直角三角形.设正方形边长为2,易知EO=√3,ON =EN=2,MF=√32,BF=52,∴BM=√7.∴BM≠EN,故选B.CDE小提示:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解. 由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则OʹAʹ=2√2,所以原图形中,OB=4,OA=4√2,故原平面图形的面积为1×4×4√2=8√2.2故选:A3、如图,用斜二测画法作水平放置的正三角形A1B1C1的直观图,则正确的图形是()A.B.C.D.分析:由斜二侧画法的规则分析判断即可先作出一个正三角形A1B1C1,然后以B1C1所在直线为x轴,以B1C1边上的高所在的直线为y轴建立平面直角坐标系,画对应的x′,y′轴,使夹角为45°,画直观图时与x轴平行的直线的线段长度保持不变,与y轴平行的线段长度变为原来的一半,得到的图形如图,然后去掉辅助线即可得到正三角形的直观图如图,故选:A4、下列空间图形画法错误的是()A.B.C.D.分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.5、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.6、已知三棱锥A−BCD的所有顶点都在球O的球面上,且AB⊥平面BCD,AB=2√3,AC=AD=4,CD= 2√2,则球O的表面积为()A.20πB.18πC.36πD.24π答案:A分析:根据AB⊥平面BCD,得到AB⊥BC,AB⊥BD,再由AB=2√3,AC=AD=4,CD=2√2,得到BC⊥BD,则三棱锥A−BCD截取于一个长方体,然后由长方体的外接球即为三棱锥的外接球求解.因为AB⊥平面BCD,所以AB⊥BC,AB⊥BD,∴BC=BD=√42−(2√3)2=2,在△BCD中,CD=2√2,∴CD2=BC2+BD2,∴BC⊥BD.如图所示:三棱锥A−BCD的外接球即为长方体AGFH-BCED的外接球,设球O的半径为R,则2R=√BA2+BC2+BD2=√(2√3)2+22+22=2√5,解得R=√5,所以球O的表面积为20π,故选:A.7、下列条件中,能得出直线m与平面α平行的是()A.直线m与平面α内的所有直线平行B.直线m与平面α内的无数条直线平行C.直线m与平面α没有公共点D.直线m与平面α内的一条直线平行答案:C分析:根据线面平行的判定,线面平行的性质逐个辨析即可.对A ,直线m 与平面α内的所有直线平行不可能,故A 错误;对B ,当直线m 在平面α内时,满足直线m 与平面α内的无数条直线平行,但m 与α不平行;对C ,能推出m 与α平行;对D ,当直线m 在平面α内时,m 与α不平行.故选:C.8、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.多选题9、(多选)一个几何体有6个顶点,则这个几何体可能是( )A .三棱柱B .三棱台C .五棱锥D .四面体答案:ABCGH GH分析:根据棱柱、棱台、棱锥及四面体的图形分析,即可得答案.对于A ,三棱柱是上下两个三角形,有6个顶点,满足题意;对于B ,三棱台是上下两个三角形,有6个顶点,满足题意;对于C ,五棱锥是底面为五边形及一个顶点,有6个顶点,满足题意;对于D ,四面体的顶点个数为4个,不满足题意.故选:ABC.10、我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( )A .半径是3B .体积为18πC .表面积为27πD .表面积为18π答案:ABC分析:作出正四棱锥的对角面,为半球的半个大圆的内接三角形,由图形可用球的半径表示出棱锥底面边长,高,由棱锥体积求得半球半径.然后计算半球体积,表面积,判断各选项.如图,是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,则正四棱锥底面边长为√2r ,棱锥体积为V =13×(√2r)2×r =23r 3=18,r =3, 半球体积为V =23πr 3=23π×33=18π,表面积为S =2π×32+π×32=27π,故选:ABC .11、如图,正方体ABCD −A 1B 1C 1D 1的棱长为1,则下列四个命题正确的是( )PAC △PAC△A.两条异面直线D1C和BC1所成的角为π4B.直线BC与平面ABC1D1所成的角等于π4C.点D到面ACD1的距离为√33D.三棱柱AA1D1−BB1C1外接球半径为√32答案:BCD分析:对于A:根据异面直线的求法易得:异面直线D1C和BC1所成的角为∠AD1C;对于B:可证B1C⊥平面ABC1D1,则直线BC与平面ABC1D1所成的角为∠CBC1;对于C:根据等体积转换V D−ACD1=V D1−ACD,求点D到面ACD1的距离;对于D:三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球,直接求正方体外接球的半径即可.连接AC、AD1∵AB∥C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,∴异面直线D1C和BC1所成的角为∠AD1C∵AC=AD1=D1C,则△ACD1为正三角形,即∠AD1C=π3A不正确;连接B1C在正方形BB1C1C中,BC1⊥B1C∵AB⊥平面BB1C1C,B1C⊂平面BB1C1C∴AB⊥B1CAB∩BC1=B,则B1C⊥平面ABC1D1∴直线BC与平面ABC1D1所成的角为∠CBC1=π4 B正确;根据等体积转换可知:V D−ACD1=V D1−ACD即13×ℎ×12×√2×√2×√32=13×1×12×1×1,则ℎ=√33C正确;三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球则外接球的半径即为正方体ABCD−A1B1C1D1体对角线的一半,即R=√32D正确;故选:BCD.12、如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1答案:CD分析:直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.13、正三棱锥底面边长为3,侧棱长为2√3,则下列叙述正确的是()A.正三棱锥高为3B.正三棱锥的斜高为√392C.正三棱锥的体积为27√34D.正三棱锥的侧面积为9√394答案:ABD分析:先求出正三棱锥的高和斜高,从而可判断AB的正误,再计算出体积和侧面积,从而可判断CD的正误.设E为等边三角形ADC的中心,F为CD的中点,连接PF,EF,PE,则PE为正三棱锥的高,PF为斜高,又PF=√12−94=√392,EF=32×√33=√32,故PE=√394−34=3,故AB正确.而正三棱锥的体积为13×3×√34×9=9√34,侧面积为3×12×3×√392=9√394,故C错误,D正确.故选:ABD.填空题14、如图,在棱长为2的正方体ABCD−A1B1C1D1中,P为线段A1B上的动点(不含端点),则下列结论正确的是____.①平面A 1D 1P ⊥平面BB 1P ;②DC 1⊥PC ;③∠APD 1的取值范围是[π2,π); ④三棱锥C 1−D 1PC 的体积为定值43.答案:①②④分析:由正方体的特征知A 1D 1⊥平面AA 1B 1B ,DC 1⊥对角面A 1BCD 1,由面面垂直的判定和线面垂直的性质可知①②正确;当点P 为线段A 1B 的一个四等分点且靠近点B 时,由长度关系可求得cos∠APD 1>0,知③错误;由体积桥和三棱锥体积公式可确定④正确.对于①,∵几何体是正方体,∴A 1D 1⊥平面AA 1B 1B ,又A 1D 1⊂平面A 1D 1P ,∴平面A 1D 1P ⊥平面BB 1P ,①正确;对于②,在正方体ABCD −A 1B 1C 1D 1中,DC 1⊥对角面A 1BCD 1,对角面A 1BCD 1,∴DC 1⊥PC ,②正确;对于③,当点P 为线段A 1B 的一个四等分点且靠近点B 时,可得:AP =√102,D 1P =√342,AD 1=2√2,由余弦定理得:cos∠APD 1=AP 2+D 1P 2−AD 122AP⋅D 1P =52+172−82×√102×√342=√85>0,此时∠APD 1<π2,③错误; 对于④,∵△D 1C 1C 的面积是定值S =12×2×2=2,点P 到面D 1C 1C 的距离为BC =2,∴三棱锥C 1−D 1PC的体积V =13×2×2=43,④正确. PC所以答案是:①②④.15、如图,在正方体中,A 、B 、C 、D 分别是顶点或所在棱的中点,则A 、B 、C 、D 四点共面的图形______(填上所有正确答案的序号).答案:①③④分析:四点共面主要通过证明两线平行说明,本题利用中位线、平行四边形的性质结合平行线的传递性进行说明,证明平行时绝不能凭直观感觉或无理论依据.图①:证明AB ∥EF ,CD ∥EF ,可得AB ∥CD ;图③:证明BD ∥EF ,AC ∥EF ,可得BD ∥AC ;图④:证明GH ∥EF ,AC ∥EF , BD ∥GH ,可得BD ∥AC .图①:取GD 的中点F ,连结BF 、EF ,∵B 、F 均为相应边的中点,则:BF ∥HG又∵HG ∥,则BF ∥即ABFE 为平行四边形∴AB ∥EF同理: CD ∥EF则AB ∥CD 即A 、B 、C 、D 四点共面,图①正确;图②:显然AB 与CD 异面,图②不正确;AEAE图③:连结AC,BD,EF,∵BE∥DF即BDFE为平行四边形∴BD∥EF又∵A、C分别为相应边的中点,则AC∥EF∴BD∥AC即A、B、C、D四点共面,图③正确;图④:连结AC,BD,EF,GH,∵GE∥HF即GEFH为平行四边形,则GH∥EF又∵A、C分别为相应边的中点,则AC∥EF同理:BD∥GH∴BD∥AC即A、B、C、D四点共面,图④正确.所以答案是:①③④.16、一个正四棱柱的底面边长为2,高为4,则该正四棱柱的体积为________.答案:16分析:根据棱柱的体积公式直接计算即可.由题可得该正四棱柱的体积为2×2×4=16.所以答案是:16.解答题17、在正方体ABCD—A1B1C1D1中,E是棱BB1的中点.(1)求证:B1D∥平面ACE.(2)若F是棱CC1的中点,求证:平面B1DF∥平面ACE.答案:(1)证明见解析(2)证明见解析分析:(1)连BD,使BD∩AC=G,连EG,由中位线定理以及线面平行判定定理证明即可;(2)证明B1F∥平面ACE,结合B1D∥平面ACE,利用面面平行判定定理证明即可.(1)连BD,使BD∩AC=G,连EG.∵ABCD是正方形,BD∩AC=G,∴DG=BG.又∵E是BB1中点,∴B1E=BE,∴DB1∥GE,又DB1⊄平面ACE,GE⊂平面ACE,∴B1D∥平面ACE.(2)∵E是棱BB1的中点,F是棱CC1的中点.∴B1E∥CF且B1E=CF,∴四边形B1ECF是平行四边形,∴B1F∥CE,又∴B1F⊄平面ACE,CE⊂平面ACE,∴B1F∥平面ACE,由(1)B1D∥平面ACE,又∵DB1∩B1F=B1,∴平面B1DF∥平面ACE.18、用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.答案:(1)α∩β=l,a∩α=A,a∩β=B;图象见解析;(2)A∈α,B∈α,a∩α=C,C∉AB;图象见解析分析:由题意将自然语言转化为符号语言,根据点线面的关系,借用集合符号,表示即可.(1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.小提示:本题主要考查点、线、面的关系的符号表达,属于基础题.。

高一 立体几何知识点+例题+练习 含答案

高一 立体几何知识点+例题+练习 含答案

1.空间几何体的结构特征 (1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. (2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. 2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1. (3)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × ) (4)圆柱的侧面展开图是矩形.( √ )(5)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是________.①相等的角在直观图中仍然相等; ②相等的线段在直观图中仍然相等; ③正方形的直观图是正方形;④若两条线段平行,则在直观图中对应的两条线段仍然平行. 答案 ④解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.故④正确. 2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________ cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).3.(2014·陕西改编)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是________. 答案 2π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.4.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为________. 答案212a 3解析 O 是AC 的中点,连结DO ,BO ,△ADC ,△ABC 都是等腰直角三角形.因为DO =BO =AC 2=22a ,BD =a ,所以△BDO 也是等腰直角三角形.又因为DO ⊥AC ,DO ⊥BO ,AC ∩BO =O ,所以DO ⊥平面ABC ,即DO 就是三棱锥D -ABC 的高.因为S △ABC =12a 2,所以三棱锥D -ABC 的体积为13×12a 2×22a =212a 3.5. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是__________________________________________.答案 ①解析平面图形的直观图为正方形,且其边长为1,对角线长为2,所以原平面图形为平行四边形,且位于x轴上的边长仍为1,位于y轴上的对角线长为2 2.题型一空间几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是________.(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)0(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二 空间几何体的直观图例2 已知△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,求△ABC 的面积.解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,边A ′B ′在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.引申探究1.若本例改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”,应如何求?解 由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a , 故其面积S △A ′B ′C ′=12a ×68a =616a 2.2.本例中的直观图若改为如图所示的直角梯形,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原图形的面积为________. 答案 2+22解析 如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB =1,∠ABE =45°, ∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1.∴BC =BE +EC =22+1. 由此可还原原图形如图②,是一个直角梯形.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴原图形的面积为S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连结而画出.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. ①正方形; ②矩形;③菱形; ④一般的平行四边形. 答案 ③解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm. ∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,∴四边形OABC 是菱形.题型三 求空间几何体的表面积例3 (1)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 由题意知该六棱锥为正六棱锥,∴设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积. 解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,又由题意知A ′E ⊥AB ,A ′F ⊥AC , 得Rt △A ′AE ≌Rt △A ′AF , ∴A ′E =A ′F ,∴DE =DF , ∴AD 平分∠BAC ,又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′, 而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2.思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积.解 (1)设O 1、O 分别为正三棱台ABC —A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32,因O 1D 1=36×3=32,OD =36×6=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3(cm). 故三棱台斜高为 3 cm.(2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732 (cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732 cm 2,表面积为9934cm 2.题型四 求空间几何体的体积例4 (2015·山东改编)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________. 答案42π3解析 如图,设等腰直角三角形为△ABC ,∠C =90°,AC =CB =2,则AB =2 2.设D 为AB 中点,则BD =AD =CD = 2.∴所围成的几何体为两个圆锥的组合体,其体积V =2×13×π×(2)2×2=42π3.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(2014·课标全国Ⅱ改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 在正△ABC 中,D 为BC 的中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , AD ⊥BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴V 三棱锥A -B 1DC 1=13S △DB 1C 1·AD =13×3×3=1.题型五 与球有关的切、接问题例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________. 答案132解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52, OM =12AA 1=6, 所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π, V 内切球=43πr 3=43π×23=32π3. 2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为 (32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案 2 解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径), ∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.15.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案96温馨提醒(1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练(时间:45分钟)1.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.答案 ①2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数为________.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为________________________________________________________________________. 答案 100π解析 依题意,设球半径为R ,满足R 2=32+42=25,∴S 球=4πR 2=100π.4.(2015·课标全国Ⅰ改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.答案 22解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 5.如图,在三棱柱ABC —A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.答案 2 解析 因为AA 1⊥平面AB 1C 1,AB 1⊂平面AB 1C 1,所以AA 1⊥AB 1,又知AA 1=1,A 1B 1=2,所以AB 1=22-12=3,同理可得AC 1=3,又知在△AB 1C 1中,B 1C 1=2,所以△AB 1C 1的B 1C 1上的高为h =3-1=2,其面积S △AB 1C 1=12×2×2=2,于是三棱锥A —A 1B 1C 1的体积V 三棱锥A —A 1B 1C 1=V 三棱锥A 1—AB 1C 1=13×S △AB 1C 1×AA 1=23,进而可得此三棱柱ABC —A 1B 1C 1的体积V =3V 三棱锥A —A 1B 1C 1=3×23= 2. 6.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 7.(2015·课标全国Ⅱ改编)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为________.答案 144π解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.8.(2015·盐城一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3. 又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3,则其体积比为932. 9.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和 30 cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.10.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.解 方法一 连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.∵平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高.∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a . ∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF=13·S △C 1EF ·(h 1+h 2)=16a 3. B 组 专项能力提升(时间:30分钟)11.已知某圆锥体的底面半径r =3,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是________.答案 36π解析 由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为2πr =6π,从而其母线长为l =6π2π3=9,从而圆锥体的表面积为S 侧+S 底=12×9×6π+9π=36π. 12.三棱锥P —ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D —ABE 的体积为V 1,P —ABC的体积为V 2,则V 1V 2=________. 答案 14解析 V 1=V D —ABE =V E —ABD =12V E —ABP =12V A —BEP =12×12V A —BCP =12×12V P —ABC =14V 2. 13.已知圆台的母线长为4 cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是________cm 2.答案 24π解析 如图是将圆台还原为圆锥后的轴截面,由题意知AC =4 cm ,∠ASO =30°,O 1C =12OA ,设O 1C =r , 则OA =2r ,又O 1C SC =OA SA=sin 30°,∴SC =2r ,SA =4r , ∴AC =SA -SC =2r =4 cm ,∴r =2 cm.∴圆台的侧面积为S =π(r +2r )×4=24π cm 2.14.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt △AEC中,可得EG=32x. 由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.15.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.解 (1)如图,连结OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33. ∴S =4πr 2=43π. (2)∵△ABC 中,∠ACB =90°,∠ABC =30°,BC =3, ∴AC =1.∴V =V 圆锥-V 球=13π×AC 2×BC -43πr 3 =13π×1×3-43π×39=5327π.。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

(精选试题附答案)高中数学第八章立体几何初步知识点题库

(精选试题附答案)高中数学第八章立体几何初步知识点题库

(名师选题)(精选试题附答案)高中数学第八章立体几何初步知识点题库单选题1、足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A,B,C,D满足AB=BC=AD=BD=CD=√2dm,二面角A−BD−C的大小为2π3,则该足球的体积为()A.7√42π27dm3B.35√2π27dm3C.14π27dm3D.32√2π27dm3答案:A分析:画出图形,O为线段BD的中点,则可得∠AOC为二面角A−BD−C的平面角,取N,M分别是线段AO,CO上靠近点O的三等分点,则可得N,M分别为△ABD和△CBD的外心,过N,M分别作平面ABD和平面CBD的垂线EN,EM,交于点E,则点E为三棱锥A−BCD外接球的球心,即为足球的球心,所以线段EB为球的半径,然后结已知数据求出EB,从而可求出足球的体积根据题意,三棱锥A−BCD如图所示,图中点O为线段BD的中点,N,M分别是线段AO,CO上靠近点O的三等分点,因为AB=BC=AD=BD=CD=√2dm,所以△ABD和△CBD均为等边三角形,因为点O为线段BD的中点,所以AO⊥BD,CO⊥BD,所以∠AOC为二面角A−BD−C的平面角,所以∠AOC=2π3,因为△ABD和△CBD均为等边三角形,点O为线段BD的中点,所以AO,CO分别为△ABD和△CBD的中线,因为N,M分别是线段AO,CO上靠近点O的三等分点,所以N,M分别为△ABD和△CBD的外心,过N,M分别作平面ABD和平面CBD的垂线EN,EM,交于点E,则点E为三棱锥A−BCD外接球的球心,即为足球的球心,所以线段EB为球的半径,因为AO⊥BD,CO⊥BD,AB=BC=AD=BD=CD=√2dm,所以AO=CO=√62dm,则NO=MO=√66dm,因为AO=CO,EO=EO,∠ENO=∠EMO=90°,所以△ENO≌△EMO,所以∠EON=∠EMO=12∠AOC=π3,在直角△EMO中,EM=OMtanπ3=√22,因为EM⊥平面BCD,BM⊂平面BCD,所以BM⊥EM,因为M是△CBD的外心,所以BM=√63,所以EB=√EM2+BM2=√76,所以V=43π⋅EB3=43π(√76)3=7√4227π,所以足球的体积为7√4227πdm,故选:A小提示:关键点点睛:此题考查三棱锥外接球问题,考查计算能力,解题的关键是由题意求出三棱锥外接球的球心,从而可确定出球的半径,然后计算出半径即可,考查空间想象能力,属于较难题2、在长方体ABCD −A 1B 1C 1D 1中,AB =4,AD =3,AA 1=5,点P 在长方体的面上运动,且满足AP =5,则P 的轨迹长度为( )A .12πB .8πC .6πD .4π答案:C分析:由题设,在长方体表面确定P 的轨迹,应用弧长公式计算轨迹长度.如图,P 在左侧面的轨迹为弧A 1N ⌢,在后侧面的轨迹为弧NC ⌢,在右侧面的轨迹为弧MC ⌢,在前侧面内的轨迹为弧A 1M ⌢.易知|NC ⌢|=14π×4×2=2π,|MC ⌢|=14π×3×2=3π2,又sin∠A 1AN =cos∠NAD =35,cos∠A 1AM =sin∠MAB =35, ∴∠A 1AN +∠A 1AM =π2,则|A 1N ⌢|+|A 1M ⌢|=14π×5×2=5π2,∴P 的轨迹长度为6π,故选:C.3、在下列判断两个平面α与β平行的4个命题中,真命题的个数是().①α、β都垂直于平面r,那么α∥β②α、β都平行于平面r,那么α∥β③α、β都垂直于直线l,那么α∥β④如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3答案:D分析:在正方体中观察可判断①;由平面平行的传递性可判断②;由线面垂直的性质可判断③;根据面面平行判定定理可判断④.如图,易知在正方体中相邻两个侧面都垂直于底面,故①错误;由平面平行的传递性可知②正确;由线面垂直的性质可知③正确;过直线l做平面γ与α、β分别交于l1,l2,过直线m做平面χ与α、β分别交于m1,m2,因为l∥α,l∥β,所以l∥l1,l∥l2,所以l1∥l2因为l1⊄β,l2⊂β,所以l1∥β同理,m1∥β又l、m是两条异面直线,所以l1,l2相交,且l1⊂α,m1⊂α所以α∥β,故④正确.故选:D4、在△ABC 中,AB =1,AC =2,∠BAC =60°,P 是△ABC 的外接圆上的一点,若AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ ,则m +n 的最小值是( )A .−1B .−12C .−13D .−16 答案:B分析:先解三角形得到△ABC 为直角三角形,建立直角坐标系,通过AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ 表示出m +n ,借助三角函数求出最小值.由余弦定理得BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos∠BAC = 1+4−2×1×2×cos 60∘=3,所以BC =√3,所以AB 2+BC 2=AC 2,所以AB ⊥BC .以AC 的中点为原点,建立如图所示的平面直角坐标系,易得A (-1,0),C (1,0),B (-12,√32),设P 的坐标为(cosθ,sinθ),所以AB ⃑⃑⃑⃑⃑ =(12,√32),AC ⃑⃑⃑⃑⃑ =(2,0),AP ⃑⃑⃑⃑⃑ = (cosθ+1,sinθ),又AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ ,所以(cosθ+1,sinθ)=m (12,√32)+ n (2,0)=(m 2+2n ,√32m),所以m =2√33sin θ,n =cos θ2+12−√36sin θ,所以m +n =2√33sin θ+cos θ2+12−√36sin θ =√32sin θ+cos θ2+12=sin (θ+π6)+12≥−1+12=−12,当且仅当sin (θ+π6)=−1时,等号成立.故选:B.5、已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是()A.2πR2B.94πR2C.83πR2D.πR2答案:B分析:根据圆柱的表面积公式以及二次函数的性质即可解出.设圆柱的底面半径为r,圆柱的高为ℎ,所以在轴截面三角形中,如图所示:由相似可得,rR =3R−ℎ3R,所以,ℎ=3R−3r,即圆柱的全面积为S=2πr2+2πrℎ=2πr2+2πr(3R−3r)=2π(−2r2+3rR)=2π[−2(r−34R)2+98R2]≤9π4R2,当且仅当r=34R时取等号.故选:B.6、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA=13×3√3×3√3×32=272,V AFD−BHC=12×3√3×32×3√3=814则该几何体的体积为V=2V AFD−BHC−V I−BCDA=2×814−272=27.故选:D.7、下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3答案:A分析:①②③④均可举出反例.①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;②如图2,满足两侧面ABB1A1与底面垂直,但不是直棱柱,②错误;③如图3,四边形ACC1A1为矩形,即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误.故选:A8、下列条件中,能得出直线m与平面α平行的是()A.直线m与平面α内的所有直线平行B.直线m与平面α内的无数条直线平行C.直线m与平面α没有公共点D.直线m与平面α内的一条直线平行答案:C分析:根据线面平行的判定,线面平行的性质逐个辨析即可.对A,直线m与平面α内的所有直线平行不可能,故A错误;对B,当直线m在平面α内时,满足直线m与平面α内的无数条直线平行,但m与α不平行;对C,能推出m与α平行;对D,当直线m在平面α内时,m与α不平行.故选:C.9、下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个B.2个C.3个D.4个答案:A解析:根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A10、如图所示,在直三棱柱ABC−A1B1C1中,AA1=1,AB=BC=√3,cos∠ABC=1,P是A1B上的一动点,3则AP+PC1的最小值为()A.√5B.√7C.1+√3D.3答案:B分析:连接BC1,以A1B所在直线为轴,将△A1BC1所在平面旋转到平面ABB1A1,设点C1的新位置为C′,连接AC′,判断出当A、P、C′三点共线时,则AC′即为AP+PC1的最小值.分别求出∠AA1C′=120°,AA1=1,A1C′=2,利用余弦定理即可求解.连接BC1,得△A1BC1,以A1B所在直线为轴,将△A1BC1所在平面旋转到平面ABB1A1,设点C1的新位置为C′,连接AC′,则有AP+PC1≥AC′.当A、P、C′三点共线时,则AC′即为AP+PC1的最小值.,由余弦定理得:AC=√AB2+BC2−2AB·BCcosB=在三角形ABC中,AB=BC=√3,cos∠ABC=13√3+3−2×3×1=2,所以A1C1=2,即A1C′=23在三角形A1AB中,AA1=1,AB=√3,由勾股定理可得:A1B=√AA12+AB2=√1+3=2,且∠AA1B=60°. 同理可求:C1B=2因为A1B=BC1=A1C1=2,所以△A1BC1为等边三角形,所以∠BA1C1=60°,所以在三角形AA1C′中,∠AA1C′=∠AA1B+∠BA1C′=120°,AA1=1,A1C′=2,)=√7.由余弦定理得:AC′=√1+4−2×1×2×(−12故选B.小提示:(1)立体几何中的翻折(展开)问题截图的关键是:翻折(展开)过程中的不变量;(2)立体几何中距离的最值一般处理方式:①几何法:通过位置关系,找到取最值的位置(条件),直接求最值;②代数法:建立适当的坐标系,利用代数法求最值.填空题11、达•芬奇认为:和音乐一样,数学和几何“包含了宇宙的一切”,从年轻时起,他就本能地把这些主题运用在作品中,布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的边长为1,则点F到直线QC的距离是__________.答案:√2分析:根据题意,求得△FQC的三条边长,在三角形FQC中求边QC边上的高线即可.根据题意,延长QN,BA交于点M,连接QF,FC,如下所示:在△QFC中,容易知:QF=√QN2+NF2=√12+(√2)2=√3;同理FC=√12+(√5)2=√6,QC=√QM2+MC2=√22+(√5)2=3,满足QF2+FC2=QC2,设点F到直线QC的距离为d,由等面积法可知:=√2,即点F到直线QC的距离是√2.QF×FC=QC×d,解得d=√3×√63所以答案是:√2.12、三条两两平行的直线可以确定平面的个数可能为______个.答案:1或3分析:讨论三条平行线是否共面,即可确定平面的个数.当三条平行线不共面时,如下图示可确定3个平面;当三条平行线共面时,如下图示确定1个平面.所以答案是:1或313、已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.答案:2分析:求出底面半径扩大为原来的2倍,从而得到侧面积扩大为原来的2倍.设圆柱的高为ℎ,底面半径为r,则体积为πr2ℎ,体积扩大为原来的4倍,则扩大后的体积为4πr2ℎ,因为高不变,故体积4πr2ℎ=π(2r)2ℎ,即底面半径扩大为原来的2倍,原来侧面积为2πrℎ,扩大后的圆柱侧面积为2π⋅2rℎ= 4πrℎ,故侧面积扩大为原来的2倍.所以答案是:214、在直三棱柱ABC﹣A1B1C1中,D为AA1中点,点P在侧面BCC1B1上运动,当点P满足条件___________时,A1P//平面BCD(答案不唯一,填一个满足题意的条件即可)答案:P是CC1中点分析:根据线面平行的性质,只需在侧面BCC1B1上找到一点,A1P//平面BCD上的任一条线即可,可以取A1P//CD,此时P是CC1中点.取CC1中点P,连结A1P,∵在直三棱柱ABC﹣A1B1C1中,D为AA1中点,点P在侧面BCC1B1上运动,∴当点P满足条件P是CC1中点时,A1P//CD,∵A1P⊄平面BCD,CD⊂平面BCD,∴当点P满足条件P是CC1中点时,A1P//平面BCD所以答案是:P是CC1中点.15、如图所示,有边长为2的正方体ABCD−A1B1C1D1,P为正方体表面的一个动点.若三棱锥A−PBC的体积,则|PD1|的取值范围是____________.为12答案:[54,3√174]分析:根据三棱锥A−PBC的体积求出点P到平面ABC的距离ℎ,由此确定点P的轨迹,结合图形即可得出答案. 设点P到平面ABC的距离为ℎ,则V P−ABC=13S△ABC⋅ℎ=23ℎ=12,所以ℎ=34,如图在AA1上取点E,使得AE=34,过点E作平面EFGH∕∕平面ABCD,F,G,H分别在BB1,CC1,DD1上,故点P在四边形EFGH的边上,则当点P在点H的位置时,|PD1|最小,为54,当点P在点F的位置时,|PD1|最大,为√4+4+2516=3√174,所以|PD1|的取值范围是[54,3√174].所以答案是:[54,3√174].解答题16、如图,已知矩形CDEF和直角梯形ABCD,AB∥CD,∠ADC=90°,DE=DA,M为AE的中点.(1)求证:AC∥平面DMF;(2)求证:BE⊥DM.答案:(1)证明见解析;(2)证明见解析.分析:(1)根据三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)根据矩形的性质,结合线面垂直的性质和判定定理进行证明即可.(1)如图,连结EC交DF于点N,连结MN.因为CDEF为矩形,所以EC,DF相互平分,所以N为EC的中点.又因为M为EA的中点,所以MN∥AC.又因为AC⊄平面DMF,且MN⊂平面DMF.所以AC∥平面DMF.(2)因为矩形CDEF,所以CD⊥DE.又因为∠ADC=90°,所以CD⊥AD.因为DE∩AD=D,DE,AD⊂平面ADE,所以CD⊥平面ADE.又因为DM⊂平面ADE,所以CD⊥DM.又因为AB∥CD,所以AB⊥DM.因为AD=DE,M为AE的中点,所以AE⊥DM.又因为AB∩AE=A,AB,AE⊂平面ABE,所以MD⊥平面ABE.因为BE⊂平面ABE,所以BE⊥MD.17、如图:ABCD是正方形,O为正方形的中心,PO⊥底面ABCD,点E是PC的中点.求证:(1)PA//平面BDE;(2)平面PAC⊥平面BDE.答案:(1)证明见解析(2)证明见解析分析:(1)连接OE,则由三角形中位线定理可得OE//PA,再由线面平行的判定定理可证得结论,(2)由已知可得BD⊥AC,BD⊥PO,由线面垂直的判定定理可证得BD⊥面PAC,再由面面垂直的判定定理可证得结论(1)证明:连接OE,∵ABCD为正方形,∴O为AC中点,又∵E为PC中点,∴OE//PA,OE⊂面BDE,PA⊄面BDE,∴PA//面BDE,(2)证明:∵ABCD为正方形,BD⊥AC,又∵PO⊥面ABCD,BD⊂面ABCD,∴BD⊥PO,∵PO∩AC=O,PO⊂面PAC,AC⊂面PAC,∴BD⊥面PAC,∵BD⊂面BDE,∴面BDE⊥面PAC,18、如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M,N分别为AC,PD的中点.(1)求证:MN∥平面ABP;(2)若BP⊥PC,求证:平面ABP⊥平面APC.答案:(1)证明见解析;(2)证明见解析.分析:(1)要证明线面平行,需证明线线平行,即连结BD,证明MN//BP;(2)要证明面面垂直,需证明线面垂直,利用垂直关系转化,证明PC⊥平面ABP.证明:(1)连结BD,由已知,M为AC和BD的中点,又∵N为PD的中点,∴MN∥BP.∵MN⊄平面ABP,BP⊂平面ABP,∴MN∥平面ABP.(2)∵AB⊥BP,AB⊥BC,BP∩BC=B,∴AB⊥平面BPC.∵PC⊂平面BPC,∴AB⊥PC.∵BP⊥PC,AB∩BP=B,∴PC⊥平面ABP.∵PC⊂平面APC,∴平面ABP⊥平面APC.19、用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.答案:(1)α∩β=l,a∩α=A,a∩β=B;图象见解析;(2)A∈α,B∈α,a∩α=C,C∉AB;图象见解析分析:由题意将自然语言转化为符号语言,根据点线面的关系,借用集合符号,表示即可.(1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.小提示:本题主要考查点、线、面的关系的符号表达,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何知识点和典型例题1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD '几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,h为斜高,l 为母线)3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V球=4R3;S球面=4 R234、空间点、直线、平面的位置关系(1)平面①平面的概念:A.描述性说明;B.平面是无限伸展的;②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。

③点与平面的关系:点A 在平面内,记作A ;点A 不在平面内,记作A 点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作A l;直线与平面的关系:直线l 在平面α内,记作l α;直线l 不在平面α内,记作l α。

S直棱柱侧面积ch S圆柱侧 2 rh 1S正棱锥侧面积2ch'S圆锥侧面积rl1S正棱台侧面积2(c1 c2 )h '台侧面积(r R)S圆柱表S圆锥表rr S圆台表r2 rl Rl R 2V柱Sh V圆柱Sh1V台13(S S'S S)h1V锥3S)h2r2h1Sh32rR R2)hV圆台13(SV圆锥123(r 2(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)应用:检验桌面是否平;判断直线是否在平面内用符号语言表示公理1: A l , B l, A ,B l(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理2 及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:P AI B AI B l, P l公理3 的作用:①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b 是异面直线,经过空间任意一点O,分别引直线a' ∥ a,b'∥b,则把直线a'和b'所成的锐角(或直角)叫做异面直线a 和b 所成的角。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O 的位置无关。

②求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a αa∩α=A a∥α(9)平面与平面之间的位置关系:平行——没有公共点;α∥β 相交——有一条公共直线。

α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→ 线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为0 。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b 平行的直线a ,b ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0 。

②平面的垂线与平面所成的角:规定为90 。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算” 。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面.内.分别作垂.直.于.棱的两条射线,这两条射线所成的角叫二面角的平面角。

.....③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系(1)定义:如图,OBCD D,A,B,C,是单位正方体.以A为原点,分别以OD,O A,,OB的方向为正方向,建立三条数轴x轴.y 轴.z轴。

这时建立了一个空间直角坐标系Oxyz.1)O叫做坐标原点2)x 轴,y轴,z轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。

(2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。

大拇指指向为x轴正方向,食指指向为y 轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

(3)任意点坐标表示:空间一点M 的坐标可以用有序实数组(x, y, z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z)(x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标)(4)空间两点距离坐标公式: d (x2 x1)2(y2 y1)2(z2 z1)2【常用结论】一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、定义:成90 角2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5 、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、定义:两面成直二面角,则两面垂直2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、二面角的平面角为902、在一个平面内垂直于交线的直线必垂直于另一个平面3、相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围1、异面直线所成的角的取值范围是:0 90 0 ,902、 直线与平面所成的角的取值范围是:0 90 0 ,903、 斜线与平面所成的角的取值范围是:900 ,904、 二面角的大小用它的平面角来度量; 取值范围是:1800 ,180十、三角形的心1、内心: 内切圆的圆心, 角平分线的交点 2、 外心: 外接圆的圆心, 垂直平分线的交点3、重心: 中线的交点 4、 垂心:高的交点[ 常用方法及公示 ]:1.证明直线与直线的平行的思考途径: ( 1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; ( 4)转化为线面垂直; ( 5)转化为面面平行 . 2.证明直线与平面的平行的思考途径: ( 1)转化为直线与平面无公共点; ( 2)转化为线线平行; ( 3)转化为面面平行 .3.证明平面与平面平行的思考途径: (1)转化为判定二平面无公共点; ( 2)转化为线面平行;( 3)转化为线面垂直 .4.证明直线与直线的垂直的思考途径: ( 1)转化为相交垂直; ( 2)转化为线面垂直; (3)转化 为线与另一线的射影垂直; ( 4)转化为线与形成射影的斜线垂直 .5.证明直线与平面垂直的思考途径: (1)转化为该直线与平面内任一直线垂直; ( 2)转化为该 直线与平面内相交二直线垂直; ( 3)转化为该直线与平面的一条垂线平行; ( 4)转化为该直线 垂直于另一个平行平面; ( 5)转化为该直线与两个垂直平面的交线垂直 .6.证明平面与平面的垂直的思考途径: ( 1)转化为判断二面角是直二面角; ( 2)转化为线面垂 直.12.空间两点间的距离公式 若 A (x 1, y 1,z 1),B (x 2, y 2,z 2) ,则uuur uuur uuur 2 2 2d A,B =| AB| AB AB (x 2x 1)2 (y 2 y 1)2 (z 2 z 1)2 .7.夹角公式 :设 a = (a 1, a 2 , a 3) ,b =(b 1,b 2,b 3),则 cos 〈a ,b 〉= 2 a 1b 1cos 〈a ,b 〉=a1222 a 2 a 38.异面直线所成角: cos|cos a,b |=||a r a | |b b r ||| x 1x 2 y 1y 2 z 1z 2 |其中 ( 0o90o ) 9.直线 AB 与平面所成角: 10.二面角l 的平面角ur r arc cos u mr n r 或 |m||n|x 122 2 2 y 12 z 12 x 22a,b 分别表示异面直线 为异面直线 a,b 所成角, uuur urarc sin u A uur B m ur (m 为平面 的法向量 ).| AB ||m|ur r mn arc cos ur r |m||n| 11.三余弦定理:设 AC 是α内的任一条直线,且 1,AB 与 AC 所成的角为 2,AO 与 AC 所成的角为22y 22 z 22a,b 的方向向量)ur r m , n 为平面 , 的法向量) BC ⊥AC ,垂足为 C ,又设 AO 与 AB 所成的角为uuur uur13.异面直线间的距离:d |CD r n|(l1 , l 2是两异面直线,其公垂向量为n,C、D 分别是|n|l1,l2上任一点,d 为l1,l 2间的距离).uuur uur14. 点B到平面的距离:d |AB r n|(r n为平面的法向量,AB是经过面的一条斜线,|n|A ).15. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为l1、l2、l3 ,夹角分别为1、2、 3 ,则有2 2 2 2 2 2 2 2 2 2l l1 l2 l3 cos 1 cos 2 cos 3 1 sin 1 sin 2 sin 3 2.(立体几何中长方体对角线长的公式是其特例).16. 面积射影定理S S.(平面多边形及其射影的面积分别是S、S',它们所在平面所成cos锐二面角的).17. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体: 棱长为a的正四面体的内切球的半径为6 a,外接球的半径为6a.12 418. 求点到面的距离的常规方法是什么(直接法、体积法)19. 求多面体体积的常规方法是什么(割补法、等积变换法)考点一,几何体的概念与性质【基础训练】1. 判定下面的说法是否正确:(1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱.(2)有两个面平行,其余各面为梯形的几何体叫棱台.2.如图E,F 分别是AB, AA1 的中点探索过EF 的平面截正方体所得截面的形状6. 下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形。

相关文档
最新文档