(完整版)实数全章总结
实数知识点总结概括初中

实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。
有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。
实数的概念是对数的一个总称,它是数学研究和运用的基础。
2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。
有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。
3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。
实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。
这种连续的性质是实数的重要特点之一。
二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。
对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。
2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。
绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。
3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。
这种有序性是实数与数学中其他集合的一个重要区别。
4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。
这种性质体现了实数的密度,也是实数在数学中的重要性质之一。
三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。
2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。
3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。
4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。
(完整版)第六章实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
实数知识点详细总结

实数知识点详细总结\section{实数的定义}实数是一种可以在数轴上表示的数,包括了有理数和无理数两种。
有理数是可以表示为两个整数的比值的数,包括整数和分数;而无理数是不能表示为有理数的数,包括了无限不循环小数的数。
在数轴上,实数按照大小顺序排列,可以用有理数和无理数填满。
实数具有如下的性质:1. 实数的封闭性:实数的加法、减法、乘法和除法结果仍然是实数。
2. 实数的稠密性:在任意两个实数之间,都存在另外一个实数。
3. 实数的有序性:实数可以按照大小顺序进行比较。
4. 实数的存在性:实数可以在数轴上表示,并且可以用准确的小数表示。
\section{实数的性质}实数具有很多重要的性质,包括了有理数和无理数的性质。
其中,有理数具有如下的性质:1. 有理数的封闭性:有理数的加法、减法、乘法和除法结果仍然是有理数。
2. 有理数的稠密性:在任意两个有理数之间,都存在另外一个有理数。
3. 有理数的有序性:有理数可以按照大小顺序进行比较。
4. 有理数的存在性:有理数可以在数轴上表示,并且可以用准确的分数表示。
而无理数具有如下的性质:1. 无理数的无限不循环小数性质:无理数不能表示为有理数的形式,它们的小数部分是无限不循环的。
2. 无理数的稠密性:在任意两个无理数之间,都存在另外一个无理数。
3. 无理数的振荡性:无理数是无限不循环小数,其小数部分具有振荡的性质。
4. 无理数的无法准确表示性:无理数不能用准确的分数表示,并且有时候也无法用有限小数或者无限循环小数表示。
\section{实数的运算}实数的运算是实数研究中一个非常重要的方面,它包括了加法、减法、乘法和除法等多种运算。
在实数的运算中,有些运算具有交换律、结合律和分配律等性质,而有些运算则不具有这些性质。
在实数的运算中,还可以涉及到有理数和无理数的混合运算,这是实数运算中一个比较复杂的部分。
1. 实数的加法:实数的加法满足交换律和结合律,即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
实数知识点归纳总结

实数知识点归纳总结一、实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为分数形式的数,包括正整数、负整数、零、正分数和负分数。
无理数是无法用分数形式表示的数,如开根号或π。
有理数又可以分为整数和分数两类。
整数包括正整数、负整数和零,分数指的是整数之间的比值。
二、实数运算1.加法和减法实数的加法和减法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,即a+(-a)=0。
2.乘法和除法实数的乘法和除法满足交换律和结合律,即a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,a/b * b/a = 1。
3.乘幂和开方实数的乘幂满足乘法的分配律,即(a*b)^n=a^n*b^n。
实数的开方是指找出一个数的n次方等于给定的数,如a^n=b,则a为b的n次方根。
4.比较大小实数的大小关系可以通过比较大小来确定,满足传递性和完全性。
传递性指的是如果a>b 且b>c,则a>c;完全性指的是对于任意实数a,b,要么a>b,要么a=b,要么a<b。
三、实数的性质1.有序性实数集合具有明确的大小关系,可以进行大小的比较。
任意两个实数a,b,存在且只存在下列三种关系之一:a>b,a=b,a<b。
2.稠密性实数集合中,任意两个不相等的数之间都有有理数,也有无理数。
在实数轴上,任意两个不相等的实数之间都存在无数个实数。
3.区间性实数轴上的一段连续的部分称为一个区间,包括开区间、闭区间、半开半闭区间等。
4.费马小定理p为素数,a为整数,则p不能整除a和p互质的一次方程ap-x=1有整数解x。
5.实数的稳定性实数的乘、除、取幂和开根号等有限次运算保持实数的性质。
6.实数的基数实数集合的基数是不可数的,比如自然数集合、有理数集合和无理数集合的基数都是不可数的。
四、实数的应用1.实数在几何中的应用实数可以用来表示点的坐标、线段的长度、角度的大小等。
关于实数的知识点总结

关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
第六章 实数 全章复习

第六章 实数 全章复习一:知识梳理(磨刀不误砍柴工)1.平方根及算术平方根如果a x =2 ()0≥a 则称x 是a 的________;可以表示为________,其中______表示a 的算术平方根 注意:①正数有____个算术平方根;有______个平方根,它们之间的关系是________②负数有____个平方根,有______算术平方根③0的平方根和算术平方根都是______④算术平方根是一个______(大于、小于、大于等于、小于等于)零的数。
⑤算术平方根等于其本身的数有__________,平方根等于其本身的数有___________2.立方根如果a x =3 则称x 是a 的_______(也叫三次方根),可以表示为________注意:①正数的立方根是________ ②负数的立方根是___________③0的立方根是___________ ④任何一个数都有________的立方根 ⑤立方根等于其本身的数有___________ ⑥________3=-a3.实数及其分类1.____________________叫无理数。
试写出几个常见的无理数__________2.实数是________和_________的统称。
3.实数和数轴上的点是________对应的关系。
4.实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数正无理数无限循环小数都可以化成有限小数或正有理数有理数实数____________________________ ⎪⎩⎪⎨⎧_________0________实数4.实数的运算有理数的运算法则及性质,到实数范围内依然成立如 ① 相反数任意一个实数a 的相反数是______________② 绝对值⎪⎩⎪⎨⎧<=>=)0_________()0_________()0_________(a a a a③ 倒数任意一个实数a )0(≠a 的倒数是______________④ 交换律、结合律、分配律、去括号法则等运算性质和法则在实数范围内依然成立 二:小试牛刀(快乐展示 展示快乐)选择题:1. 有下列说法:⑴2是无理数; ⑵无限不循环小数是无理数;⑶无理数是无限小数;。
高中数学实数的性质与运算总结

高中数学实数的性质与运算总结在高中数学中,实数是一个基础且重要的概念。
实数包括有理数和无理数两部分,它们在数轴上占据了所有的位置。
实数的性质和运算规则是我们学习数学的基础,下面我将对实数的性质和运算进行总结。
一、实数的性质1. 实数的有序性:对于任意两个实数a和b,它们之间必定满足a<b、a=b或a>b的关系。
这个性质使得实数可以在数轴上有序排列。
2. 实数的稠密性:在任意两个实数之间,总存在一个实数。
也就是说,无论两个实数之间的距离多小,总可以找到一个实数填补它们之间的空隙。
3. 实数的区间性:实数可以表示为一个区间,包括开区间、闭区间和半开半闭区间。
例如,(a,b)表示一个开区间,[a,b]表示一个闭区间,[a,b)或(a,b]表示一个半开半闭区间。
4. 实数的无限性:实数集合是无限的,没有最大值和最小值。
无论给定一个实数,总可以找到比它更大或更小的实数。
二、实数的运算规则1. 实数的加法运算:对于任意两个实数a和b,它们的和记作a+b。
实数的加法满足交换律、结合律和分配律。
2. 实数的减法运算:对于任意两个实数a和b,它们的差记作a-b。
实数的减法可以转化为加法运算,即a-b=a+(-b)。
3. 实数的乘法运算:对于任意两个实数a和b,它们的乘积记作a*b。
实数的乘法满足交换律、结合律和分配律。
4. 实数的除法运算:对于任意两个非零实数a和b,它们的除法记作a/b。
实数的除法可以转化为乘法运算,即a/b=a*(1/b)。
5. 实数的幂运算:对于任意实数a和自然数n,它们的幂记作a^n。
实数的乘方满足乘方的乘法规则和指数的加法规则。
6. 实数的开方运算:对于任意非负实数a和自然数n,它们的开方记作√a。
实数的开方满足开方的乘法规则和指数的除法规则。
三、实数的应用实数的性质和运算规则在数学中有广泛的应用。
例如,在代数中,我们可以通过实数的运算规则解决方程和不等式;在几何中,我们可以利用实数的性质和运算计算图形的面积和体积;在概率论中,我们可以使用实数的运算规则计算概率。
初中数学七年级数学第六章实数(全章节图文详解)

实 数
有理数
正整数 0 自然数 负整数 正分数
无理数
无限不循环小数
一般有三种情况
负分数 正无理数 负无理数 (1)含π 的数
2 开方开不尽的数
(3)有规律但不循环的无限小数
七年级数学第六章实数
也可以这样来分类: 正实数 实 数 0
负有理数 正有理数
正无理数
负实数
负无理数
七年级数学第六章实数
七年级数学第六章实数
几个基本公式:(注意字母 的取值范围)
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数 a为任何数 a为任何数
a
3
a =
-3 a
七年级数学第六章实数
区别
你知道算术平方根、平方根、立方根联系和区别吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或 无限循环小数。
4
3 0.13
(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3
5
64
3
3
9
9
3
3 4
9
3 4
0. 6
3
0.13
3 0. 6 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1个B.2个C.3个D.4个
7、已知 , ,且 >0,则 的值为()
A.8 B.-2C.8或-8 D.2或-2
8、已知x的平方根是±8,则x的立方根是________.
2、注意区分平方根、算术平方根、算术平方根的相反数的概念。
四、作业
《基础训练》P54-P55全章整合
设计意图:通过与有理数比较,联系生活实际复习无理数、实数的概念,让学生对实数进行分类,了解分类的基本原则,进一步体会分类思想。本章内容与生活实际的联系是非常紧密的。无理数是从现实生活中抽象出来的一种数,开方运算也是实际中经常用到的运算,用有理数估计无理数的大小更具有实用价值。所以复习时不仅要注重概念、运算,更要注重与生活实际的联系。
14、已知 是 的整数部分, 是它的小数部分,则 =,b=。
15、若 , 是实数,且 ,则
16、把7的平方根和立方根按从小到大的顺序排列为。
17、|x|<2π,x为整数,求x。
18、计算
⑴ ⑵⑵
20、若 互为相反数, 互为倒数, 的绝对值是4,求 的值。
三、课堂小结
1、实数体系的简单框架。
2、下列整数中,与 最接近的是()
A.4B.5C.6D.7
3、已知 ,若 ,则 约等于()
A.0.0539B.0.539C.5.39D.539
4、下列各式中,无意义的是()
A.- B. C. D.
5、下列各组数中,互为相反数的一组是()
A.-2与 B.-2与 C.-2与 D.│-2│与2
6、下列说法错误的有()个。
①实数分类:正有理数
正实数
正无理数
实数0
负有理数
负实数
负无理数
②每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的。
③你会在数轴上寻找 、、 、 、л等无理数吗?现实生活中有它们吗?
二、巩固练习
1、求下列各数的平方根:
(1) ;(2) ;(3) .
课题:第六章实数(全章小结)
耿城中心学校张莺
教学目标:1、理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2、了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义
3、进一步体会数系扩充的必要性与合理性,了解实数与数轴上的点一一对应以及有理数的运算律适用于实数范围
教学重点:.平方根和算术平方根的概念、性质,无理数与实数的意义;
教学难点:.平方根和算术平方根的概念、性质,无理数与实数的意义以及相关概念及运算。.
教学过程:
一、知识点回顾
1、
特别是平方根、立方根、算术平方根的概念,进行对比复习,注重它们的区别与联系,可让学生找一找区别与联系。
2、当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数。
9、已知一个正数的平方根为 和 ,则 ,这个数为。
10、计算 + =________.
11、已知m,n为两个连续的整数,且m< <n,则m+n=。
12、实数 、 、0.80108、0、-2 、 、0.1010010001 中,无理数的个数为______个。
13、 的倒数是_______. 的相反数是,绝对值是,