实际应用问题(初三)

合集下载

初三数学应用题

初三数学应用题

初三数学应用题数学是一门实用性很强的学科,通过应用数学的知识,我们能够解决各种实际问题。

在初三数学中,应用题在考试中占据了很大的比重。

本文将通过一些具体的数学应用题,帮助同学们更好地理解和掌握初三数学中的应用题。

第一题:小明买苹果小明去超市买苹果,他买了6斤苹果,每斤4元。

他付给售货员200元,请问他能找回多少元?解答:小明购买的苹果共计花费24元(6斤*4元/斤),他付给售货员的钱是200元,所以他能找回的钱是200-24=176元。

第二题:饼干均匀分配有18块饼干需要分给3个小朋友,要求每个小朋友分到相同数量的饼干,最后每个小朋友能分到几块饼干?解答:18块饼干除以3个小朋友等于6,所以每个小朋友可以分到6块饼干。

第三题:山地车比赛一辆山地车与一辆公路自行车同时从一处出发,山地车速度是每小时18公里,公路自行车速度是每小时25公里。

如果他们同时出发,2小时后,他们相距多远?解答:山地车和公路自行车同时出发,并且速度不变,所以他们相对速度是25-18=7公里/小时。

2小时后,他们的相对距离是7*2=14公里。

第四题:容积计算一个长方体水桶的长是30厘米,宽是20厘米,高是15厘米。

请问这个水桶能装多少升水?解答:长方体的体积等于长×宽×高,即30×20×15=9000立方厘米。

1升等于1000立方厘米,所以这个水桶能装9000/1000=9升水。

第五题:图书馆书籍数量某图书馆的总书籍数量是12000本,其中文学类书籍占总数量的30%,请问图书馆中的文学类书籍有多少本?解答:文学类书籍占总数量的30%,所以文学类书籍的数量是12000*30%=3600本。

通过以上的数学应用题,我们可以发现数学知识在实际生活中的重要性。

通过学习和解答这些问题,同学们能够提高自己的数学应用能力,增强解决实际问题的能力。

希望同学们在学习初三数学的过程中,能够充分理解和掌握应用题的解题思路和方法,从而在考试中取得良好的成绩。

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

初三数学专题(应用类)

初三数学专题(应用类)

初三数学专题(应用类)—— 仙下中学 初三2008年一、填空。

1、市场调查表明:某种商品的销售率y (销售率=进货数量售出数量)与价格倍数x (价格倍数=进货价格售出价格)的关系满足函数关系151761+-=x y (0.8≤x ≤6.8).根据有关规定,该商品售价不得超过进货价格的2倍.某商场希望通过该商品获取50%的利润,那么该商品的价格倍数应定为 .2、某银行设立大学生助学贷款,6年期的贷款年利率为6%,贷款利息的50%由国家财政贴补。

某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是____万元。

3、请根据所给方程1566=++x x ,联系生活实际,编写一道应用题。

(要求题目完整,题意清楚,不要求解方程)。

4、商品的进价是1000元.售价为1500元.由于销售情况不好,商店决定降价出售.但又要保证利润率不低于5%.那么,商店最多降 元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%)5、红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8份(按30天计)的电费是元。

(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数)6、某校学生给“希望小学”邮寄每册a元的图书240册,若每册图书的邮费为书价的5%,则共需邮费元.7、我国政府为解决老百姓看病难的问题,决定下调药品价格。

某种药品在1999年涨价到30%后,2001年降价70%至a元,则这种药品在1999年涨价前的价格为元。

8、某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出的第n天(n是大于2的自然数)应收租金。

二、选择。

1、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费推带20公斤行李,超重部分每公斤按飞机票价格的( )A 、1000元B 、800元C 、600元D 、400元2、李老师骑自行车上班,最初以某一速度行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师让学生画出自行车行进路程S (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如下,你认为正确的是( )(A )① (B )② (C )③ (D ))④3、如图,某产品的生产流水线每小时可生产100件产品.生产前没有产品积压.生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(t )的函数,那么,这个函数的大致图象只能是( ).A BC D万元,如果平均每月增长率为x ,则由题意列方程应为( )A. 200110002()+=xB. 20020021000+⋅⋅=xC. 20020031000+⋅⋅=xD. 20011110002[()()]++++=x x5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量与行驶时间t (时)的函数关系用图象表示应为( )Q (升)40 O 8 t (时)A Q (升) 40O 8 t (时) CQ (升)40 O 8 t (时)B Q (升) 40O 8 t (时) D6、某种品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价应为 ( )(A )0.7a 元, (B )0.3a 元 (C )3.0a 元。

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

第21章《一元二次方程》实际应用之提分专项解答题必练题型(二)1.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?2.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?4.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?5.宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?6.如图,要设计一幅宽20cm,长30cm的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3.如果要使彩条所占面积是图案面积的19%,求竖彩条的宽度.7.一次篮球联赛,每两个队之间都要进行一场比赛,总共要比赛36场,你能计算出有多少个队参加比赛吗?8.某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?9.如图,用长6m的铝合金条制成“日“字形窗框,请问宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?10.永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)参考答案1.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.2.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.3.解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t 1=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.当点Q到达C点时,S△PQB=××(6﹣t)=4∴t=答:经过2秒或秒后△PBQ的面积等于4cm2.4.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.5.解:(1)捐款增长率为x,根据题意得:1000(1+x)2=1210,解得:x 1=0.1,x 2=﹣2.1(舍去).则x =0.1=10%.答:捐款的增长率为10%.(2)根据题意得:1210×(1+10%)=1331(元).答:第四天该校能收到的捐款是1331元.6.解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30﹣3x )(20﹣2x )=20×30×(1﹣19%),解得x 1=1,x 2=19(舍去).所以3x =3.答:竖彩条的宽度是3cm .7.解:设有x 个队参加比赛,每个队都要比赛(x ﹣1)次,但两队只比赛一次.则:,解得x 1=9,x 2=﹣8(舍去).答:有9个队参加比赛.8.解:设每轮传染中平均每个人传染了x 人,依题意得1+x +x (1+x )=121,∴x =10或x =﹣12(不合题意,舍去).所以,每轮传染中平均一个人传染了10个人.9.解:设宽为xm ,则高为m ,由题意得:x ×=1.5,解得:x 1=x 2=1,高是=1.5(米).答:宽为1米,高为1.5米.10.解:(1)当10≤x ≤20时,设y =kx +b (k ≠0)(11分)依题意,得(3分)解得(5分) ∴当10≤x ≤20时,y =﹣5x +250;(6分)(2)∵10×200<2625<20×150∴10<x <20(8分)依题意,得xy =x (﹣5x +250)=2625(10分) 即x 2﹣50x +525=0解得x 1=15,x 2=35(舍去)∴只取x =15.(12分)答:该旅游团共购买这种土楼模型15个.(13分)。

初三数学实践与应用试题答案及解析

初三数学实践与应用试题答案及解析

初三数学实践与应用试题答案及解析1.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:CD=6.9m,∠ACG=22°,∠BCG=13°,EF=10m,∠AEB=32°,请你选择其中的一种方法,求教学楼的高度(结果保留整数)【答案】19(米)【解析】若选择方法一,在Rt△BGC中,根据即可得出CG的长,同理,在Rt△ACG中,根据可得出AG的长,根据AB=AG+BG即可得出结论。

若选择方法二,在Rt△AFB中由可得出FB的长,同理,在Rt△ABE中,由可求出EB的长,由EF=EB﹣FB且EF=10,可得,故可得出AB的长。

解:若选择方法一,解法如下:在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∴。

在Rt△ACG中,∠AGC=90°,∠ACG=22°,∴AG=CGtan∠ACG =30×tan22°≈30×0.40=12。

∴AB=AG+BG=12+6.9≈19(米)。

答:教学楼的高度约19米。

若选择方法二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∴。

在Rt△ABE中,∠ABE=90°,∠AEB=32°,∴。

∵EF=EB﹣FB且EF=10,∴,解得AB=18.6≈19(米)。

答:教学楼的高度约19米。

2.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D,E,F分别是边AB,BC,AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0的几何图形),点P运动的时间为x(s)(1)当点P运动到点F时,CQ=cm;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;(3)当点P在线段FD上运动时,求y与x之间的函数关系式.【答案】(1)5。

初三数学一元二次方程实际问题经典题型汇总3

初三数学一元二次方程实际问题经典题型汇总3
5.B
【解析】
【分析】
由在绿地中开辟两条道路后剩余绿地面积为4704 m²,即可得出关于x的一元二次方程.
【详解】
设路宽为m,根据题意得:
50×100-50x-100x+x2=4704.
整理得:5000-150x+x2=4704.
故答案为:B.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,解体的关键是找到等量关系,正确列出一元二次方程.
18.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:
(1)每轮传染中平均每个人传染了几个人?
(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?
(x-40)[400-10(x-50)]=6000
-130x+4200=0
解得: = 60, = 70
根据题意,进货量要少,所以 = 60不合题意,舍去.
答:售价应定为70元.
【点睛】
本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.
8.(1)月的平均增长率为 ;(2) 月份销售自行车为 辆.
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
17.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.
(1)求BE的长;
(2)当t为多少秒时,△BPE是直角三角形?

初三数学实际问题与一元二次方程试题

初三数学实际问题与一元二次方程试题

初三数学实际问题与一元二次方程试题1.商场销售某种产品,一月份销售了若干件,共获利润30 000元.二月份将这种商品的单价降低了0.4元.但销售量比一月份增加了5 000件,从而获得利润比一月份多2 000元. 求调价前每件商品的利润是多少元?【答案】2【解析】解: 设调价前每件商品的利润是元,根据题意,得,化简,得,,解得=2或(舍去).答:调价前每件商品的利润是2元.2.象棋比赛中,每个选手与其他选手将比赛一场,每局胜者记2分,败者记0分,如果平局,每人各记1分,今有4 位同学统计了比赛中全部选手得分的总和分别为2025,2070,2080,2085分,经核实,其中只有一位同学是正确的,试求这次比赛中共有多少名选手参加?【答案】46名【解析】本题考查了一元二次方程的应用;得到局数是解决本题的难点;判断出相应的分数是解决本题的易错点.每局的得分均为2分,2人的比赛只有一局;局数=×选手数×(选手数-1);等量关系为:2×局数=所得分数,根据所得分数应是2的倍数可舍去2025,2085,把剩下的分数代入看哪个有整数解即可.解:设这次比赛中共有x名选手参加.易得分数一定不是2025,2085,2××x(x-1)=2070,解得x1=46,x2=-45(不合题意,舍去)∵只有一位同学是正确的,∴正确的分数是2070,共有46名选手参加比赛.3.某文具店第一次把乒乓球卖出一半后,补充了1000个,以后每次卖出一半后, 都补充了1000个,到第十次卖出一半后恰好剩1000个,文具店原有乒乓球多少个?【答案】2000个【解析】本题考查了一元二次方程的应用. 设原来有x个,根据题意卖出一半就加1000个,最后一次卖出一半正好是1000个,所以前面每次卖出一半后也是1000个,然后列方程求解即可.解:设原来有x个,根据题意得,每次卖出一半后都是剩余1000个,+1000(++…+)=1000,解得x=2000.4.某公司向银行贷款20万元资金, 约定两年到期时一次性还本付息, 年利率是12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈余6. 4万元,若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.【答案】20%【解析】本题考查了一元二次方程的应用. 等量关系为:20×(1+资金增长的百分数)2=本金+本金×利率+盈余的6.4,把相关数值代入计算求正数解即可.解:设这个百分数为x,20×(1+x)2=20+20×12%+6.4,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,∴x=20%.5.若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±15【答案】D【解析】本题主要考查了一元二次方程的应用. 设这两个连续整数中较小的一个是为x,则较大的是x+1.根据两个连续整数的积是x(x+1),根据关键描述语“两个连续整数的积是56”,即可列出方程求得x的值,进而求得这两个数的和.解:设这两个连续整数为x,x+1.则x(x+1)=56,解之得,x1=7或x2=-8,则x+1=8或-7,则它们的和为±15.故选D6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000【答案】D【解析】本题主要考查了一元二次方程的应用. 根据平均每月增长率为x,可求二月、三月的营业额,利用一月、二月、三月的营业额共1000万元,可建立方程.解:由题意,二月的营业额为200(1+x),三月的营业额为200(1+x)2,∵一月、二月、三月的营业额共1000万元∴200+200(1+x)+200(1+x)2=1000即200[1+(1+x)+(1+x)2]=1000故选D.7.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.【答案】30%【解析】本题考查了一元二次方程的应用.设平均每次降价的百分率为x,根据原售价7200元/台,经连续两次降价后,现售价为3528元/台,可列方程求解.解:设平均每次降价的百分率为x,7200(1-x)2=3528x=30%或x=170%(舍去).平均每次降价的百分率为 30%.8.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.【答案】20%【解析】本题主要考查了一元二次方程的应用. 可设原来的成本为1.等量关系为:原来的成本×(1-每年下降的百分数)2=原来的成本×(1-36%),把相关数值代入求合适解即可.解:设每年下降的百分数为x.1×(1-x)2=1×(1-36%),∵1-x>0,∴1-x=0.8,∴x=20%.9.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.【答案】20%【解析】本题主要考查了一元二次方程的应用. 设三、四月份平均每月销售额增长的百分率是x.由题意得二月份的销售额是100(1-10%),在此基础上连续两年增长,达到了129.6,列方程求解.解:设三、四月份平均每月销售额增长的百分率是x.100(1-10%)(1+x)2=129.6,1+x=±x==20%或x=-(负值舍去).10.某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

初三数学《三角函数的实际应用》题目

初三数学《三角函数的实际应用》题目

专题08《三角函数的实际应用》题型一、利用仰角和俯视解决问题【例1】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【变式1-1】小明在楼高AB=15米的楼顶A处测得一电视塔底部C的俯角为31°,测得塔顶D的仰角为52°,求楼顶A到塔顶D的距离(结果保留整数).(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.80,sin52°=0.79,cos52°=0.62,tan52°=1.28)【变式1-2】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)【变式1-3】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB 和CD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】【例2】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)【变式2-1】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A 的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈)【变式2-2】如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【变式2-3】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)题型二、方位角的应用【例1】钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一我国渔政执法船C ,求此时船C 与船B 的距离是多少.(结果保留根号)【变式1-1】如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,栈道AB 与景区道路CD 平行.在C 处测得栈道一端A 位于北偏西42︒方向,在D 处测得栈道另一端B 位于北偏西32︒方向.已知120CD m =,80BD m =,求木栈道AB 的长度(结果保留整数).(参考数据:17sin 3232︒≈,17cos3220︒≈,5tan 328︒≈,27sin 4240︒≈,3cos 424︒≈,9tan 42)10︒≈【变式1-2】如图,位于A 处的海上救援中心获悉:在其北偏东68︒方向的B 处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30︒且距离A 点20海里的C 处救生船,此时,遇险船在救生船的正东方向B 处,现救生船沿着航线CB 前往B 处救援,求救生船到达B 处行驶的距离?(参考数据:sin 680.90︒≈,cos680.36︒≈,tan 68 2.50︒≈,1.7)≈【例2】我国北斗导航装备的不断更新,极大方便人们的出行.某中学从A 地出发,组织学生利用导航到B 、C 两个地区进行研学考察活动,出发时,发现C 地恰好在A 地正北方向,且距离A 地15.3千米.但是导航显示路线应沿北偏东45°方同走到B 地,再沿北偏西37°方向走一段距离才能到达C地,求B,C两地的距离(精确到1千米).(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.7)【变式2-1】某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【变式2-2】码头A、B位于东西走向的河岸线l上,一游轮在P处测得码头A在其北偏东70°,游轮向东航行10分钟后到达Q处,此时测得码头B在其北偏东35°.已知游轮的速度为30千米/小时,两码头A、B相距2千米.(1)求点P到河岸线l的距离;(2)若该游轮按原速度从点Q驶向码头B,则它至少需要多长时间才能到达码头B?(参考数据:sin35°≈,cos35°≈,tan35°≈,sin70°≈,cos70°≈,tan70°≈)【变式2-3】海岛A 的周围8 n mile 内有暗礁,渔船跟踪鱼群由西向东航行,在点B 处测得海岛A 位于北偏东67︒,航行12n mlie 到达C 点,又测得小岛A 在北偏东45︒方向上.如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:12sin 6713︒≈,5cos 6713︒,12tan 67)5︒≈题型三、综合类【例1】如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市.CD 与AB 所在直线互相平行,且都与马路的两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°.(1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B .求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米.(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)【变式1-1】如图,某学校教学楼AB的后面有一建筑物CD,在距离CD正后方28米的观测点P处,以22︒的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD 上距离地面2米高的E处,测的教学楼的顶端A的仰角为45︒,求教学楼AB的高度(结果保留整数,2 tan22)5︒≈.【变式1-2】如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【变式1-3】在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)【变式1-4】如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)【变式1-5】2018年2月17日上午10点34分,我国自主研制的第二架C919大型客机在上海浦东国际机场进行首次飞行,这意味着C919大型客机逐步拉开全面试验试飞的新征程.这大大激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【变式1-6】如图,在一条河流的两岸分别有A,B,C,D四棵景观树,已知AB∥CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度.(参考数据:sin73°≈,cos73°≈,tan73°≈)【课堂练习】1、如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)2、小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)3、若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tanl5°≈0.27)4、共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、某专卖店有A,B两种商品。

已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同的折以后,某人买了500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折。

2、某学校在“学雷锋,争做爱心少年”活动中,涌现出大批“爱心少年”。

学校计划购进一些文具套装进行奖励。

已知5套甲种文具套装的价钱与3套乙种文具套装的价钱的和为231元;4套甲种文具套装的价钱与6套乙种文具套装的价钱的和为282元。

(1)求甲、乙两种文具套装的单价分别是多少元;
(2)若购进甲种文具套装有优惠,优惠方法是:购进甲种文具套装超过20套。

超出的部分可享受7折优惠。

若购进x套甲种文具套装需要花费y元,请求出y与x的函数关系式。

3、威利商场销售A,B两种商品,售出1件A种商品和4件B 种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元。

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A,B两种商品很快售完,威利商场决定再一次购进A,B两种商品共34件,如果将34件全部售完后所得利润不低于4000元,那么威利商场至少需购进多少件A商品?
4、倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套。

A,B两种型号的健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买。

(1)若购进A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套。

(2)若购买A,B两种型号健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?
5、雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销。

小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如下表:
(1)小明的爸爸商店购进甲、乙两种型号的口罩各多少袋?
(2)该商店第二次以原价购进甲、乙两种型号的口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩的袋数是第一次的2倍。

甲种型号口罩按原价销售,而效果更好的乙种型号口罩打折让利销售。

若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?
6、学校“百变魔方”社团准备购买A,B两种魔方。

已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同。

(1)求两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个)。

某商店有两种优惠活动,如下所示。

请根据以上信息,说明选择哪种优惠活动购买魔方更实惠。

活动一:A种魔方打八折,B种魔方打四折。

活动二:购买一个A种魔方送一个B种魔方。

7、学校准备购进一批节能灯,已知1只A型号的节能灯和3只B
型号的节能灯共需26元;3只A型号的节能灯和2只B型号的节能灯共需29元。

(1)求1只A型节能灯和1只B型节能灯的售价各是多少元;
(2)学校准备购进两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请你设计出最省钱的购买方案,并说明理由。

8、某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠
卡:
①金卡售价600元/张,每次凭卡不在收费;
②银卡售价150元/张,再次凭卡另收10元。

暑假普通票正常出售,两种优惠卡仅限暑期使用,不限次数。

设游泳x次时,所需总费用为y元。

(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一直角坐标系中,若三种消费方式对应
的函数图像如图所示,请求出A,B,C的坐标;
(3)请根据函数图像,直接写出选择哪种消费方
式更合算。

9、某商店销售10台A型和20台B型的电脑的利润为4000元,
销售20台A型和10台B型电脑的利润为3500元。

(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

设购进A型电脑x台,这100台电脑的销售总利润为y元。

①求y关于x的函数关系式;
②该商店购进A型,B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台。

若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案。

10、某超市计划购进甲、乙两种品牌的新型节能台灯20盏,这两种台灯的进价和售价如下表所示:
设购进甲种台灯x盏,且所购进的两种台灯都能全部卖出。

(1)若该超市购进这批台灯共用法1000元,问这两种台灯各购进多少盏?
(2)若购进两种台灯的总费用不超过1100元,那么该超市如何进货才能获得最大利润?最大利润是多少?
(3)最终超市按照(2)中的方案进货,但实际销售中,由于乙品牌的台灯销售前景不容乐观,超市计划对乙品牌台灯进行降价销售,当每盏台灯最多降价多少元时,全部销售完后能使利润不低于550元。

11、某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),录W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价
为多少元时获得最大利润,最大利润是多少?
12、某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
(1)计算这5天销售额的平均数;(销售额=单价x销量)
(2)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式;(不需要写出函数自变量的取值范围)
(3)预计在今后的销售中,销量与单价仍然存在(2中的关系,且该产品的成本是20元/件为使工厂获得最大利润,该产品的单价应定为多少?。

相关文档
最新文档