高精度轧制(课程报告)

合集下载

(金属轧制工艺学)6板带材高精度轧制和与板形控制宣讲培训

(金属轧制工艺学)6板带材高精度轧制和与板形控制宣讲培训
机维护的基本原则、维护策略和优化方案,以及如何快速准确地解决常见故障。
1 Maintenance Best Practices 2 Troubleshooting Techniques
基于现代技术的轧机维护策略和实践。
解决常见故障的方法和技巧。
3 Advanced Optimization Techniques
定性管理。
Conclusion
本次培训涉及了金属轧制技术的多个方面,旨在提高轧制技术人才的水平和竞争力。我们希望您能够充 分掌握所学知识,不断拓展思路、创新方法、应用技术,为轧机行业的可持续发展做出贡献。
掌握轧制机的力学原理和本质,是加深对金属轧制技术理解和应用的关键。我们将详细介绍轧制机的分 类、工作原理、关键部件和操作流程。
Rolling Mechanics
轧制机构分类、工作原理与力学建模。
Rolling Equipment
轧机设备分类、关键部件设计以及操作流程。
Rolling Process
轧制流程和轧制参数的应用。
Advanced Cooling Technologies
传统冷却技术的不足和现代
冷却技术的应用。
Optimization Techniques
如何优化冷却参数,保证冷 却效果和轧制品质。
Eco-Friendly Cooling Solutions
如何减少能源耗费、提高冷
却效率并减少对环境的影响。
Maintenance and Troubleshooting in Metal Rolling Mills 金属轧制机的维护和故障排除对于保证轧制设备的稳定运行和高效生产至关重要。我们将介绍轧
Roll Pass Design Principles

高精度板带材轧制理论与实践

高精度板带材轧制理论与实践
带钢的断面不是完全对称的,带钢断面的关键厚度应在带钢的 操作侧和传动侧分别测量。 带钢断面的关键厚度
参数
符号 定义
公式
中心厚度
hc
在轧件中心在线测得的轧件厚度
边部减薄区厚度
(1)传动侧厚度 (2)操作侧厚度 (3)平均厚度
骤减区厚度 (1)传动侧厚度 (2)操作侧厚度 (3)平均厚度
边部厚度 (1)传动侧厚度 (2)操作侧厚度 (3)平均厚度
hj′ hj″ hj
hi′ hi″ hi
距传动侧端距离为j′的轧件厚度 距操作侧端距离为j″的轧件厚度 传动侧与操作侧边部减薄厚度的算术 平均值
距传动侧端为i′处的轧件厚度 距操作侧端为i″处的轧件厚度 传动侧与操作侧厚度的算术平均值
he′ he″ he
距传动侧端为e′处的轧件厚度 距操作侧端为e″处的轧件厚度 传动侧与操作侧厚度的算术平均值
X射线测厚仪最主要的特点就是回应快以及对蒸汽和
周围空气温度不敏感。X射线测厚仪最严重的缺点就
是它的辐射能有害,尽管X射线发生器只在工作时才
放出射线从而在某种程度上缓和了一些潜在的危害。
应用于热轧和冷轧产品的X射线测厚仪主要技术参数
如下:
轧机类型:
热带钢轧机 冷轧机
典型厚度范围:
1~19mm
0.2~0.3mm
式中 ――空载时辊缝位置基准值; ――带钢出口厚度基准值 ――轧制力 ――轧机刚度, ――作用在一个工作辊轴承座上的正弯辊力。
测量出来的轧力经电子整形器整形,用来计算轧机变形或伸长 量。把这个值从带钢出口厚度基准值中减掉就得到了空载时辊 缝位置基准值,然后将空载辊缝基准值的信号与前面所说的位 置传感器提供的检测值相比较。 轧机除了本身因有的刚度外,还可以利用其测厚仪AGC系统来提 高其刚度值。通过对机架伸长量的完全补偿,就可以使机架接 近于刚体,从而在轧制时辊缝就不会随着来料厚度和硬度的波 动而变化。为了获得带钢的最佳厚度和平直度,除了对控制系 统稳定性的要求外,通常还要调节测厚仪AGC系统,以使前几座 机架具有较高的刚度而后几座机架具有较低的刚度。

轧制理论与工艺 第三篇 板带材高精度轧制和板形控制

轧制理论与工艺 第三篇  板带材高精度轧制和板形控制

(a)板坯厚度变化时:压下的调整
量△S0与料厚的变化量并不相等
由三角形DEE/和三角形EE/F 可推出下式:
S

0
M K
h 0
图14—1 (a)板坯厚度变化时
主要用于前馈即预控AGC,即 在入口处预测料厚的波动,据 以调整压下,消除其影响。
轧制理论与工艺
RAL
(b)变形抗力变化时:压下的调整量△S0与轧出板厚变化量△h也不相等
建议的,1蒙相当于相对长度差为10-4。泼森定义板形为横向
上单位距离上的相对长度差,以mon/cm表示,即:
s
104
L L
B) 加拿大铝公司是取横向上最长与最短纵条之间的相对长度差
作为板形单位,称为 I 单位,1个I单位相当于相对长度差为
10-5。所以板形表示为:
st
105
L L
式中:L—最短纵条的长度,mm。
因素:轧辊的弹性变形、不均匀热膨胀和不均匀磨损
轧辊的不均匀热膨胀
轧辊受热和冷却沿辊身分布不均,一般辊身中部温度
高于边部,传动侧低于操作侧,径向辊面高于辊心。
这使得热膨胀精确计算困难,一般采用简化公式:
Rt yt KT(TZ TB )R KTTR
式中 TZ、TB——辊身中部和边部温度; R ——轧辊半径; ——轧辊材料的线膨胀系数; KT——考虑轧辊中心与表面温度不均分布的系数,一般=0.9。
S/0
P/K
h
S0
(P-P0)/K
h
h
S0
P
P0 K
S0—考虑预压变形后的空载辊缝。
轧制理论与工艺
RAL
14.1.1 板带厚度变化的原因和特点
影响板带厚度的主要因素:

轧制实验报告

轧制实验报告

轧制实验报告轧制实验报告引言轧制是一种常见的金属加工工艺,通过对金属材料施加压力使其通过辊道进行塑性变形,从而改变材料的形状和尺寸。

本实验旨在通过轧制实验,深入了解轧制工艺的原理和影响因素,并通过实验结果分析其对材料性能的影响。

一、实验目的本实验的主要目的是探究轧制工艺对金属材料的塑性变形和力学性能的影响,具体目标如下:1. 了解轧制工艺的基本原理和流程;2. 研究轧制过程中的塑性变形特点;3. 分析轧制工艺对材料的力学性能的影响。

二、实验装置与材料1. 实验装置:轧机实验设备;2. 实验材料:金属板材。

三、实验步骤1. 准备工作:清洁实验装置,准备好实验材料;2. 调整轧机:根据实验要求,调整轧机的辊道间距和轧制速度;3. 进行轧制实验:将实验材料放置于轧机辊道之间,通过轧机施加压力进行轧制;4. 观察实验结果:观察轧制后的材料形状和尺寸变化,并记录相关数据;5. 测量力学性能:使用力学测试设备,对轧制前后的材料进行拉伸、硬度等力学性能测试;6. 数据处理与分析:根据实验数据,进行相应的数据处理和分析,得出结论。

四、实验结果与分析1. 轧制后的材料形状和尺寸变化:根据观察结果,可以看到轧制后的材料形状发生了明显的变化,原始板材变得更薄且长度增加;2. 力学性能测试结果:通过力学性能测试,可以得到轧制前后材料的拉伸强度、屈服强度、延伸率等性能指标。

实验结果显示,经过轧制后,材料的拉伸强度和屈服强度有所提高,延伸率则有所降低;3. 影响因素分析:轧制工艺中的辊道间距和轧制速度是影响轧制效果的重要因素。

辊道间距的调整会直接影响到材料的厚度变化,而轧制速度的改变则会影响到材料的塑性变形程度和性能。

五、结论通过本次轧制实验,我们得出以下结论:1. 轧制工艺可以有效地改变金属材料的形状和尺寸;2. 轧制会对材料的力学性能产生影响,使材料的拉伸强度和屈服强度提高,延伸率降低;3. 辊道间距和轧制速度是影响轧制效果的重要因素。

高精度轧制理论及技术PPT课件

高精度轧制理论及技术PPT课件

h2>h1
0 S0 h1 h2 H h(H)
冷轧--σ↑(K↑)→ P↑→ P/K↑→ h↑
P
2
P2 1
P1
σ2>σ1 h2>h1
0 S0 h1 h2 H h(H)
(2)速度变化--通过f、油膜厚度、变形抗力等起作用
P
1
2 P1
P2
V 2>V 1
油膜厚度↑ h2<h1
0 S0 h2 h1 H h(H)
高精度轧制理论及 技术
教材:
金属塑性加工学--轧制理论与工艺(第二版) 王廷溥,齐克敏主编,2002
主要参考书:
1,高精度轧制技术,黄庆学 梁爱生著,冶金工业出版社,2002。 2,高精度板带材轧制理论与实践,{美金兹伯格著,
姜明东 王国栋等译,冶金工业出版社,2000 3,带钢热连轧的模型与控制,孙一康著,冶金工业出版社,2002 4,带钢冷连轧计算机控制,孙一康著,冶金工业出版社,2002 5,金属塑性加工学----轧制理论与工艺(第二板),
考虑终轧温度要求时热连轧穿带速度设定计算:
Vmih ni f(TnC.........)...
Vn KhdnLlnttFF0nttww
Hi*
L i架
例--当H↑→h↑
控制措施--可↓S
P
由几何关系:
2
Hbd
P2
1 P-h 图的建立
1
1. P1
δ:辊热膨胀、磨损补偿
g H2> H1
h bc gc
K
H (H)h
a
bc d
a1、a2:可根据实测结果确定
Ss:设定or锁定值
产S :生压的力后为果0时辊缝指示δ器S读数

高精度_高性能冷轧钢板轧制技术的开发

高精度_高性能冷轧钢板轧制技术的开发

1998年2月Feb. 1998武 钢 技 术WISCO T ECHNOL OGY高精度、高性能冷轧钢板轧制技术的开发[日] 重松 健二郎等1 绪 言近年来,从工业产品的高可靠性和高质量的观点出发,用户对冷轧钢板的要求更加严格化和多样化。

特别是在钢板加工的生产线上,为了提高制造工艺的自动化、防止生产线故障、提高生产率和提高复合叠层产品的尺寸精度,对作为原材料的冷轧钢板要求整个长度、整个宽度上板厚精度高。

另外,从汽车制造厂来看,为了达到轻型化,要求提供原材料强度高;同时,为了外壳等形状复杂部件的整体成形,要求提供成形性良好的原材料。

为了获得成形性,特别是深冲性良好的冷轧钢板,开发了用Nb 和Ti 固定C 的超低碳钢。

而为了进一步提高深冲性,希望进行高压下的冷轧。

另一方面,随着汽车的大型化,宽幅钢板的需要量增加,强烈要求开发能够对应于大范围的产品尺寸和压下条件的轧制技术。

为了满足以上的要求,住友金属工业公司建造了鹿岛制铁所的第二台冷轧设备,开发了新的冷轧钢板轧制技术。

2 薄边控制技术的开发2.1 控制薄边的手段在冷轧中,由于板宽边部的工作辊压扁变形的恢复和轧材的宽向塑性流动,发生边部减薄,成为板宽方向厚度精度不良的主要原因。

作为减少薄边的手段,近年来提出并实用了的方法有使用小直径工作辊的方法和沿着板宽方向移动在辊身一端有锥形部位的工作辊的方法。

也曾报导过与这些特殊的轧制方法不同的方法,如在串列式冷连轧机的前面机架中进行二次曲线状轧辊凸度的控制,便能使薄边减轻。

2.2 薄边控制的特性解析用严密考虑了轧制方向和板宽方向应力平衡的三维板坯法解析模型研究薄边控制的特性。

在解析模型中,轧辊的弹性变形中轴心挠曲是用轧辊凸度补偿的,只考虑了压扁变形。

计算条件为轧辊直径300600m m,材质SPCC,带钢厚度1.0 6.0mm,压下量30%,带钢宽度1000m m,后张力20M Pa,摩擦系数0.05,前张力98M Pa,而入口侧母材的断面形状是矩形。

轧制实验报告

轧制实验报告

轧机弹塑性曲线的测定1.实验目的掌握测定轧机刚度所采用的固定辊缝法,了解刚度系数K 的意义及其对板材厚度的影响。

并了解轧件在轧制过程中的塑性特性。

2.实验仪器设备130轧机,轧制工艺参数及计算机采集系统,千分尺,钢试件3.实验原理3.1.轧机刚度系数轧机刚度是指轧机抗弹性变形的能力,刚度系数的测定为:当轧机的辊缝值产生单位长度的增量时所需到的轧制力的增量。

即∆P :轧制力的增量, ∆f :弹跳值的增量 3.2.轧机弹性曲线轧机的弹性曲线如图所示,则轧出的钢板的厚度为:即P=K(h —)其中,K:轧机刚度系数,:轧机辊缝3.3.轧机塑性曲线由塑性方程可知,轧制力大小与轧件变形时的压下量有关,其公式为其中:平均单位压力b ,h :钢板的宽度和厚度 H:轧件的厚度 R:轧辊半径由于平均单位压力是的函数,其方程为一非线性方程,塑性变形曲线0轧机弹塑性曲线如上图所示。

4.实验步骤4.1.轧机刚度测量1.取厚度不同的钢试件五块,精确测量其厚度。

2.调整辊缝为0.79mm3.分别将五块试件送入轧机,每块轧制时要求记录该试件的轧制压力和轧后的厚度(取六个点,去除最大最小后取均值),填入表一中。

4.2.轧件塑性曲线1. 取厚度相同的钢试件四块(1.5mm),精确测量其精度。

2.第一块以=0.2mm轧制,第二块以=0.6mm轧制,第三块以=0.8mm 轧制,第三块以=1mm轧制。

3.每块轧制时要求记录该试件的轧制压力和轧后的厚度(取六个点,去除最5.数据处理及分析5.1.数据及处理表三至表七所列数据分别为各轧件原始厚度测量数据、轧机刚度试验时轧件厚度测量数据、轧件塑性试验时轧件厚度测量数据、轧机刚度试验时电脑记录数据、轧件塑性试验时电脑记录数据。

由以上各表数据,处理后可得表一、表二数据。

5.2.实验分析由表一数据可作出轧机弹性曲线如图一所示。

图一由表二数据可作出轧件塑性曲线如图二所示。

图二图三可以看出红色曲线在所测到的数据中接近于一条直线,即轧机的刚度系数我们可以近似的看做定值。

金属轧制实训报告总结

金属轧制实训报告总结

一、实训目的金属轧制实训是我校材料工程专业的重要实践教学环节,旨在通过实际操作,让学生了解金属轧制的原理、工艺过程和设备操作,提高学生的实际操作技能和工程应用能力。

本次实训的主要目的是:1. 使学生掌握金属轧制的工艺流程和基本原理;2. 熟悉金属轧制设备的操作方法和安全规范;3. 培养学生的团队合作精神和动手能力;4. 提高学生的工程应用能力和创新意识。

二、实训内容本次金属轧制实训主要包括以下内容:1. 金属轧制原理及工艺流程的学习;2. 金属轧制设备的操作与维护;3. 金属轧制工艺参数的调整与优化;4. 金属轧制产品的检验与分析;5. 实验室安全知识的学习。

三、实训过程1. 理论学习:首先,我们学习了金属轧制的原理、工艺流程、设备类型、工艺参数等基本知识。

通过查阅资料、听课等方式,我们对金属轧制有了初步的了解。

2. 实践操作:在掌握了基本理论知识后,我们进入实验室进行实践操作。

在指导老师的指导下,我们按照工艺流程进行操作,熟悉了各种设备的操作方法和安全规范。

3. 工艺参数调整与优化:在实践操作过程中,我们学会了如何调整工艺参数,以获得最佳的产品质量。

通过对比实验,我们找到了合适的工艺参数,提高了产品质量。

4. 产品检验与分析:在完成轧制后,我们对产品进行了检验与分析,了解产品的性能和外观质量。

通过分析实验数据,我们发现了问题,并提出了改进措施。

5. 安全知识学习:在实训过程中,我们学习了实验室安全知识,了解了实验室的安全规范和操作规程,提高了安全意识。

四、实训成果通过本次金属轧制实训,我们取得了以下成果:1. 掌握了金属轧制的原理、工艺流程和设备操作方法;2. 学会了调整工艺参数,优化产品质量;3. 提高了团队合作精神和动手能力;4. 增强了工程应用能力和创新意识;5. 树立了安全意识,掌握了实验室安全知识。

五、实训总结本次金属轧制实训使我们受益匪浅,以下是我们对本次实训的总结:1. 理论与实践相结合:本次实训将理论知识与实际操作相结合,使我们更好地掌握了金属轧制的原理和工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高精度轧制与控制冷却技术(课程报告)学号:S2*******姓名:李宗武专业:材料加工工程单位:北京有色金属研究总院伴随着人们环保节能意识的增强,企业越来越重视在生产中运用先进工艺。

通过对生产工艺的改善,一方面可以提高产品的生产效率,降低生产成本;另一方面可以减少能耗,缓解环保压力。

轧制技术作为一种传统的加工工艺,过去对于我国钢铁行业的发展、崛起起到了巨大的推动作用。

时至今日,不少钢铁厂家仍以轧制产品生产为自己的主业;然而我们也应该看到,我国钢铁行业面临的主要问题:品种亟待升级,布局调整缓慢,能源环境原料约束增强,自主创新能力不强等。

在当前这样一个大行业整体萎靡不振的严峻形势下,钢铁企业需要重新审视自己发展战略,积极通过调整来应对困境。

对于这些产品以轧制为主的企业来讲,更需要抓住轧制工艺不断优化升级这样的一个有利时机,升级工艺,重回正轨。

轧制过程是由轧件和轧辊之间的摩擦力将轧件拉进不同旋转方向的轧辊之间使之产生塑性变形的过程。

通过轧制可以实现板带材、型材、管材的加工,各类材料对于轧制流程设计、设备构成、轧制精度有着不同的要求。

以在生产中所占份额较大的板带材的轧制为例:板带材在深加工中往往冲制成各种零部件,高的材厚度精度、优异的板形会降低冲模损耗,延长其寿命,同时,高精度板材在深加工过程中相应工件切削量也会减少,极大节约了原材料,减少了对于矿石能源的依赖。

可见,总结各种可以提高轧制精度的方法并逐步应用到生产中去,对于企业而言是非常有必要的。

在本次课程报告中,我将在课下查阅介绍轧制工艺新进展的相关文献基础上,结合课上朱老师所讲授的内容,对当前阶段轧制技术的发展特点加以介绍,以期为一些企业以后的生产提供借鉴。

1.热轧宽带中高碳钢的高精度轧制技术高碳钢中碳含量一般介于0.25%~1.25%,各种强化合金元素加入使得它具有高硬度及良好的韧性、耐磨性、红硬性等性能,热轧高碳钢在机械制造、航天航空以及汽车制造等领域都有着大量应用。

合金元素复杂,碳含量较高造成了高碳钢轧制变形抗力大,其厚度、板形的控制不易实现。

华南理工大学的李烈军等人[1]与广州珠江钢铁有限责任公司合作,在薄板坯连铸连轧技术的基础上对中高碳钢高精度轧制工艺进行了探索,分别从铸坯形状控制、冷却系统优化、轧辊位置调整三个方面展开。

(1)轧制过程中,高碳钢热轧变形抗力大,对于铸坯形状的敏感性较强,调整难度是比较大的。

为保证高精度轧制,必须保证铸坯的形状稳定。

图1、2分别是低碳钢薄板坯、弹簧钢50CrV4薄板坯的实测坯形曲线,经过对比可以看出,铸坯形状变化较大,原有坯形曲线不再适用高碳钢的生产。

针对这种情况,为减少坯形对最终产品的影响,需定期对铸坯进行取样测量,建立起一个完善的坯形数据库。

生产过程中及时根据钢种、坯料厚度的改变做出及时调整,才能确保板形控制系统的工作效果达到最优。

图1. 低碳钢薄板坯的坯形曲线图2. 弹簧钢50CrV4薄板坯的坯形曲线(2)冷却系统优化:高碳钢轧制抗力大造成轧辊温度较高,经实测结果显示温度达到70℃以上(普通为50℃~60℃),这样最直接的后果就是热凸度过大,板材质量急剧恶化,厚度精度减小。

每隔100mm 为一个单位,研究人员通过分段测量轧辊温度,合理调整冷却水量,最终得到一个合理的冷却工艺,表1中给出的是调整前后轧辊表面各段的温度情况,图3中给出了F3机架两种情况下轧辊表面温度的对比。

表面温度的稳定将减少轧辊表层裂纹的产生及剥离,并为后续热凸度的参数优化过程奠定基础。

表1. 调整前后冷却水量变化%(3)轧辊配置改进:传统机架前段轧辊材质为高铬铸铁,后段轧辊为普通ICDP材质,支撑辊采取Cr2;这对于轧制负荷较高的高碳钢是不适用的,不加改进则会导致轧辊的磨损加剧,不利于降低成本。

经过在实际生产中的探索、总结,李烈军等人给出了适用于高碳钢热轧轧制的轧辊材质配置方案,如表2中所列。

表2. 新的轧辊材质选取方案通过采取新的配置方案,可有效解决高碳钢轧制中面临的问题,支撑辊吨位增加40%,前段机架工作轧辊吨位增加达到60%~120%。

2.AGC系统在棒材连轧生产中的应用同样针对轧件尺寸的精确控制,内蒙古科技大学的崔桂梅等人[2]给出了棒材轧制中提高轧制精度的一个方案,即通过引入基于神经网络的AGC系统,在基于BP网络的椭圆-圆孔型轧制压力预测模型的基础上,可以实现棒材的高精度轧制。

AGC系统的理论基础是弹跳方程,其控制过程为:通过将测到的厚度值与理论厚度值进行比较,求出相应偏差,利用偏差控制轧机下一步的压下量,进而实现对轧件厚度的控制。

事实上,应用BP神经网络相关知识可以解决棒材轧制厚度控制延迟的问题。

图4、5给出的分别是传统棒材轧制生产线和基于AGC系统的生产线。

图4. 传统棒材轧制生产线图5. 基于AGC系统的棒材轧制生产线在图5给出的工艺中,可以看到AGC系统设计在8架平立交替精轧机架的最后两架轧机上。

生产过程中,该系统将实现垂直于机架方向上的自动辊缝调节,同时AGC系统还与MON监控系统、HPC 液压位置控制系统共同完成对于棒材尺寸的控制工作,如图6所示。

图6. 液压AGC尺寸控制系统这里涉及到的BP网络实质上是一个高度非线性拟合系统,建立该网络的关键就是据工程实践选取网络的输入层节点、输出层节点,最终确定合理的隐层节点。

隐层节点设计需要遵循适度的原则,太少侧模拟精度不够,太多会出现过拟合的现象。

经过对BP网络模型的训练,就可以展开相关预测工作。

图7给出了预测轧制压力的结果,与实际值相比后发现,误差在6%以内。

图7. BP网络对轧制压力的预测结果崔桂梅等人结合BP网络、AGC系统设计出了如图8所示的厚度控制系统,根据图示可看出:根据BP网络输出可以提前判断没道次轧制压力,由弹跳方程求出轧件高度,与给定值进行比对求出增益,增益值作为控制厚度系统的输入值调节液压轧机压下量,从而控制轧件的出口高度。

由于该系统不存在迟滞现象,因此大大提高了棒材轧件的精度。

图8. 基于BP网络的AGC厚度控制系统3.控制轧制与控制冷却技术(TMCP)控轧控冷技术是针对传统轧制工艺而提出的,在传统工艺中加入对轧制过程、冷却方式的控制内容,TMCP技术的出现为社会提供了越来越优良的钢铁材料,推动了社会的发展进步。

控制轧制目的是优化热轧条件,使奥氏体晶粒变为细小铁素体组织或其他复相组织,提高力学性能;控制冷却核心思想是控制形变奥氏体的相变过程,进一步细化晶粒组织,弥补控制轧制细化能力的不足,增强材料韧性。

相较于控制轧制,控制冷却效果更佳明显,也更容易实现,成本比较低,因此研究人员对于冷却工艺做了更多研究,提出了各种改善方法。

在实际生产中,各种设备以及生产线确定后,只能通过对流散热的方法来控制相应生产线的冷却过程。

对流换热涉及到的介质包括液体、气体以及两者的混合物,水作为“最廉价的合金元素”,仍是目前最主流的冷却介质。

冷却方式可分为喷射冷却、层流冷却、水幕冷却、雾化冷却等方式,各种方式都有各自优缺点,评价一个冷却方式优劣的标准最重要的是冷却效率和水循环次数。

在实际应用中并非水量越大效果就越好,压力也是另一个决定冷却效果的重要因素,因此厂家要做好水用量与水压的平衡,合理设计冷却工艺。

为进一步提高产品性能控制的稳定性和冷却能力,钢铁企业更是相继推出一系列的新型冷却模式,从法国BERTIN&CIE的ADCO装置到比利时的CRM超快速冷却装置,抑或是JFE公司的Super-OLAC 装置,作为新型超快速冷却装置来讲,均可以实现轧后快速冷却,同时可以实现直接淬火,这些方法在建筑结构板、桥梁板、超低温容器板、工厂机械用钢等高强钢的生产中实现了真正意义上的实用化。

而我国在超快速冷却方面做的比较好的是东北大学,目前研究人员已经开发出一种高冷速系统,图9给出的是该冷却系统在实际生产线中的配置情况。

图9. 某厂家2250热连轧机轧后控制冷却系统配置情况4.板形控制板带材作为钢铁工业的主干产品,是一种在经济各部门应用广泛的重要材料。

目前对于板带材几何尺寸中的厚度控制研究比较多,相应工艺也比较成熟,作为另一个方面的板形控制,显然还有很大一段路要走。

良好的板形需要满足一定的几何条件,控制不当容易产生侧弯、中浪、边浪等形状不良的缺陷。

引发形状不良的原因可归结为三点:(1)工作辊、支撑辊设计不当,(2)工作中轧制条件突然变化,(3)工作中轧制板材来料形状突然变化,分析以上三个原因可以发现,它们都导致了辊缝与轧材形状的不匹配。

三十多年来,对板形的控制、改善一直是板带生产的关注热点,在此期间也取得了一些长足进步。

其中比较重要的是M.D Stone的弹性基础梁理论和液压弯辊的实用研究,这使得板形问题取得了重大突破。

从工艺方法来讲,首先可以通过安排不同规格产品轧制来实现板形的有效控制,要求根据轧制板材的要求对轧辊温度、张力等进行合理调整,实现轧辊与板材两者之间的匹配;其他板形控制工艺总结来讲就是改变原来轧辊不可调的状态,如液压弯辊采用的是通过轧辊、支撑辊施加液压弯辊力,改变轧辊瞬时有效凸度,CVC技术则更进一步,用两个轴向可移动的与严格圆锥体稍有差别的S形辊身的工作辊组成,调整轧辊位置改变辊缝几何形状,轧辊有效凸度也会相应改变。

除此之外,还有其他一些工艺来完成板形的控制工作。

鉴于板形控制问题的复杂性,目前的板形控制技术还需要进行一定的改进。

5.板带热轧半无头轧制技术(ISP)穿带问题在传统单坯精轧中容易出现,导致了轧制效率的低下,此外在板厚的精度控制上还有很大的提升空间。

无头轧制的研发正是为了规避传统技术的不足,ISP技术作为传统单坯轧制向无头轧制的一个过渡,可以显著提高轧制过程的稳定性和成材率,整个过程中几乎不会出现板形不良问题。

半无头轧制技术的核心问题是中间坯的连接过程,目前发展出的连接技术有很多,图10给出的是各种连接技术的简图。

连接环节要求严格:时间要短,强度要高,尽可能实现不同钢种间的连接。

图10.各种连接工艺简图国内北科的康永林老师对于半无头轧制技术研究开展的比较早,图11给出了康老师以压齿-压合连接法为核心的半无头轧制工艺设备图。

可以看出,只需额外添加一台切头剪、压力机和中间坯头尾对正辅助机构,相应成本比较低。

图11. 基于压齿-压合工方法的半无头轧制工艺设备布置压齿-压合方法本质是一种机械连接工艺,对于前后中间坯的冶金成分、力学性能及表面状态均没有太大要求,通过压力机作用使得齿槽间产生大的塑性变形、机械咬合、焊合区,保证了连接界面的强度,为后续精轧过程的进行奠定了基础。

图12中为利用压齿-压合连接工艺的实验效果图。

图.12 压齿-压合法连接效果图半无头轧制经过这几十年的发展,仍然存在一部分问题:各种控制设备高可靠性、高稳定性的运转离不开硬件设备质量的提高;节奏控制、事故处理往往会造成时间的浪费、生产成本的升高,因此还需要建立起整个系统的问题自查体系;在做好系统研发的同时多考虑一些实际生产中的不稳定因素。

相关文档
最新文档