高中数学不等式知识点
高中数学必修5精要——不等 式知识点

不等式1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。
特别提醒:如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦;⑧,则。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知,,则的取值范围是______(答:);(3)已知,且则的取值范围是______(答:)2.不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量(一般先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小)或放缩法;(8)图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
其中比较法(作差、作商)是最基本的方法。
如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号));(2)设,,,试比较的大小(答:);(3)比较1+与的大小(答:当或时,1+>;当时,1+<;当时,1+=)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
常用的方法为:拆、凑、平方。
如(1)下列命题中正确的是A、的最小值是2B、的最小值是2C、的最大值是D、的最小值是(答:C);(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:);4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、c R,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。
(完整word版)高中数学不等式知识点总结(word文档良心出品)

选修4--5知识点 1不等式的基本性质 ① (对称性)a ■ b := b - a ② (传递性)a b,b • a c ③ (可加性)a • b= a c b c (同向可加性)a . b , c = a c b d (异向可减性)a b ,c . d = a - c b - d ④ (可积性)a ■ b , c ■ Q = ac . bc a . b , c ::: 0 二 ac ::: bc ⑤ (同向正数可乘性) a .b . 0,c d .0=- ac . bd a b 0,0 ::: c :::d 二 a £ c d ⑥(平方法则)a b 0= a n b n (N,且n 1) ⑦(开方法则) a >b 苗 >V b (n E N,且n>1) 1 1 1 a b 0 ; a :: b :: 0 二 a b a 2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三(异向正数可除性) ⑧(倒数法则) 2 2 ①a b -2ab a ,b ・R ,(当且仅当 ab -a 2b 2 号)变形公式:②(基本不等式)a b € R \,(当且仅当a =b 时取到等号)变形公式:ab -¥2,要注意满足三个条件“一正、二定、相等” •a b C 3 赢3 「- (a、b c R )(当且仅当2 2 2④a b c _ ab bc ca a, b 二R(当且仅当a =b =c时取到等号).3 3 3⑤a3b3c _3abc(a 0,b 0,c 0)(当且仅当a=b=c时取到等号).b a若ab 0,则--_2⑥ a b (当仅当a=b时取等号)b a右ab ::: 0,则■: 2a b (当仅当a=b时取等号)b b m a n a1 :::⑦ a a+m b+n b ,(其中a Rb>0, m^O, n A°)规律:小于1同加则变大,大于1同加则变小.⑧当a .0时,x .a:=x2.a2:=x”-a或x a;x <a 吕x2 <a2二-acxca.⑨绝对值三角不等式a_b兰a=b兰a + b.3、几个著名不等式¥^兰后兰整-兰J o云一+①平均不等式:a b 2■2,(a b R,当且仅当a=b时取"="号).(即调和平均 -几何平均-算术平均-平方平均).变形公式:ab 严仁士a2+b2’4I 2 丿2②幕平均不等式:a i2 a22 ' ... a*2—^(a i a? … an)2.n③(三个正数的算术一几何平均不等式)③二维形式的三角不等式:、xj y;M22y22-、(x i -X2)2(% -y?)2(x i’yzm R).④二维形式的柯西不等式:2 2 2 2 2 _(a +b )(c +d )3(ac + bd) (a,b,c,^ R).当且仅当ad = be时,等号成立.⑤ 三维形式的柯西不等式: 2 2 2 2 2 2 2 (Q a ? a 3 )(b b 2 b s ) _(aib a zd a s b s ). ⑥ 一般形式的柯西不等式: 2 2 2 2 2 2 2 (a i a ... - a n )(b b 2 ... b n ) - (ab azb …a n b n ). ⑦ 向量形式的柯西不等式:⑧ 排序不等式(排序原理) 设a i 兰a 2兰…兰a n , b i 兰b 2兰…兰b n 为两组实数 .C 1 , C 2 ,..., C n 是b 1 , b 2 ,..., b n 的任一排列,则 a i b n a 2bu ... a nd 乞• a 2$ ... a n C^ aQ a 2b ? ... a n b n (反序和岂乱序和 < 顺序和),当且仅当a i =吐二…二冇或b =b 2 = ... =0时,反序和等于顺序和 ⑨ 琴生不等式:(特例:凸函数、凹函数) f (X ),对于定义域中任意两点X 公2(人=X 2),有 f (X 十X 2) ^f (x ) +f (X 2)或 f (X i +X 2) > f (X i ) +f (X 2) (2 2 或 ( 2丿- 2 .则称f (X )为凸(或凹)函数 4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 常见不等式的放缩方法:(k N *,k i)5、一元二次不等式的解法2求一元二次不等式aX bX c °(或::°)2(a =0" =b -4ac 0)解集的步骤:一化:化二次项前的系数为正数 二判:判断对应方程的根. 三求:求对应方程的根.当且仅当 是零向量,或存在实数k ,使 时, 若定义在某区间上的函数 ①舍去或加上(a ¥ 2 3 +— 4 (a * 2②将分子或分母放大(缩小), 1 i i i 2 , 2如 k k (k -i ) k k (k i )i 22 “ k 、k 「k Jk 「k Jk=i 是两个向量,四画:画出对应函数的图象 •五解集:根据图象写出不等式的解集 •规律:当二次项系数为正时,小于取中间,大于取两边• 6、 高次不等式的解法:穿根法 .分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) 写出不等式的解集•7、 分式不等式的解法:先移项通分标准化,则f(x) 0 f (x) g (x) 0 g(x)f(x) c f(x)g(x)—0g (x) g(x )=0 (“ :::或乞”时同理)规律:把分式不等式等价转化为整式不等式求解8无理不等式的解法:转化为有理不等式求解 [f(x “0,f(x) :: g(x) = g(x) 0I 2f(x)订g(x)]2!f(x^0 ,1 ---------------- I -----------------------------Jf(x) > Jg(x)二 g (x)Z0⑸ / (x^>g(x)规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解9、指数不等式的解法:⑴当 a>1 时,a f(x) Aa g(x) = f(x)>g(x)f (x) g(x) …、 彳、⑵当 0cav1 时,a >af(x)cg(x)规律:根据指数函数的性质转化10、对数不等式的解法 f(x) 0,结合原式不等号的方向, .f(x) a(a 0):=⑴ f(x) 一0 f(x) a 2f(x) :: a(a 0):=⑵ f(x) 一0 2 .f(x) ::.f(x) g(x)u ⑶f(x) 0 g(x)_O2 f(x) [g(x)] 或{ g;:):0lOg a f(X)- lOg a g(X):= g(x) 0⑴当a>1 时,l f(x)>g(x)f(x) 0 log a f (x) log a g(x) u g(x) . 0l⑵当0ca<1 时,l f(x)v g(x)规律:根据对数函数的性质转化•11、含绝对值不等式的解法:a (ax 0)a =《⑴定义法:—a (a :: 0)⑵平方法:f(x)| |g(x)二f2(x)乞g2(x).⑶同解变形法,其同解定理有:①x Ea= —aExEa(a^O);②x £a二x^a或xW—a(a£0);③| f (x)| 兰g(x)二—g(x)兰f (x)兰g(x) (g(x)色0)④ f (x) _g(x):= f(x) _g(x)或f(x)乞-g(x) (g(x) _0)规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集•13、含参数的不等式的解法2解形如ax bx c 0且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a与0的大小;⑵讨论二与0的大小;⑶讨论两根的大小.14、恒成立问题2⑴不等式ax bx c 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时=b = 0,c 0;a 0=I②当a = 0时0 -2⑵不等式ax bx c ::: 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时二b = 0, c :: 0;-l a ::: 00.②当a = 0时⑶ f(X)::a恒成立:=f(x)max ::a;f(X)一a 恒成立=f(X)max -a;⑷ f (x) a恒成立:=f (X)min a;f(X)— a 恒成立=f(x)min —a-15、线性规划问题常见的目标函数的类型:①“截距”型:Ax By;z y z y-b.z =_ z = ------------ .②“斜率”型:X或x-a2 丄 2 _2③“距离”型:z = x・y或z —X y .2 2 2 2z=(x-a) (y-b)或z = :,(x-a) (y-b).在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解, 题简单化.从而使问。
高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
完整版高中数学不等式知识点总结

完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。
本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。
一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。
当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。
在不等式中,表示关系的符号“<”和“>”称为不等号。
解不等式可以用图像法、正推反证法和直接法等方法。
图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。
正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。
直接法:对不等式进行变形、化简和运算,得出解的过程。
不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。
2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。
3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。
二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。
2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。
高中数学不等式知识点

高中数学不等式知识点解决不等式问题需要使用基本概念、方法、规律来解决特定问题。
高中数学中的不等式是一种表达问题的方式,涉及到数学方法尤其重要,不仅可以研究数理问题,而且还可以帮助学生更好地理解和掌握数学概念,下面就对一些常见的不等式知识点进行介绍。
一、构造不等式不等式的形式是:表达式的不等关系,表达式可以是多个数的加减乘除等运算,或其他形式的数学运算,构造不等式是需要根据问题需要精心安排,一般总结一下几个原则:1. 确定不等式两边的表达式。
根据问题的要求,从左到右,先确定不符合条件的取值,再构造出对应的不等式;2. 确定不等号的方向。
考虑问题的情况,确定可能的极端情况,确定不等号的方向;3. 确定两边表达式的大小关系.根据不等号的方向,确定表达式的大小关系;4. 优化不等式的表达式.根据大小关系,优化不等式表达式,使其更加规范。
二、解不等式(一元一次不等式)解一元一次不等式主要有两种方式:(1)求解不等式的解集。
即求出解后可以满足不等式的条件的取值集合;(2)绘制不等式的图象。
把该不等式的解集用直线划分成(几)段,其中在符号上面的一段为解集,并且在解集各段正确标注符号,这就是解不等式图象的目的。
一元多次不等式的求解一般使用分组加减法,可以利用其中的一项进行转化,使原来多个不等号形式变成单一不等号。
1. 把一元多次不等式化为一元二次方程。
也就是带有一个等号的一元多次不等式,可以通过表达式的运算,将其转化为一元二次不等式;2. 把多个不等号展开成单等号或单不等号形式。
在一元二次不等式中,展开一个不等号式,转换成单一等号或单不等号形式;3. 把混合不等式转换成分组的形式。
多个不等式可以分组形式处理,然后使用分组加减法,将混合不等式变为两个不等式;不变式就是一个用不等式表达的定义域,这种定义域非常常见,只要列出不变式的形式,就能得到这类定义域的解。
不变式的解有两个基本步骤:一是将不变式展开成一系列的不等式,二是将这些不等式的解求出来,然后得到定义域的表达:1. 展开不变式得到其中的不等式。
高中数学不等式知识点总结

高中数学不等式知识点总结
一、不等式的性质
1、非负性:对任意实数$a$,有 $a\geq0$;
2、对称性:对任意实数$a, b$,有 $a \gt b$ 等价于 $-a\lt -b$;
4、抽象性:不等式也是数的一种,即式子的值既可以是数,也可以是不等式;
1、绝对值不等式:$|x|\gt a$;
2、分组不等式:$\frac{x-a}{b} \gt c$;
1、速算不等式:
(3) $x-ay+by^2 \gt c$;
(1) 无穷不等式:$x \lt +\infty$;
(3) 大于等于零的不等式:$x \ge 0$;
(1) 确定不等式的种类;
(2) 求解出不等式的解集;
(3) 对不等式的解集进行分析。
(1) 速算不等式的解法:将不等式化简,然后在图表中求解;
(2) 特殊不等式的解法:如无穷不等式的解法为将不等式化简,根据此不等式轴线上的点,选择合适的区间,在该区间上求出不等式的解。
高中数学知识点清单第二章不等式

不等式ax2+bx+c>0的解集是R;
不等式ax2+bx+c≥0的解集是R;
不等式ax2+bx+c<0的解集是 ;
不等式ax2+bx+c≤0的解集是 .
28
(5)图象以直线y=x及y轴为渐近线,形似两个中心对称的对勾,
两个对勾顶点的横坐标是x=± a .
19
第四节 解一元一次不等式(组) 1.会解一元一次不等式和一元一次不等式组. 2.了解区间的概念. 3.会解可化为一元一次不等式组的不等式(双一次乘式、分 式不等式).
20
1.区间的概念及其表示
(3)|ax+b|<c(a≠0,c>0)⇔-c<ax+b<c;
(4)|ax+b|>c(a≠0,c>0)⇔ax+b>c或ax+b<-c.
25
第六节 解一元二次不等式 会解一元二次不等式.
26
1.一元二次不等式的概念 含有一个未知数,并且未知数的最高次数为二次的不等式, 叫做一元二次不等式.其一般形式为ax2+bx+c>0,ax2+bx+c≥0 或ax2+bx+c<0,ax2+bx+c≤0(a≠0). 2.一元二次不等式的解法(不妨设a>0) (1)当Δ>0时,方程ax2+bx+c=0有两个不相等的实数根x1,x2(不 妨设x1<x2). 不等式ax2+bx+c>0的解集是{x|x<x1或x>x2}; 不等式ax2+bx+c≥0的解集是{x|x≤x1或x≥x2}; 不等式ax2+bx+c<0的解集是{x|x1<x<x2}; 不等式ax2+bx+c≤0的解集是{x|x1≤x≤x2}.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。
3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。
运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:若a>b,b>c, 则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。
2、同向不等式可相加但不能相减,即由a>b,c>d ,可以得出a+c>b+d, 但不能得a —c>b —d 。
3、不等式两边同时乘以一个数或式时,只有该数或式保证为正,才能得到同向的不等式,否则不能保证所乘之数或式为正,则不等式两边同时乘以该数或式后不能确定不等式的方向;不等式两边同偶次乘方时,也要特别注意不等式的两边必须是正。
不等式的应用范围十分广泛,在数学中,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
二、不等式的证明方法(1)比较法:作差比较:B A B A ≤⇔≤-0 作差比较的步骤:①作差:对要比较大小的两个数(或式)作差。
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
③判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果由已知的不等式出发,不断地用必要条件代替前面的不等式,直到推导出前面的不等式。
常用的基本不等式有①均值不等式;②若0,,>m b a ,b a <,则mb ma b a ++<;③若R b a ∈,,则||||||||||b a b a b a +≤±≤-;④柯西不等式))(()(121221∑∑∑===≤ni i n i in i i i b a b a(3)分析法:执果索因基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达。
(4)反证法:正难则反直接证明难,就用反证。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的 放缩法的方法有:①添加或舍去一些项,如:a a >+12;n n n >+)1(; ②将分子或分母放大(或缩小) ③利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅;2)1()1(++<+n n n n ④利用常用结论: Ⅰ、kkk k k 21111<++=-+;Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
如:已知222a y x =+,可设θθsin ,cos a y a x ==; 已知122≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r );已知12222=+b y a x ,可设θθsin ,cos b y a x ==;已知12222=-by a x ,可设θθtan ,sec b y a x ==;(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。
数学归纳法法证明不等式将在数学归纳法中专门研究。
例1已知a ,b ∈R ,且a+b=1。
求证:()()2252222≥+++b a 。
证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)。
证法二:(分析法)()()2258)(4225222222≥++++⇐≥+++b a b a B a ⎪⎩⎪⎨⎧≥-⇐≥++-+-=⇐0)21(22584)1(1222a a a ab 因为显然成立,所以原不等式成立。
点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件。
证法三:(综合法)由上分析法逆推获证(略)。
证法四:(反证法)假设225)2()2(22<+++b a ,则 2258)(422<++++b a b a 。
由a+b=1,得a b -=1,于是有212)1(22<+-+a a 所以0)21(2<-a ,这与0212≥⎪⎭⎫ ⎝⎛-a 矛盾。
所以()()2252222≥+++b a 。
证法五:(放缩法)∵1a b +=∴左边=()()()()222222222a b a b +++⎡⎤+++≥⎢⎥⎣⎦()2125422a b =++=⎡⎤⎣⎦=右边。
点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式22222⎪⎭⎫ ⎝⎛+≥+b a b a 。
证法六:(均值换元法)∵1a b +=,所以可设t a +=21,t b -=21,∴左边=()()22221122(2)(2)22a b t t +++=+++-+22255252522222t t t ⎛⎫⎛⎫=++-=+≥⎪ ⎪⎝⎭⎝⎭=右边 当且仅当t=0时,等号成立。
点评:形如a+b=1结构式的条件,一般可以采用均值换元 证法七:(利用一元二次方程根的判别式法) 设y=(a+2)2+(b+2)2,由a+b=1,有1322)3()2(222+-=-++=a a a a y , 所以013222=-+-y a a ,因为R a ∈,所以0)13(244≥-⋅⋅-=∆y ,即225≥y 。
故()()2252222≥+++b a 。
例2 0,,>c b a ,求证:c b a cab b ac a bc ++≥++。
证:c b aca bc 2≥+,同样地,利用均值不等式,我们可以得到 )(2)(2cb ac ab b ac a bc ++≥++,即c b a cab b ac a bc ++≥++。
例3 已知1,0,=+>y x y x ,求证9)11)(11(≥++y x 。
证:91224)1)(1()11)(11(≥+++=++++=++yxx y y y x x y x y x 例4 已知1,0,,=++>c b a c b a ,求131313+++++c b a 的最大值。
解:由题可得2213213++≤⋅+a a 当且仅当213=+a 即31=a 时等式成立。
同理,可得629c)b 3(a )131313(2=+++≤+++++c b a ; 故而可知其最大值为6.例5 已知1=++z y x ,求证31222≥++z y x证:令0=++γβα,且γβα+=+=+=31,31,31z y x ,于是31)(31)()(3231222222222≥+++=++++++=++γβαγβαγβαz y x 。
例6 已知n 是正整数,求证:313121113333<++++n证:当2>n 时,有)111(2)1(12)1(12213nn n n n n n n n n n n n n n --=-+-=-+-<+=于是3123)111(2)3121(2)2111(2113121113333<⋅-=--++-+-+<++++nn n n小结:1、掌握好不等式的证明,不等式的证明内容甚广,证明不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面。
如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点。