共顶点的等腰直角三角形
完美的明星题“点顶顶”——共顶点的两个等腰直角三角形

C = 4 . E AD= c  ̄ .
图3
基本结论 : @B E = C D; @B E 与C D 所 成 的四个角 中有
对对顶 角等于O 1 .
(主 要 证 明 △A 施
A D = AE , 助 B E 和C D的交点.
基本结论 : ① E = C D; @B E上C D .
2 0 1 3 年9 月
可 以得到以下结论 : ( G  ̄ H, . -  ̄G A H - - a ; (  ̄ F A 平分 / B F A; ③ △A G H"AA B C  ̄ AA D E . ( 2 )当G 点和日点是B E 和C D的 中点时 ,①AG = A H, G AH = a; ② △A G 日一△A B C 或 AA D E . ( 3 ) 当G 点 和日点是 c 和 /E A D的角平 分线与B E
( 主 要 证 明 △A B E △AC D
△Ac D即可得到 以上结论 )
迁移图形 : ( 如 图4 )
D
即可得到 以上结论 ) 迁移 图形 : ( 如图2 )
( 1 )当过A点作 G 3 _ B E, A 日j _ C D, 垂足分别为G , H 时, 则
B
( 2 ) 当G 点和 点是B E 和C D的中点 时 , ( 1 ) 中 的结 论
的本质 内容 ,也许 对 学生 的几何 学 习会 有 意想 不 到的
结果 .
①③依然成 立.
( 3 ) 当G 点和日 点是 日 A C 和/ _ F A D 的角平分线 与B E
笔者就共顶 点的两个 等腰 三角形 的题 型和方法做 了
过 程 中如果 能教会 学生 归纳 总结 出千 千万 万 的习题 中
中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
10.模型构建专题:共顶点的等腰三角形

模型构建专题:共顶点的等腰三角形——明模型,记结论◆类型一共直角顶点的等腰直角三角形1.如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM为△DCE中DE边上的高,连接BE.(1)求∠AEB的度数;(2)探究线段CM、AE、BE之间的数量关系,并说明理由.◆类型二共顶点的等边三角形2.(常州中考改编)如图,在四边形ABCD中,AB∥CD,AB=CD,AD∥BC,AD=BC,分别延长DC,BC到点E,F,使得△BCE和△CDF都是等边三角形.(1)求证:AE=AF;(2)求∠EAF的度数.参考答案与解析1.解:(1)∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,DC =EC ,∠1+∠DCB =∠2+∠DCB =90°,∴∠1=∠2.在△ACD 和△BCE 中,∵⎩⎪⎨⎪⎧DC =EC ,∠1=∠2,AC =BC ,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠ADC =∠BEC .∵△DCE 是等腰直角三角形,∴∠3=∠4=45°,∴∠ADC =180°-∠3=135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠4=135°-45°=90°;(2)AE =BE +2CM .理由如下:∵△DCE 是等腰直角三角形,CM ⊥DE ,∴△DCM 、△ECM 均为等腰直角三角形,∴DM =ME =CM ,∴DE =2CM .由(1)可知AD =BE .∵AE =AD +DE ,∴AE =BE +2CM .2.(1)证明:∵△BCE 和△CDF 是等边三角形,AB =CD ,AD =BC ,∴∠EBC =∠CDF =60°,BC =BE =AD ,CD =DF =AB ,∠5=60°.又∵AB ∥CD ,AD ∥BC ,∴∠6=∠5=∠4=60°,∴∠6+∠EBC =∠4+∠CDF ,即∠ABE =∠FDA =120°.在△ABE 和△FDA 中,∵⎩⎪⎨⎪⎧AB =FD ,∠ABE =∠FDA ,BE =DA ,∴△ABE ≌△FDA (SAS ),∴AE =AF ;(2)解:∵AB ∥CD ,∴∠4+∠BAD =180°.由(1)可知∠4=60°,∴∠BAD =120°.由(1)可知△ABE ≌△FDA ,∠FDA =120°,∴∠2=∠3,∠1+∠2=60°,∴∠1+∠3=60°.∴∠EAF =∠BAD -∠1-∠3=120°-60°=60°.。
共顶点的等腰三角形与旋转

3.同学们( )地坐在教室里。 4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。 1.世界上有多少人能亲睹她的风采呢? (陈述 句) _________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____ ___________________________________ ______ ______ ______ ______ ______ ______ ______ 4.她的光辉照耀着每一个有幸看到她 的人。 “把”字句:_______________________ ______ ______ ______ ______ ______ ______ ______ “被”字句:_______________________ ______ ______ ______ ______ ______ ______ ______
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
八年级下册 第一章 模型构建专题:“手拉手”模型——共顶点的等腰三角形(3类热点题型讲练)(解析版)

第08讲模型构建专题:“手拉手”模型——共顶点的等腰三角形(3类热点题型讲练)目录【类型一共顶点的等边三角形】 (1)【类型二共顶点的等腰直角三角形】 (11)【类型三共顶点的一般等腰三角形】 (21)【类型一共顶点的等边三角形】例题:(2023上·内蒙古呼和浩特·八年级统考期末)如图,已知点C 是AB 上一点,ACM △、CBN △都是等边三角形,连接AN 交CM 于点E ,连接BM 交CN 于点F .(1)求证:NAC BMC(2)连接EF ,判断CEF △的形状,并说明理由.【答案】(1)证明见解析(2)CEF △是等边三角形,理由见解析【分析】本题考查全等三角形的判定及性质以及等边三角形的判定和性质,(1)由等边三角形可得其对应线段相等,对应角相等,证明 SAS ACN MCB ≌,即可得证;(2)由(1)可得EAC FMC ,继而得到ACE MCF ,证明 ASA ACE MCF ≌,得CE CF ,根据等边三角形的判定即可得出结论;掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.【详解】(1)证明:∵ACM △与CBN △为等边三角形,∴60ACM BCN ,AC MC ,NC BC ,∴ACM MCN BCN NCM ,即ACN MCB ,在ACN △和MCB △中,AC MC ACN MCB NC BC,∴ SAS ACN MCB ≌;∴NAC BMC ;(2)CEF △为等边三角形.理由:∵180ACB ,60ACM BCN ,∴180606060MCF ACE ,∵NAC BMC ,即EAC FMC ,在ACE △和MCF △中,EACFMC AC MC ACE MCF,∴ASA ACE MCF ≌∴CE CF,∵60MCF ,∴CEF △是等边三角形.【变式训练】1.(2023春·全国·七年级专题练习)如图1,等边三角形BCD 和等边三角形ACE ,连接AD ,BE ,其中AC BC .(1)求证:AD BE ;(2)如图2,当点A C 、、B 在一条直线上时,AD 交CE 于点F ,BE 交CD 于点G ,求证:BG DF ;(3)利用备用图补全图形,直线AD ,BE 交于点H ,连接CH ,若3DH ,5CH ,直接写出BH 的长.【答案】(1)见解析(2)见解析(3)8BH 【分析】(1)由“SAS ”可证ACD ECB △≌△,可得AD BE ;(2)由“ASA ”可证BCG D CF ≌,可得BG DF ;(3)如图3,过点C 作CP BE 于P ,CN AD 于N ,由面积法可求CP CN ,可证60BH C CH A ,由直角三角形的性质可求 2.5PH HN ,由“AAS ”可证BCP D CN ≌,可得 5.5D N BP ,即可求解.【详解】(1)证明:BCD ∵ 和ACE △是等边三角形,BC CD ,AC CE ,60BCD ACE ,BCE DCA ,在ACD 和ECB 中,AC CE ACD ECB CD BC,()ACD ECB ≌SAS ,AD BE ;(2)证明:AC D EC B ∵ ≌,EBC ADC ,∵点C 在线段AB 上,60BCD ACE ,60DCE BCD ,在BCG 和DCF 中,90EBC ADC BC CD BCG DCF,()BCG DCF ≌ASA ,BG DF ;(3)解:如图3,过点C 作CP BE 于P ,CN AD 于N ,EBC ADC∵,DBH EBC,60DHB DCB,120BHA2.(2023上·广西南宁·八年级校考期中)数学课上,张老师带领学生们对课本一道习题层层深入研究.教材再现:如图,ABD △,AEC △都是等边三角形.求证:BE DC .(1)请写出证明过程;继续研究:(2)如图,在图1的基础上若CD 与BE 交于点O ,AB 与CD 交于点M ,AC 与BE 交于点N ,连接AO ,求证:AO 平分DOE ;(3)在(2)的条件下再探索OA ,OC ,OE 之间的数量关系,并证明.【答案】(1)证明见解析;(2)证明见解析;(3)OE OA OC ,理由见解析.【分析】(1)根据等边三角形性质得出AB AD ,AE AC ,60BAD BDA DBA CAE ,求出BAE DAC ,根据SAS 证ABE ADC △≌△即可;(2)过点A 分别作AG BE ,AH DC ,垂足为点G ,H ,由得到ABE ADC △≌△,从而ABE ADC S S ,故有AM AN ,根据角平分线判定即可求证;(3)在OE 上截取一点Q ,使得OQ OA ,证明AOQ △是等边三角形,即可证明 SAS OAC QAE ≌,从而得证.由(1)知:ABE ADC △≌△,BE ∴ABE ADC S S ,∴11··22BE AM DC AN ,∴AM AN ,由(1)知:ABE ADC△≌△, ,∴ADC ABE∴ADC BDO ABE BDO 在BOD中,为边在直线AD 右侧作等边三角形ADE .(1)如图1,当点D 在BC 边上时,连接CE ,此时AB ,CD ,CE 之间的数量关系为______,ACE ______;(2)如图2,当点D 在BC 的延长线上时,连接CE ,(1)中AB ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请写出新的结论及证明过程;(3)如图3,当点D 在射线BC 上运动时,取AC 的中点F ,连接EF ,当EF 的值最小时,请直接写出CFE 的度数.【答案】(1)CE CD AB ;60(2)不成立,CE CD AB ,证明见解析(3)30【分析】(1)根据等边三角形的性质,证明ABD ACE ≌△△,可得ACE B ,CE BD ,即可得到AB ,CD ,CE 之间的数量关系;(2)同(1)中原理证明ABD ACE ≌△△,可得AB ,CD ,CE 之间新的数量关系;(3)本题考查了等边三角形的性质,全等三角形的判定和性质,连接CE ,取AB 的中点G ,连接DG ,根据ABD ACE ≌△△,证明BDG CFE ≌,则可得EF DG ,当GD BC 时,取最小值,则EF 此时也去最小值,即可求得此时CFE 的值,见手拉手模型则考虑证全等,将EF 转换到ABD △中等量的中线看最小值,是解题的关键.【详解】(1)解:ABC ∵ 是等边三角形,ADE V 是等边三角形,,AB AC AD AE ,BAC DAE ,,60AB BC B ,BAC DAC DAE DAC ,即BAD CAE ,在BAD 与CAE V 中,AB AC BAD CAE AD AE, SAS BAD CAE △≌△,CE BD ,60ACE B ,CE DC BD DC BC AB ,即CE CD AB ,故答案为:CE CD AB ;60 ;(2)不成立,CE CD AB ,证明如下:证明:ABC ∵ 是等边三角形,ADE V 是等边三角形,,AB AC AD AE ,BAC DAE ,AB BC ,BAC DAC DAE DAC ,即BAD CAE ,在BAD 与CAE V 中,AB AC BAD CAE AD AE, SAS BAD CAE △≌△,CE BD ,CE CD BD CD BC AB ,即CE CD AB ;(3)解:如图,连接CE ,取AB 的中点G ,连接DG ,【类型二共顶点的等腰直角三角形】例题:(2023春·全国·八年级专题练习)ABC 和△ADE 都是等腰直角三角形,90BAC DAE .(1)如图1,点D 、E 在AB ,AC 上,则BD ,CE 满足怎样的数量关系和位置关系?(直接写出答案不证明)(2)如图2,点D 在ABC 内部,点E 在ABC 外部,连接BD ,CE ,则BD ,CE 满足怎样的数量关系和位置关系?请说明理由.【答案】(1)BD CE ,BD CE(2)BD CE ,BD CE ,理由见解析【分析】(1)根据等腰直角三角形结合线段的和差即可得到结论;(2)延长BD ,分别交AC 、CE 于F 、G ,证明ABD ACE ≌△△,根据全等三角形的性质、垂直的定义解答;【详解】(1)解:∵ABC 和△ADE 都是等腰直角三角形,90BAC DAE ,∴AB AC ,AD AE ,∴AB AD AC AE ,即BD CE ,∵点D ,E 在AB ,AC 上,AD AC ,∴BD CE ;(2)BD CE ,BD CE ,理由如下:延长BD ,分别交AC 、CE 于F 、G ,∵ABC 和△ADE 都是等腰直角三角形,90BAC DAE ,∴AB AC ,AD AE ,∵BAD BAC DAC ,CAE DAE DAC ,∴BAD CAE ,在ABC 和ADE V 中,AB AC BAD CAE AD AE,∴ABD ACE ≌△△,∴BD CE ,ABD ACE ,∵A F B G F C ,180AFB ABD BAC GFC ACE CGF ,∴90CGF BAF ,即BD CE ;【点睛】本题是三角形综合题,主要考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.【变式训练】1.(2023春·八年级课时练习)(1)问题发现:如图1,ABC 与CDE 均为等腰直角三角形,90ACB DCE ,则线段AE 、BD 的数量关系为_______,AE 、BD 所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A ,E ,D 在同一直线上,CM 为DCE △中DE 边上的高,请判断ADB 的度数及线段CM ,AD ,BD 之间的数量关系,并说明理由.【答案】(1)AE BD ,AE BD ;(2)90ADB ,2AD CM BD ;理由见解析【分析】(1)延长AE 交BD 于点H ,AH 交BC 于点O .只要证明 SAS ACE BCD ≌,即可解决问题;(2)由ACE BCD ≌,结合等腰三角形的性质和直角三角形的性质,即可解决问题.【详解】解:(1)如图1中,延长AE 交BD 于点H ,AH 交BC 于点O ,∵ACB △和DCE △均为等腰直角三角形,90ACB DCE ,∴AC BC ,CD CE ,∴90ACE ECB BCD ECB ,∴ACE BCD ,∴ SAS ACE BCD ≌,∴AE BD ,CAE CBD ,∵90CAE AOC ,AOC BOH ,∴90BOH CBD ,∴90AHB ,∴AE BD .故答案为:AE BD ,AE BD .(2)90ADB ,2AD CM BD ;理由如下:如图2中,∵ACB △和DCE △均为等腰直角三角形,90ACB DCE ,∴45CDE CED ,∴180135AEC CED ,由(1)可知:ACE BCD ≌,∴AE BD ,135BDC AEC ,∴1354590ADB BDC CDE ;在等腰直角三角形DCE 中,CM 为斜边DE 上的高,∴CM DM ME ,∴2DE CM ,∴2AD DE AE CM BD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.2.(2023秋·山东日照·八年级校考阶段练习)已知△ABC 和△ADE 都是等腰直角三角形,点D 是直线BC 上的一动点(点D 不与B ,C 重合),连接CE .(1)在图1中,当点D 在边BC 上时,求证:BC =CE +CD ;(2)在图2中,当点D 在边BC 的延长线上时,结论BC =CE +CD 是否还成立?若不成立,请猜想BC ,CE ,CD 之间存在的数量关系,并说明理由;(3)在图3中,当点D 在边BC 的反向延长线上时,不需写证明过程,直接写出BC ,CE ,CD 之间存在的数量关系及直线CE 与直线BC 的位置关系.【答案】(1)见解析;(2)结论BC =CE +CD 不成立,猜想BC =CE -CD ,理由见解析;(3)BC CD CE ;CE BC ,理由见解析【分析】(1)证明△BAD ≌△CAE (SAS ),可得BD =CE ,即可证得BC =BD +CD =CE +CD 成立;(2)同样证明△BAD ≌△CAE (SAS ),可得BD =CE ,即可证得BC BD CD CE CD 成立,故BC =CE +CD 不成立;(3)补全图形,同样证明△BAD ≌△CAE (SAS ),利用全等三角形的性质即可作出结论:BC CD CE ;CE BC .【详解】(1)证明:∵△ABC 和△ADE 都是等腰直角三角形∴AB =AC ,AD =AE ,90BAC DAE∴90BAD DAC CAE DAC∴BAD CAE∴△BAD ≌△CAE (SAS )∴BD =CE∴BC =BD +CD =CE +CD(2)结论BC =CE +CD 不成立,猜想BC =CE -CD ,理由如下:∵90BAC DAEBAC CAD DAE CADBAD CAE又∵AB =AC ,AD =AEBAD CAE SAS BD CEBC BD CD CE CD(3)BC CD CE ;CE BC ;理由如下:补全图形如图3,∵△ABC 是等腰直角三角形,∴∠ACB =∠ABC =45°,∴∠ABD =135°,由(1)同理可得,在△ABD 和△ACE 中,AB AC BAD EAC AD AE,(1)如图1,若30CAD ,10DCB ,求DEB 的度数;(2)如图2,若A 、D 、E 三点共线,AE 与BC 交于点F ,且CF BF ,AD (3)如图3,BE 与AC 的延长线交于点G ,若CD AD ,延长CD 与AB 交于点△BNM≌△BNT (SAS ),利用全等三角形的性质,可得结论.【详解】(1)解:如图1中,90ACB DCE Q ,ACB BCD DCE BCD ,ACD BCE ,在ACD 和BCE 中,CA CB ACD BCE CD CE,ACD ≌ SAS BCE ,30CAD CBE ,10DCB ∵,901080ECB ,180803070CEB ,45CED ∵,704525DEB ;(2)如图2中,过点C 作CQ DE 于Q .∵,AD CD90ADC ,同理:ACD ≌BCE ,90ADC BEC ,90BCT ECB ∵,90ECB CBG ,BCT CBG ,在CBT 和BCG 中,90BCT CBG CB BC CBT BCG,CBT ≌ ASA BCG ,BT CG ,CT BG ,BM CG ∵,BM BT ,在BNM 和BNT 中,45BM BT NBM NBT BN BN,BNM ≌ SAS BNT ,MN NT ,CN MN CN NT CT BG .【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【类型三共顶点的一般等腰三角形】例题:(2023秋·广东·八年级校联考期末)若ABC 和ADE V 均为等腰三角形,且AB AC AD AE ,当ABC 和ADE 互余时,称ABC 与ADE V 互为“底余等腰三角形”,ABC 的边BC 上的高AH 叫做ADE V 的“余高”.(1)如图1,ABC 与ADE V 互为“底余等腰三角形”,若连接BD ,CE ,判断ABD △与ACE △是否互为“底余等腰三角形”:______(填“是”或“否”);(2)如图1,ABC 与ADE V 互为“底余等腰三角形”,当0180BAC 时,若ADE V 的“余高”是AH .①请用直尺和圆规作出AH ;(要求:不写作法,保留作图痕迹)②求证:2DE AH .(3)如图2,当90BAC 时,ABC 与ADE V 互为“底余等腰三角形”,连接BD 、CE ,若6BD ,8CE ,请直接写出AB 的长.【答案】(1)是(2)见详解(3)5【分析】(1)根据题意可得90ABC ADE ,90ACB AED ,四边形内角和为360 ,求出【变式训练】1.(2023秋·辽宁抚顺·八年级统考期末)如图,已知ABC 中,AB AC BC .分别以AB 、AC 为腰在AB 左侧、AC 右侧作等腰三角形ABD .等腰三角形ACE ,连接CD 、BE .(1)如图1,当60BAD CAE 时,①ABD △、ACE △的形状是____________;②求证:BE DC .(2)若60BAD CAE ,①如图2,当AB AD AC AE ,时,BE DC 是否仍然成立?请写出你的结论并说明理由;②如图3,当AB DB AC EC ,时,BE DC 是否仍然成立?请写出你的结论并说明理由.【答案】(1)①等边三角形;②证明见解析(2)①成立,理由见解析;②不成立,理由见解析【分析】(1)①根据有一个内角是60度的等腰三角形是等边三角形即可求解;②根据等边三角形的性质可得AB AD ,AE AC ,60DAB CAE ,证明BAE DAC ≌ ,根据全等三角形的性质即可证明;(2)①证明BAE DAC ≌ ,根据全等三角形的性质即可得出结论;②根据已知可得BAE 与DAC △不全等,即可得出结论.【详解】(1)①∵ABD △是等腰三角形,ACE △是等腰三角形,60BAD CAE∴ABD △、ACE △是等边三角形,故答案为:等边三角形.②证明:∵ABD △、ACE △是等边三角形,∴AB AD ,AE AC ,60DAB CAE ,∵DAC DAB BAC ,BAE CAE BAC ,∴DAC BAE ,在△BAE 与△DAC 中,∵AB AD BAE DAC AE AC,∴ SAS BAE DAC ≌ .∴BE DC .(2)①当AB AD ,AE AC 时,成立.理由:如图,∵AB AD ,BAE DAC ,AE AC ,∴ SAS BAE DAC ≌ ,∴BE DC ;②当AB DB ,AC EC 时,不成立.理由:如图,∵60BAD CAE ,∴AB DB AD ,AC EC AE ,∴BAE 与DAC △不全等,∴BE DC .【点睛】本题考查全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质等,熟练掌握全等三角形的判定与性质是解题的关键.2.(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,ABC 和CDE 为“同源三角形”,AC BC ,CD CE ,ACB 与DCE 为“同源角”.(1)如图1,ABC 和CDE 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”ABC 和CDE 上的点B ,C ,D 在同一条直线上,且90ACE ,则 EMD ______°.(3)如图3,ABC 和CDE 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明PCQ △是等腰直角三角形.【答案】(1)AD BE ,详见解析(2)45(3)详见解析【分析】(1)由“同源三角形”的定义可证ACD BCE ,然后根据SAS 证明≌ACD BCE V V 即可;(2)由“同源三角形”的定义和90ACE 可求出45DCE ACB ,由(1)可知≌ACD BCE V V ,得ADC BEC ,然后根据“8”子三角形即可求出EMD 的度数;(3)由(1)可知≌ACD BCE V V ,可得CAQ CBP ,BE AD .根据SAS 证明ACQ BCP △≌△,可得CQ CP ,ACQ BCP ,进而可证结论成立.【详解】(1)AD BE .理由:因为ABC 和CDE 是“同源三角形”,所以ACB DCE ,所以ACD BCE .在ACD 和BCE 中,,,,AC BC ACD BCE CD CE所以 SAS ACD BCE △≌△.所以AD BE .(2)∵ABC 和CDE 是“同源三角形”,∴ACB DCE .∵90ACE ,∴45DCE ACB .由(1)可知≌ACD BCE V V ,∴ADC BEC .∵MOE COD ,∴45EMD DCE .故答案为:45;(3)由(1)可知≌ACD BCE V V ,所以CAQ CBP ,BE AD .因为AD ,BE 的中点分别为Q ,P ,所以AQ BP .在ACQ 和BCP 中,,,,CA CB CAQ CBP AQ BP所以 SAS ACQ BCP △≌△,所以CQ CP ,ACQ BCP .又因为90BCP PCA ,所以90ACQ PCA .所以90PCQ ,所以PCQ △是等腰直角三角形.【点睛】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.3.(2023上·浙江宁波·八年级统考期末)规定:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①,在ABC 与ADE V 中,AB AC ,当BAC BAD BAE 、、、满足条件____时,ABC 与ADE V 互为“兄弟三角形”;(2)如图②,在ABC 与ADE V 互为“兄弟三角形”,AB AC ,BE CD 、相交于点M ,连AM ,求证:MA 平分BMD(3)如图③,在四边形ABCD 中,180BAD BCD ,AD AB ,AC BC DC ,求BAD 的度数.【答案】(1)BAE BAC BAD ;(2)见解析(3)60BAD【分析】(1)顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.据此推导出BAC BAD BAE 、、的关系便可;(2)过点A 作AM BE 于点M ,作AN CD 于点N ,再证明ABE ACD ≌得AM AN ,再根据角平分线的判定定理得结论;(3)延长CD 至E ,使得DE BC ,连接AE ,证明ABC ADE △≌△,进而得ACE △是等边三角形,便可得60BAD CAE .【详解】(1)∵在ABC 与ADE V 中,AB AC ,∴当BAC DAE 时,ABC 与ADE V 互为“兄弟三角形”,∵BAE DAE BAD ,∴BAE BAC BAD ,故当BAE BAC BAD 时,ABC 与ADE V 互为“兄弟三角形”,故答案为BAE BAC BAD ;(2)过点A 作AH BE 于点H ,作AN CD 于点N ,∵在ABC 与ADE V 互为“兄弟三角形”,AB AC ,∴BAC DAE ,AD AE ,∴BAE CAD ,∴ SAS ABE ACD ≌,∴AH AN (全等三角形的对应高相等),∴MA 平分BMD ;(3)延长CD 至E ,使得DE BC ,如图③,∵180BAD BCD ,∴360180180 ABC ADC ,∵180ADC ADE ,∴ABC ADE ,∵AB AD ,∴ SAS ABC ADE ≌,∴AC AE BAC DAE ,,∴BAD CAE ,∵AC BC DC DE DC CE ,∴AC CE AE ,∴60CAE ,∴60BAD .【点睛】此题考查了新定义,等腰三角形的定义,等边三角形的判定与性质,角平分线的判定,全等三角形的判定和性质,构造等边三角形和全等三角形是解本题的关键.。
善归类 细分析 悟通法 促提高——对一类“共顶点等腰直角三角形”

A A B C 外作正方形 C D E F ,连接 B F 、 A D . ( 1 ) ① 猜想图 4中线段 B F 、 A D的数量关系及所
在直 线 的位置关 系 ,直接 写 出结 论 ;
② 将 图 4中的正方形 C D E F ,绕着点 C按顺 时针 ( 或逆时针)方 向旋转任意角度 ,得到如 图 5 、图 6
1 . 基 本 图形
问题 1 :如 图 1 ( 或图 2 ), 已知 △AC B、 △E ∞ 都是 等腰直 角三 角形 , A C B =LE C D =9 0 。 ,连 接
B E、AD. 证明 :
( 1 ) B E= AD;
仪 务教育数学课程标准 ( 2 0 1 1 年版) 》 指出 ,数 学知识 的教学 , 要重视知识的 “ 生长点”与 “ 延伸点” , 把每堂课 教学 的知识置于整体 的知识 体系 中.因此 ,
即 LBC F= AC D.
( 具体证 明过 程省 略 ,留给读 者 思考. ) 3 .中考链 接
例 1 ( 2 0 1 3 年辽宁 ・ 营 口卷)如 图 4 ,A A B C为
等腰 直 角三 角形 , AC B=9 0 。 ,点 F是 AC边上 的一 个 动点 ( 点 F与 点 A、C不 重 合 ) ,以 C F为 一 边 在
所 以 △
△AC D( S AS ) .
所以 B F=A D, C B F= C A D . 由 LB HC= A HO, C B H+ B 日C=9 0 。 , 得 C A D+LA HO=9 0 。 . 所 以 AO H:9 0 。 . 所 以B F_ L A D.
作者简介 :沈岳夫 ( 1 9 6 3 一) ,男,浙江绍兴人 ,中学高级教 师 ,主要从事数 学教育和数学解题研 究
八年级数学 共顶点的等腰(等边)三角形导学案

共顶点的等腰(等边)三角形问题探讨五、精练――当堂训练、提升能力1.如图,已知△ABC,△ADE是等边三角形,点E恰在CB的延长线上,求证:∠ABD=∠AED.2.如图,A点在y轴正半轴上,以OA为边作等边△AOC,点B为x的正半轴上一动点,连AB,在第一象限作等边△ABE.在点B运动过程中,∠ACE的大小是否发生变化?若不变求出其值;若变化,请说明理由.3.如图,在平面直角坐标系中,△AOP为等边三角形,A(0,1),点B为y轴上一动点,以BP为边作等边△PBC.(1)求证:OB=AC;(2)求∠CAP的度数;(3)当B点运动时,AE的长度是否发生变化?4.已知等腰直角△ABC和等腰直角△ADE,∠BAC=∠EAD=90°,AB=AC,AD=AE,F为BE和CD的交点.(1)求证:BE⊥CD;.(2)求∠AFE的度数5.如图,点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =120°,求∠BCE 的 度数.B6.如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B (a ,b ),且a,b满足(20b -=.D 为y 轴上一动点,以AD 为边作等边三角形ADC ,CB 交y 轴于E .(1)如图1,求A 点的坐标;(2)如图2,D 在y 轴正半轴上, C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由;(3)如图3,点D 在y 轴的负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连AE .试求CE ,OD ,AE 三者的数量关系,并证明你的结论。
共顶点的等腰三角形

E
D
C
B
A
P
O
D C
B
A P
O
D
C
B
A
P
O
D
C
B
A 共顶点的等腰三角形
方法与技巧:
(1)如果两个等腰三角形共顶点,那么图中一定有SAS 的全等三角形,这种全等叫做手拉手全等 (2)图中有一个等腰三角形,为了解决问题,可以根据题意,添加恰当的辅助线,构造手拉手全等 强化练习:
1、已知:如图,∠ACB=∠DCE=90°,CA=CB ,CD=CE ,求证:(1)AD=BE (2)AD ⊥BE
2、 已知:OA=OC ,OB=OD ,∠AOC=∠BOD ,直线AB 、CD 相交于点P (1)如图1,若∠AOC=∠BOD=900
,则∠APD= (2)如图2,若∠AOC=∠BOD=600,则∠APD=
(1)如图3,若∠AOC=∠BOD=a ,则∠APD= ,请证明你的结论。
3﹑如图,在△ABC 中,AB=AC ,∠BAC=90°,∠ADB=45°,(1)求∠ADC 的度数(2)求证:AD 平分∠BDC
4﹑如图,在△ABC 中,AB=AC ,∠BAC=120°,∠ADB=30,(1)求∠ADC 的度数(2)求证:AD 平分∠BDC
5﹑如图,在△ABC 中,AB=AC ,∠BAC=∠ADB=60°,(1)求∠ADC 的度数(2)求证:AD 平分∠
BDC
B D
C B A D
C
B
A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
证明方法: 延长OM 至点K,使得OM KM,连结BK
OA OB AOD KBO OD BK AOD OBK (SAS)
3 1
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
AOC BOD(SAS)
交叉拉手(手拉手全等模型) 静态视角:
结论二(线的角度): AC BD, AC BD(8字形)
证明方法:AOC BOD AC BDA 在APQ与BPO中 PAQ PBO, APQ BPO AQP BOP 90 即AC BD
或同理证明DQC DOC 90也可
OD BI OC
OI AD
1 2 90
3 1
同侧拉手(婆罗摩笈多模型)
结论三: 为BC中点,且OM 1 AD(高变中线)
2
BMI CMO IBM OCM BI OC IBM OCM(AAS)
OM IM 1 OI 1 AD 22
结论三:过点O作ON AD与点N,延长NO交BC于点M,
则M 为BC中点,且OM 1 AD(高变中线) 2
过点B作BI // OC,交OM的延长线于点I
BI // OC IBO COB 180 AOD COB 180 IBO AOD AOB 90 3 2 90 ON AD
1 3 OA OB AOD IBO AOD OBI(ASA)
交叉拉手(手拉手全等模型) 静态视角:
结论三(角的角度): QO平分BQC,即BQO CQO 45
证明方法:
过点O作OM BD于点M 过点O作ON AC于点N AOC BOD SAOC SBOD,AC BD OM ON 点O在BQC的角平分线上 即QO是BQC的角平分线
交叉拉手(手拉手全等模型) 静态视角:
BM CM,即M为BC中点
配套练习1.
BE AQ
BQ BE EQ AQ 2OQ
交叉拉手(手拉手全等模型) 动态视角:
AOC旋转得到BOD 旋转中心:点O 旋转方向:顺时针 旋转角度:AOB COD 90
PART 02
同侧拉手
同侧拉手(婆罗摩笈多模型)
结论一:SAOD SBO(C 等底等高)
证明方法一: CNO DMO CON DOM OC OD CON DOM(AAS) CN DM
同侧拉手(婆罗摩笈多模型)
结论一: SAOD SBO(C 等底等高)
证明方法二: BF AE
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
证明方法: 延长OM至点K,使得OM KM,连结BK(倍长中线) 易证BKM COM(SAS) KBM OCM BK // OC KBO BOC 180 AOD BOC 360 AOB COD 180 KBO AOD
手拉手模型之————
有公共顶点的等腰直角三角形
亦墨数学 小派老师
交叉拉手
01 结论一 02 结论二 03 结论三 04 结论四
目录
同侧拉手
01 结论一 02 结论二 03 结论三
PART 01
交叉拉手
交叉拉手(手拉手全等模型) 静态视角:
结论一(形的角度):
AOC BOD
证明方法:
OC OD AOC BOD OA OB
2
3 2 90 1 2 90 即ON AD
AD OK ,OK 2OM AD 2OM 即OM 1 AD
2
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
倍长中线后连结CK也同理可证
同侧拉手(婆罗摩笈多模型)
结论四(线的角度): BQ AQ 2OQ,CQ DQ 2OQ,
证明方法:
在BQ上取一点E,使得OE BQO 45,OE OQ
OQ
E OQ是等腰直角三角形
EQ 2OQ,EOQ 90 AOB EOQ EOB QOA
BO AO EOB QOA EO QO BOE AOQ(SAS)