有理数的加减法提高测试题

合集下载

有理数加减法培优提高卷

有理数加减法培优提高卷

七年级数学上---有理数的加法复习提高试卷1、已知有理数a,b,c在数轴上的位置如图所示,则下列结论中错误的是()A、a+b<0B、-a+b+c<0c b 0 aC、|a+b|>|a+c|D、|a+b|<|a+c|2、两个有理数的和为零,则这两个有理数一定()A、都是零B、至少有一个是零C、一正一负D、互为相反数3、若3y=,且x y>,则x y+的值为()x=,2A.1 B.-5 C.-5或-1 D.5或14、在1,-1,-2这三个数中,任意两数之和的最大值是()A.1B.0C.-1D.35、x<0, y>0时,则x, x+y, x+(-y),y中最小的数是()A.x B.x+(-y) C.x+y D.y6、如果a、b是有理数,则下列各式子成立的是()A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b >0C、若a>0,b<0,则a+b<0D、若a<0,b>0,且a>b,由a+b<07、若︱a-2︱+︱b+3︱=0,则a+b的值是()A、5 B、1 C、-1 D、-58、2008年8月第29届奥运会在北京开幕,5个城市标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A 、巴黎时间2008年8月8日13时B 、纽约时间2008年8月8日5时C 、伦敦时间2008年8月8日11时D 、汉城时间2008年8月8日19时 01-589汉城北京巴黎伦敦纽约9、电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳一个单位到K 1,第二步向右跳两个单位到K 2,第三步向左跳两个单位到K 3,第四步向右跳三个单位到K 4……按以上规律跳了100步时,电子跳蚤在数轴上的点K 100表示的数是20,则电子跳蚤的初始位置K 0点表示的数是 .10、若a >0,则a = ;若a <0,则a = ;若a =0,则a = 。

11、绝对值小于2011的所有整数之和是 .12、填空:211+-+3121+-+4131+-+ ┉ +10191+-= .13、判断题:(对的打“√”,错的打“×”).(1)两个有理数的和为正数时,这两个数都是正数.( )(2)两个数的和的绝对值一定等于这两个数绝对值的和.( )(3)两个有理数的和为负数时,这两个数都是负数.( )(4)如果两个数的和为负,那么这两个加数中至少有一个是负数.( )(5)两数之和必大于任何一个加数.( )(6)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数.( )(7)两个不等的有理数相加,和一定不等于0.( )(8)两个有理数的和可能等于其中一个加数.( )14、计算题(尽量利用加法的运算律简化计算):(1)5.6+(-0.9)+4.4+(-8.1)+(-1);(2)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)│-4.4│+(+831)+1132+(-0.1);(4)()().116105.1725.211594317⎪⎭⎫⎝⎛-+-+-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+(5)1+(-2)+3+(-4)+5+……+2009+(-2010)+2011+(-2012)(6)1+(-2)+(-3)+4+5+(-6)+(-7)+8+……+101+(-102)+(-103)+104.15、一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42米,却下滑了0.15米;第二次往上爬了0.5米后又往下滑了0.1米;第三次往上爬了0.7米又下滑了0.15米;第四次往上爬了0.75米又下滑0.1米,第五次往上爬了0.55米,没有下滑;第六次蜗牛又往上爬了0.48米没有下滑,请回答:(1)第二次爬之前,蜗牛离井口还有米;第四次爬之前,蜗牛离井口还有米;(2)最后一次蜗牛有没有爬到井口?若没有,那么离井口还有多少米?16、某工厂某周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数):星期一二三四五六日增减/-1 +3 -2 +4 +7 -5 -10辆(1)生产量最多的一天比生产量最少的一天多生产了辆.(2)本周总生产量是多少?是增加了还是减少了?增减数为多少?17、一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+7,-2,+10,-8,-6,+11,-12. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?18、若a=19,b=97,且ba+=a+b,求a+b的值. 19、已知x=2,y=3,求x y+的值.20、若3-y与4x互为相反数,求x y+的值.2-有理数加减运算中的结合技巧一、把符号相同的加数相结合例1:计算:(+5)+(-6)+(+4)+(+9)+(-7)+(-8)二、把和为零的加数结合例2:计算:(-15.43)+(-4.15)+(+15.20)+(+4.15)+(+0.23)+(-5)三、把和为整数的加数相结合四、把整数与整数,分数与分数分别相结合例4:计算:-423-313+612-214(在分拆带分数时,要注意符号)。

有理数的加减运算计算题(50题提分练)(5大题型提分练)(原卷版)—七年级数学上册(浙教版2024)

有理数的加减运算计算题(50题提分练)(5大题型提分练)(原卷版)—七年级数学上册(浙教版2024)

有理数加减运算计算题(5大题型50题)●有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.●有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一有理数的加法计算1.计算:(1)(﹣5)+(﹣9);(2)(+11)+(﹣12.1);(3)(﹣3.8)+0;(4)(﹣2.4)+(+2.4).2.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(―23).3.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(―25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).4.计算:(1)(﹣2)+(+7);(2)(﹣5)+(﹣8);(3)(﹣13)+(+10);(4)0+(﹣6);(5)(―14)+0.25;(6)(―56)+(―23).5.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(―32)+(―512)+52+(―712).6.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125).7.用合理的方法计算下列各题:(1)103+(―114)+56+(―712);(2)(―12)+(―25)+(+32)+185+395.8.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(―38)+(―38)+(―6).9.(2023秋•兴平市校级月考)计算下列各题:(1)180+(﹣50);(2)(﹣2.8)+(﹣1.4);(3)43+(﹣77)+37+(﹣23);(4)56+(―17)+(―16)+(―67).10.计算:(1)0.2+(﹣5.4)+(﹣0.6)+(+6);(2)(+14)+(+18)+(―38)+(―58);(3)﹣5+32+(﹣1);(4)―14+23+(―23).题型二 有理数的减法计算11.计算:(1)6﹣(﹣6);(2)0﹣9;(3)(―512)―(―314);(4)(―112)―(13).12.计算:(1)7.21﹣(﹣9.35);(2)(+538)―(+734);(3)(﹣19)﹣(+9.5);(4)(﹣413)﹣(﹣425).13.计算:(1)﹣1.2﹣(+313)(2)(﹣14)﹣(﹣39917)(3)134―[(―16)﹣(+423)](4)6.02﹣9.58﹣2.14﹣8.714.(2023秋•山西月考)计算:(1)75﹣(﹣17)﹣37﹣(﹣25);(2)6﹣(3﹣5)﹣|+8|.15.计算:(1)0﹣457―(―87)﹣(﹣2);(2)538―(﹣234)﹣(+438).16.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23―(―23)―34.17.计算下列各题:(1)(﹣12)﹣(+8)﹣(+10)﹣(﹣8);(2)(+55)﹣(﹣9.4)﹣(+32)﹣(+9.4);(3)223―(+134)﹣(﹣313);(4)34―[47―(+0.25)].18.计算:(1)(―413)﹣(―323);(2)56+(―212)﹣(―116)﹣(+0.5).19.计算:(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5);(2)(+456)﹣(+335)﹣(﹣316)﹣(+125).(1)[(﹣4)﹣(+7)]﹣(﹣5);(2)3﹣[(﹣3)﹣12];(3)8﹣(9﹣10);(4)(3﹣5)﹣(6﹣10);(5)(﹣1.8)﹣0.12﹣0.36;(6)(―23)―112―(―14).题型三 运用加法运算律进行简便计算21.(2024春•普陀区期中)计算:―3.19+21921+(―6.81)―(―2221).22.(2023春•浦东新区校级期中)(―2513)+(+15.5)+(―7813)+(―512).23.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).24.(2023秋•东莞市校级月考)计算:(1)(﹣11)﹣(﹣7.5)﹣(+9)+2.5;(2)534―(+612)+(―312)―(―414).(1)31+(﹣28)+28+69;(2)(+635)+(﹣523)+(425)+(1+123).26.计算:(1)137+(﹣213)+247+(﹣123);(2)(﹣1.25)+2.25+7.75+(﹣8.75).27.(2023秋•定西月考)计算:(1)11+(﹣18)+12+(﹣19);(2)(―478)+(―512)+(―412)+318.28.用适当的方法计算:(1)0.34+(﹣7.6)+(﹣0.8)+(﹣0.4)+0.46;(2)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15).29.(2023秋•张店区校级月考)计算:(1)12+(―23)+45+(―12)+(―13);(2)43+(﹣77)+27+(﹣43);(3)(+1.25)+(―12)+(―34)+(+134).30.计算:(1)(﹣1)+(﹣2)+(﹣4)+(﹣8)+8;(2)3+(﹣1)+(﹣3)+1+(﹣4);(3)(﹣112)+1.25+(﹣8.5)+1034;(4)(﹣2.25)+(﹣5.1)+14+(﹣418)+(―910).31.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(―23)+56+(―14)+(―13);(4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).32.(2023秋•兰山区校级月考)计算题.(1)38+(﹣22)+(+62)+(﹣78);(2)(﹣23)+|﹣63|+|﹣37|+(﹣77);(3)(―8)+(―312)+2+(―12)+12;(4)(―23)―(―134)―(―123)―(+1.75);题型四 利用“拆项法”进行计算33.(2023秋•肥城市期中)阅读下面文字:对于(―556)+(―923)+1734(―312) 可以按如下方法进行计算:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(―56)+(―23)+34+(―12)]=0+(―54) =―54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(―202337)+(―214)+(―202125)+404225.34.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312).解:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(―56)+(―23)+34+(―12)]=0+(―5 4)=―5 4.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156.35.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312)解:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3]+[(―56)+(―23)+34+(―12)]=0+(﹣11 4)=﹣11 4启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235―(﹣212);(2)(﹣200056)+(﹣199923)+400023+(﹣112).36.阅读下面文字:对于(―3310)+(―112)+235+212可以如下计算:原式=[―3+(―310)]+[―1+(―12)]+(2+35)+(2+12)=[(﹣3)+(﹣1)+2+2]+ =0+ = .上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:(―202423)+202334+(―202256)+202117.37.(2023秋•单县期中)对于(―556)+(―923)+1734+(―312)可以进行如下计算:原式=[(―5)+(―56)]+[(―9)+(―23)]+(17+34)+[(―3)+(―12)]=[(―5)+(―9)+17+(―3)]+[(―56)+(―23)+34+(―12)] =0+(―114)=―114.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,你会计算下面的式子吗?(―202256)+(―202312)+404634+(―112).38.(2023秋•凉山州期末)数学张老师在多媒体上列出了如下的材料:计算:―556+(―923)+1734+(―312).解:原式=[(―5)+(―56)]+[(―9)+(―23)]+(17+34)+[(―3+(―12)]=[(―5)+(―9)+(―3)+17]+[(―56)+(―23)+(―12)+34] =0+(﹣114)=﹣114.上述这种方法叫做拆项法.请仿照上面的方式计算:(―202127)+(―202247)+4044+(―17).39.(2023秋•虞城县月考)数学张老师在多媒体上列出了如下的材料:上述这种方法叫做拆项法.请仿照上面的方法计算:(1)(+2857)+(―2517);(2)(―202127)+(―202247)+4044+(―17).题型五 有理数的加减混合运算41.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)―1.2+(―34)―(―1.75)―14.42.(2023秋•泰兴市期末)计算:(1)(―49)+(―59)﹣(﹣9);(2)(56―12―712)+(―124).43.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).44.(2023秋•开州区期中)计算:(1)20.36+(﹣14.25)﹣(﹣18.25)+13.64﹣1.5;(2)1338+(―314)―6―(―0.25).45.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(―710)+(+23)+(―0.1)+(―2.2)+(+710)+(+3.5).(1)﹣9+5﹣(﹣12)+(﹣3);(2)―|―314|―38+3.25―(―118).47.(2023秋•静海区校级月考)计算:(1)﹣20+18+(﹣15)+12;(2)﹣24+3.2﹣16﹣3.5+0.3;(3)137+(―213)+247+(―123);(4)―2223+(+414)―(―23)―(+1.25).48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)―|―15|―(+45)―|―37|―|―47|;(3)513+(―423)+(―613);(4)―12+(―13)―(―14)+(―15)―(―16).49.(2023秋•德城区校级月考)计算:(1)0﹣(﹣6)+2﹣(﹣13)﹣(+8);(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(3)1356―(―34)+56―(―712);(4)(+1734)―(+6.25)―(―812)―(+0.75)―2214.(1)18+(﹣12)+(﹣18);(2)24﹣(﹣15)﹣(﹣20);(3)﹣2.8+7.2+5.5+(﹣4.2);(4)137+(―213)+247+(―123).。

有理数的加减法提高题练习

有理数的加减法提高题练习

有理数的加减法练习题——提高题班级: 学号: 姓名: 成绩:_________1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为()A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为() A.-3 B.-9 C.-3或-9D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数6、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定8、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、410、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0D 、a -b >011、下列各式中与a b c --的值不相等的是( )A 、a b c --()B 、a b c -+()C 、()()a b c -+-D 、()()-+-b a c12、下列各式与a -b +c 的值相等的是( )A .a -(b +c )B .c +(a +b )C .c -(b -a )D .a +(b +c )13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c )14、若0a b c d <<<<,则以下四个结论中,正确的是()A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,切被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是()A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b17、下列结论不正确的是()A 、若0a <,0b >,则0a b -<B 、若0a >,0b <,则0a b ->C 、若0a <,0b <,则()0a b -->D 、若0a <,0b <,且a b >,则0a b -<18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )A 、xB 、x y +C 、x y -D 、y19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是( )A 、m >m -n >m +nB 、m +n >m >m -nC 、m -n >m +n >mD 、m -n >m >m +n20、如果a <0,那么a 和它的相反数的差的绝对值等于( )A 、aB 、0C 、-aD 、-2a21、若a b >>00,,则下列各式中正确的是()A 、a b ->0B 、a b -<0C 、a b -=0D 、--<a b 022、在数轴上,点x 表示到原点的距离小于3的那些点,那么||||x x -++33等于()A 、6B 、-2xC 、-6D 、2x23、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <024、已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于()A 、-3a +b +cB 、3a +3b +cC 、a -b +2cD 、-a +3b -3c25、填上适当的符号,使下列式子成立:(1)(_____5)+(-15)=-10;(2)(-3)+(_____3)=0;(3)(_____37)+(-331)=-1. 26、若有理数a >0,b <0,则四个数a +b ,a -b ,-a +b ,-a -b 中最大的是, 最小的是.27、已知的值是那么y x y x +==,213,6.28、三个连续整数,中间一个数是a ,则这三个数的和是___________.29、若8a =,3b =,且0a >,0b <,则a b -=________.30、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______.31、若0a <,那么()a a --等于___________.32、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是.33、若x +m =n ,则x =______;若x -m =n ,则x =_______.34、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。

50道有理数加减法计算题

50道有理数加减法计算题

50道有理数加减法计算题一、简单整数的有理数加减法(1 - 20题)1. 1 + (-2)- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|1| = 1,| - 2|=2,2>1,所以结果为-(2 - 1)=-1。

2. (-3)+5- 解析:异号两数相加,| - 3| = 3,|5| = 5,5>3,结果为+(5 - 3)=2。

3. 4+(-4)- 解析:互为相反数的两个数相加得0。

4. (-5)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。

| - 5|=5,| - 3| = 3,结果为-(5 + 3)=-8。

5. 2-3- 解析:2-3可以写成2+(-3),异号两数相加,|2| = 2,| - 3|=3,3>2,结果为-(3 - 2)=-1。

6. (-4)-(-2)- 解析:减去一个数等于加上这个数的相反数,(-4)-(-2)=(-4)+2,异号两数相加,| - 4| = 4,|2| = 2,4>2,结果为-(4 - 2)=-2。

7. 3-(-1)- 解析:3-(-1)=3 + 1=4。

8. (-2)-3- 解析:(-2)-3=(-2)+(-3)=-(2 + 3)=-5。

9. 0+(-5)- 解析:0加任何数等于这个数本身,结果为-5。

10. (-6)+0- 解析:任何数加0等于这个数本身,结果为-6。

11. 5+(-9)- 解析:异号两数相加,|5| = 5,| - 9| = 9,9>5,结果为-(9 - 5)=-4。

12. (-7)+7- 解析:互为相反数的两个数相加得0。

13. 8 - 10- 解析:8-10 = 8+(-10),异号两数相加,|8| = 8,| - 10| = 10,10>8,结果为-(10 - 8)=-2。

14. (-9)-(-9)- 解析:(-9)-(-9)=(-9)+9 = 0。

15. 10+(-3)- 解析:异号两数相加,|10| = 10,| - 3| = 3,10>3,结果为+(10 - 3)=7。

有理数的加减法练习题及答案

有理数的加减法练习题及答案

三、计算:(每题 4 分,共 24 分)1、- 15+ 11 2、- 3-(- 4+2)
3、
4141+(- 1) 3、—- 1 3362 5、— 8-( 5- 10) 6、 3-[ (- 3)+10 ] 四、列式计算: (每题 4 分,共 12 分) 1、 1 与 - 2
2、- 1 减去 与— 的和,所得的差是多少?
3、什么数与 -8 的和等于 - 5? 五、计算: (每题 5 分,共 10 分)
131
的和的相反数。 2
-?)?41、 7 —(- 2)—(+ 4)+(- 4) 2. -3( 3、(- 2 131232( --1 ) 43
4
)-(- 4.7)+ (- 3.2) 3.2) 六、( 6 分)某天早晨的气温是- 了 3℃,求半夜的
5、 ( - 6)+( - 3)— (- 4) 写成省略加号的和的形式为________。 读作:__________。
6、- 3- 2— 5
7、运用加法交换律,式子 11-16 可以写成_____。
8、从海拔 12m 的地方乘电梯到海拔- 15m 的地方,一共下降了____ m。 9、__ __比 - 5 小 3。BBiblioteka 、— 6 或 0C、— 6
D、0
A 、— 6 或 6
5、- 6 的相反数与比 5 的相反数大 1 的数的差为( )
A 、 10
B 、— 2
C、— 12
D、0
6、若 a+ b> 0,且- (- a)< 0,则( )
A 、 a>0, b< 0 B 、 a< 0, b> 0
C、 a< 0, b> 0
D 、 a<0, b< 0
= 1 答:收工时距 A 地 1 千米。 ②解: 答:共耗油 12.3 升

有理数加减法100道带答案

有理数加减法100道带答案

20200620手动选题组卷2(202006212130复制)副标题一、计算题(本大题共100小题,共600.0分)1. 计算下列各题:(1) (−20)+(+3)−(−5)−(+7)(2)(−1.8)+(+0.7)+(−0.9)+1.3+(−0.2) (3)(−23)+|0−526|+|−456|+(−913)(4)−32+16÷(−2)×12−(−1)2015 (5) (−5)×(−367)+(−7)×(−367)+12×(−367)(6) (−4)2−6×43+2×(−1)3+(−12)2. 计算(1)(−15)+(+9)(2)−6+(−12)−(−18)(3)(−6)÷(−2)×12(4)−22×7−(−3)×6+53. 计算(−357)+15.5−627+(−512)4. 计算下列各式:(1)(−27)+(−57)−(−2);(2)(a +2)(a −3)−a(a −1)5. 计算:(1)−3+5+4(2)8−(−10)−|−2|(3)(−6)×(−4)−(−56)÷8(4)−14−9÷(−3)2+2×112(简便运算)(5)(−60)×(34+56−1115)(6)−25×34−(−25)×12+25×(−14)6. 计算(1)−3−7+12(2)7−(−3)+(−5)−|−8|7. 计算:(1)434−(+3.85)−(314)+(−3.15) (2)−39−(+21)−(−76)+(−16). (3)(1112−76+34−1324)×(−48)(4)|13−14|+|14−15|+⋯+|119−120|.8. 计算(1)−2−1+(−16)−(−13) (2)(29−14+118)÷(−136)(3)−24−(−4)2×(−1)+(−3)2(4)(−1)2×2+(−2)3÷49. 计算:(1)3−(+63)−(−259)−(−41); (2)(+0.75)+(−2.8)+(−0.2)−1.25; (3)7.5+(−212)−(+22.5)+(−623).10. (1)14 − (−12) + (− 25) − 17(2) (−40)−(+28)−(−19)+(−24)−(32) (3)−14−56−12+414(4)0.125+314−18+5.6−0.25(5)(−36.35)+(−7.25)+26.35+(+714)+10(6)(−323)−(−234)−(−123)−(+1,75)11. (1)26−(−15)+(−52)−32(2)37−|16−23|+(−37)12. 计算:−(−4)÷(−2)+[3×(−8)−(−2)×7]÷(−5).13. 计算:(+2)−(−5)+(−9)−(−7)14. 计算:(1)−20+(−14)−(−18)(2)−534+(+237)+(−114)−(−47) (3)(−18)×(−19+23−16)15. 计算:(1)4×(−12−34+2.5)×3−∣−6∣;;(3)7.5+(−213)−(+22.5)+(−623); (4)−58×(−42)−(−3)3÷(−1)2009.16. 计算(1)−5+8−28+9(2)23− 18 −(−13) +(−138) (3)134+16−712(4) [1.4−(−3.5+5.2)−4.3]−(−1.8)17. 计算(1)214+(–2.25)+316+(−323) (2)|−1−(−53)|−|−116−76|(3) [413−(−13)+43]+(−6) (4)−556+(−923)+(−312)+173418.计算:(1)3+(−5)(2)−6−(−8)(3)35+(−13)−2+25(4)(−1)÷(−9)÷1319.计算:(1)27+0−﹙−3﹚−18(2)3+(−5)+7−(−3)(3)﹙−11.5﹚−﹙−4.5﹚−3(4)2−(−12)+(−3.4)—4 20.计算:(1)−5−(−4)+7(2)−34×(−8)+3÷(−35)(3)(−12+310−76)×(−60)(4)−1100−4×(−14)2+(−24)21.运用运算律计算:−34+338−(−0.75)+|−258|−512.22. 运用运算律计算:−34+338−(−0.75)+|−258|−512.23. 计算下列各式:(1)(−7)−(−10)+(−8); (2)(−1.2)+[1−(−0.3)];(3)|−0.75|+(−3)−(−0.25)+|−18|+78 ;(4)(−12−15+710)×(−30);(5)(−3.2)×310+6.8×(−310);(6)(−81)÷214+49÷(−16).24. 1356−(34)+56−(−712).25. 计算:(1)3.7−(−6.9)−9.5+(−5);(2)−513−434+756+214; (3)36+(−8)−(−2.5)−(−6)+(+1.5); (4)(−1)−(+313)−(−123).26. 计算下列各题:(1)−12+7−5;(2)√−643+√16−√(−2)2; (3)−22÷23×(1−13)2;(4)[−12020−12×(12−23−34)]÷(−16).27. 计算:(1)(−8)+10+2+(−5)(2)−32×(−2)+42÷(−2)3−|−22|28. 计算:(1)(−7)−(+5)+(−4)−(−10);(2)|−12|−(−2.5)−(−1)−|0−212|; (3)34−72+(−16)−(−23)−1; (4)−478−(−512)+(−412)−318; (5) (−201723)+201634+(−201556)+1612.(6) 1+2−3—4+5+6—7—8+9+10—11—12+⋯+2005+2006−2007—200829. 计算:12+(−18)−(−17)30. −20+(−14)−(−18)−1331. 计算:(1)43+(−77)(2)(−2)−(−3)(3)(−63)+17+(−23)+68 (4)312+(−13)+(−312)+21332. 计算:(1)(−314)+225+(−534)+835; (2)(−21)−(−9)+(−8)−(−12).33. 计算:(−12)−(−56)+(−8)−710.34. 计算:0.85+(+0.75)−(+234)+(−1.85)+(+3).35. 计算:1−2+3−4+5−6+⋯+2007−2008+2009−2010+2011.36. 计算,能简便要简便:(1)0−16+(−29)−(−7)−(+11)(2)(−123)−(−112)+714+(−213)−812(3)2−18÷2×13(4)9992425×(−5)37. 计算:(1)−6+10−(−9) (2)12×(−14−23)+35÷(−12)38. 计算:(1)23+(−48)(2)7.3−(−6.8)(3)(−16)+5+(−18)+0+(+26)(4)−20−(+14)+(−18)−(−13)(5)−234−(−18)+338+(−214)(6)−18+(+2535)−|−578|−(+25.6)39. 计算题。

有理数的加减法练习题

有理数的加减法练习题

1.3有理数的加减法 一、填空题。

1、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。

2、若a =6,b =-2,c =-4,并且a -b +(-c)-(-d)=1,则d 的值是_________。

3、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。

4、1 ―3 +5―7 +9―11+…+97―99= 。

二、选择题。

1、已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c2、两个非零有理数的和为正数,那么这两个有理数为( )A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数。

3、下列各式与c b a +-的值相等的是( )A .()()c b a -+-+B .()()c b a +-+-C .()()c b a --+-D .()()c b a ---- 4、下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为O ,则这两个数都为OD .若两个数的和为正数,则这两个数中至少有一个为正数 5、把6-(+3)-(-7)+(-2)写成省略括号的形式为( )A .-6+3-7-2B .6+3-7-2C .6-3+7-2D .6-3-7-2 6、算式-4-5不能读作( )A .-4与5的差B .-4与-5的和C .-4与-5的差D .-4减去5的差7、-7,-12,+2的和比它们的绝对值的和小( )A .-38B .-4C .4D .38 8、计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-3 三、计算题(能用简单方法的必须用简单方法)。

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数加法和减法提高训练
林东六中初一数学备课组
一、填空题
1、若,,且,则=
2、已知=3,=2,且ab<0,则a-b= 。

3、若互为相反数,互为倒数,则。

、下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是.
5、在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如右
图所示,则图中阴影部分的面积是。

6、符号“”表示一种运算,它对一些数的运算结果如下:
(1),,,,…
(2),,,,…
利用以上规律计算:.
二、选择题
7、将6-(+3)-(-7)+(-2)写成省略加号的和的形式为 ( )
A.-6-3+7-2 B.6-3-7-2
C.6-3+7-2 D.6+3-7-2
8、若b<0,则a-b、a、a+b的大小关系是( )
A.a-b<a<a+b B.a<a-b<a+b
C.a+b<a-b<a D.a+b<a<a-b
9、两个数相加,如果和为负数,则这两个数( )
A.必定都为负B.总是一正一负 C.可以都为正 D.至少有一个负数10、已知、互为相反数,且,则的值为()
A.2 B.2或3 C.4 D.2或4
11、如果表示有理数,那么的值…………………………………………… ( )
A、可能是负数
B、必定是正数
C、不可能是负数
D、可能是负数也可能是正数
12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()
A.73cm B.74cm C.75cm D.76cm
13、若a>0>b>c,a+b+c=1,M=,N=,P=,则M、N、P之间的大小关系是( )
A、M>N>P
B、N>P>M
C、P>M>N
D、M>P>N
14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,则15次后共有纸片( )
A.30张 B.15张 C.16张 D.以上答案都不对
15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有()
A.1个 B.2个 C.3
个 D.4个
16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是()
A.买甲站的B.买乙站的
C.买两站的都可以D.先买甲站的1罐,以后再买乙站的
三、简答题
四、17、2011年月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量
万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):

一二三四五六日



(1) 根据记录的数据可知该厂星期五生产汽车辆;
(2) 产量最多的一天比产量最少的一天多生产汽车辆;
(3) 根据记录的数据可知该厂本周实际生产汽车辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是元.
18、对于有理数ab6,定义运算“”,a~b=a·b-a-b-2.
(1)计算(-2)3的值;(2)填空:4(-2)_______(-2)4(填“>”“=”或“<”);
(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“”是否满足交换律?请说明理由.
19、探索性问题
数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。

请利用数轴回答下列问题:
已知点A、B在数轴上分别表示数a、b.
(1)填写下表:
数列A 列B 列C 列D 列E 列F
a 5 -5 -6 -6 -10
b 3 0 4 -4 2
A、B两点的距

(2)任取上表一列数,你发现距离表示可列式为,则轴上表示和
的两点之间的距离可表示为 .
(3)若表示一个有理数,且,则= .
(4)若A、B两点的距离为d,则d与a、b有何数量关系.
20、【阅读】表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两
点之间的距离;可以看做,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离.
【探索】
(1) =___________.
(2) 利用数轴,找出所有符合条件的整数,使所表示的点到5和—2的距离之和为7
(3) 由以上探索猜想,对于任何有理数,是否有最小值? 如果有,写出最
小值;如果没有,说明理由.。

相关文档
最新文档