高中数学选修1-2《独立性检验基本思想及其初步应用》教案

合集下载

高二数学选修1-2教案 独立性检验的基本思想及其应用第2课时

高二数学选修1-2教案   独立性检验的基本思想及其应用第2课时
浅色
合计
A
24
6
30
B
32
38
70
合计
56
44
100
由调查得到的结果,能否证实居民的发色与他们的居地有关?
解:由公式得: ,所以有99 %的把握认为居民的发色与他们的居地有关。
6、研究某特殊药物有无副作用(比如恶心),给50个患者服用此药,给另外50个患者服用安慰剂,记录每类样本中出现恶心的数目如下表,试问此药有无恶心副作用?
3、甲乙两个班进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得出班级与成绩列联表:
优秀
不优秀
总计
甲班
10
35
45
乙班
7
38
45
总计
17
73
90
画出列联表的条形图,并通过图形判断成绩与班级是否有关,利用列联表的独立性检验估计,认为“成绩是否优秀与班级有关系”犯错误的概率是多少?
解:(图略)由图及表直观判断好象“成绩与班级有关系”
答案:选A
2、在500人身上实验某种血清预防感冒的作用,把记录与500个未用血清的人作比较,结果如下表所示:
未感冒
感冒
合计
试验过
252
248
500
未用过
224
276
500
合计
476
524
1000
作出二维条形图,通过图形判断这种血清是否能够起到预防感冒的作用,并进行独立性检验。
解:(二维条形图略)由公式得
从条形图看,这种血清对预防感冒有作用,由于 ,我们有90%的把握认为起作用。
3、为了解决初二平面几何入门难的问题,某校在初中一年级代数教学中加强概念和推理教学,并设有对照班,下列是初中二年级平面几何期中测验成绩统计表的一部分,试分析研究实验结果。

1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)

1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)

1.2独立性检验的基本思想及其初步应用(第一课时)。

教学目标:1理解独立性检验的基本思想2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。

3、了解随机变量K 2的含义。

教学重点:理解独立性检验的基本思想。

教学难点;1、理解独立性检验的基本思想、2、了解随机变量K 2的含义。

教学过程:一、引入:从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。

但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。

二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:不患肺癌 患肺癌 合计不吸烟 a b a+b吸烟 c d c+d合计 a+c b+d a+b+c+d样本容量 n=a+b+c+d假设H 0 : 吸烟与患肺癌没有关系。

则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a c a c d c a b ad bc a b c dad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++--=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱.构造随机变量 其中()()2781721489874916.635⨯⨯≈⨯⨯⨯≥≈≥f 2020220202若H 成立,则K 应该很小. 把表中数据代入公式9965777549-422099K =56.632在H 成立的情况下.统计学家估算出如下概率P K 0.01即在H 成立的情况下,K 的值大于6.635的概率非常小.如果K 6.635,就断定H 不成立,出错的可能性有多大?出现K =56.632 6.635 的概率不超过1% .因此,我们有99%的把握认为"吸烟与患肺癌有关系."三、作业:预习17页。

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案第一章统计案例第一课时 1.1回归分析的基本思想及其初步应用(一)教学目标1、知识与技能目标 认识随机误差;2、过程与方法目标(1)会使用函数计算器求回归方程; (2)能正确理解回归方程的预报结果. 3、情感、态度、价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm165165 157 170 175 165 155 170 体重/kg 4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算010203040506070150155160165170175180身高/cm体重/k g② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.第二课时 1.1回归分析的基本思想及其初步应用(二)教学目标:1知识与技能:会建立回归模型,进而学习相关指数(相关系数r 、总偏差平方和、随机误差的效应即残差、残差平方和、回归平方和、相关指数R2、残差分析) 2过程与方法:通过学习会求上述的相关指数3情感态度价值观:从实际问题发现已有知识不足,激发好奇心、求知欲。

人教课标版高中数学选修1-2《独立性检验的基本思想及其初步应用(第3课时)》教案-新版

人教课标版高中数学选修1-2《独立性检验的基本思想及其初步应用(第3课时)》教案-新版

1.1.2 独立性检验的基本思想及其初步应用第三课时一、教学目标 1.核心素养:通过学习独立性检验的基本思想及其初步应用,初步形成基本的数据分析能力, 培养数学运算能力. 2.学习目标(1)1.1.3.1 巩固复习利用等高条形图、列联表、独立性检验的基本思想判断分类变量的关系(3)1.1.3.2 总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 3.学习重点总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 4.学习难点对独立性检验基本思想的进一步理解 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P10-P15,回顾本节主要知识点有哪些? 任务2利用独立性检验判断两个分类变量相关关系的一般步骤是什么?2.预习自测1.与表格相比,能更直观地反映出相关数据总体状况的是( ) A.列联表 B.散点图 C.残差图D.等高条形图解: D2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若2K 的观测值为635.6 k ,我们有%99的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病.B.从独立性检验可知有%99的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有%99的可能患有肺病.C.若从统计量中求出有%95的把握认为吸烟与患肺病有关系,是指有%5的可能性使得推判出现错误.D.以上三种说法都不正确. 解: C (二)课堂设计 1.知识回顾(1)变量的不同“值”表示个体所属的不同类别,像这样的变量成为分类变量. (2)列出两个分类变量的频数表,称为列联表.(3)独立性检验的基本思想类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即0H :两个分类变量没有关系成立,在该假设下我们构造的随机变量2K 应该很小,如果由观测数据计算得到2K 的观测值k 很大,则在一定程度上说明假设不合理,即断言0H 不成立,即认为“两个分类变量有关系”;如果观测值k 很小,则说明在样本数据中没有发现足够证据拒绝0H . 2.问题探究问题探究一 我们主要从几个方面来研究两个分类变量之间有无关系?●活动一 回归旧知,巩固复习重点知识例1.为了调查某生产线上,某质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品982件,次品87件;甲不在现场时,510件产品中合格品493件,次品17件.试分别用列联表,等高条形图,独立性检验的方法对数据进行分析. 【知识点:分类变量,独立性检验,变量间的关系】 详解:(1)2×2列联表如下:由列联表看出|ac -bd |=|982×17-493×8|=12750,即可在某种程度上认为“甲在不在场与产品质量有关”.相应的等高条形图如图所示:●活动二对比学习,巩固重点(2)在解答独立性检验题目过程中.数据有时比较多,一定不要混淆,要分辨清楚,否则会影响解题的下一步,同时计算不能失误.问题探究二利用独立性检验判断两个分类变量是否有关系的一般步骤是什么?●活动一实际操作例2.为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本. (1)根据所给样本数据完成下面2×2列联表;(2)请问能有多大把握认为药物有效?【知识点:分类变量,独立性检验,变量间的关系】详解:(1)(2)由列联表得:706.2778.260404060)20202040(10022>≈⨯⨯⨯⨯-⨯=K所以大概90%认为药物有效. ●活动二 深层思考,得出一般步骤通过上述解答过程,利用独立性检验判断两个分类变量是否有关系的一般步骤是什么? 1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率. 3.课堂总结【知识梳理】1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率.【重难点突破】(1)利用三维柱形图、二维条形图、等高条形图直观判断两个分类变量之间是否有关系. (2)利用2×2列联表以及随机变量2K 对两个变量进行独立性检验. 4.随堂检测1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( ) A.散点图 B.等高条形图 C.2×2列联表 D.以上均不对 【知识点:独立性检验】解:B2.性别与身高列联表如下:A.0.043B.0.367C.22D.26.87【知识点:独立性检验】解:C3.给出列联表如下:()A.0.4B.0.5C.0.75D.0.85【知识点:独立性检验】解:B4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关【知识点:独立性检验】解:D5.若由一个2×2列联表中的数据计算得K2=4.013,那么在犯错误的概率不超过0.05的前提下认为两个变量______(填“有”或“没有”)关系.【知识点:独立性检验】解:有(三)课后作业基础型自主突破1.在吸烟与患肺病是否有关的研究中,下列属于两个分类变量的是()A.吸烟,不吸烟B.患病,不患病C.是否吸烟、是否患病D.以上都不对【知识点:独立性检验】解:C“是否吸烟”是分类变量,它的两个不同取值;吸烟和不吸烟;“是否患病”是分类变量,它的两个不同取值:患病和不患病.可知A、B都是一个分类变量所取的两个不同值.故选C.【知识点:独立性检验】解:C 由题设知:a=45,b=10,c=30,d=15,=-255×45×75×25≈3.030由附表可知,有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选C. 3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )① 若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.① ③C.③D.②【知识点:独立性检验】解:C ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A ,B ,③正确.排除D.4.在一个2×2列联表中,由其数据计算得K 2的观测值679.7 k ,则这两个变量间有关系的可能性为( ) A.99%B.99.5%C.99.9%D.无关系【知识点:独立性检验】解:A K 2的观测值6.635<k <7.879,所以有99%的把握认为两个变量有关系.5. 在600人身上实验某种新药预防感冒的作用,把一年中的记录与另外600个未用新药的人作比较,结果如下问该种新药起到预防感冒的作用的可能性为( ) A. 99%B. 90%C.99.9%D.小于90%【知识点:独立性检验】 解:D6.分析两个分类变量之间是否有关系的常用方法有________;独立性检验的基本思想类似于____.【知识点:独立性检验】解:.频率比较法、图形分析法(三维柱形图、二维条形图、等高条形图)、独立性检验;反证法能力型 师生共研7.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则有多少的把握认为多看电视与人变冷漠有关系( )A.95%B.99%C. 5%D. 99.9%【知识点:独立性检验】解:B8. 两个分类变量X 和Y 可能的取值分别为{}21,x x 和{}21,y y ,其样本频数满足10=a ,21=b ,35=+d c .若“X 和Y 有关系”犯错误的概率不超过0.05,则c 的值可能等于( )A. 4B. 5C. 6D. 7【知识点:独立性检验】解:A9. 为了考察长头发与女性头晕是否有关联,随机抽取了301名女性,得到如下列联表.试根据表格中已有数据填空.空格中的数据应分别为①________;②________;③________;④________. 【知识点:独立性检验】解:86; 180; 229; 30110. 为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射14天内的结果如表所示:进行统计分析时的统计假设是_______. 【知识点:独立性检验】解:小白鼠的死亡与剂量无关 探究型 多维突破11.调查339名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下试问:(1)有吸烟习惯与患慢性气管炎病是否有关? (2)用假设检验的思想给予说明. 【知识点:独立性检验】解:(1)根据列联表的数据,得到 6.6356.674))()()(()(22>=++++-=d b c a d c b a bd ac n K 所以有99%的把握认为“吸烟与患慢性气管炎病有关”.(2)假设“吸烟与患病之间没有关系”,由于事件A ={635.62≥K }的概率P(A)≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.10. 20国集团峰会于2016年月9日至4日在中国杭州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人会德语,其余人不会德语.(1)根据以上数据完成以下2×2列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与会德语有关?【知识点:独立性检验】解:(1)(2)假设:是否会德语与性别无关,由已知数据可求得:706≈k1575.2.1<因此,在犯错误的概率不超过0.10的前提下不能判断会德语与性别有关.自助餐1.为了评价某个电视栏目改革效果,在改革前后分别从居名点抽取了100居民进行调查,经过计算得2K的观测值99=k.根据这一数据分析,下列说法正确的是().0A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革无关C.有99%的把握认为该栏目是否优秀与改革有关系D.没有充分理由认为该栏目是否优秀与改革有关系【知识点:独立性检验】解:D2.硕士学位与博士学位的一个随机样本给出了关于所获取学位类别与学生性别的分类数据,如下表所示下列各项说法正确的是()A.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别有关B.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别无关C.性格决定获取学位的类别D.以上都是错误的【知识点:独立性检验】解:A3.经过对随机变量2K的研究,得到了若干临界值,当其观测值072k时,对于两个事件A与B,.2我们认为()A. 有95%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 没有充分理由说明事件A与B有关系D. 确定事件A与B没有关系【知识点:独立性检验】解:C4. 以下关于独立性检验的说法中,错误的是()A. 独立性检验依据小概率原理B. 独立性检验得到的结论一定正确C. 样本不同,独立性检验的结论可能有差异D. 独立性检验不是判定两分类变量是否相关的唯一方法【知识点:独立性检验】解:B6.某班主任对全班50名学生进行了作业量多少的调查,数据如下表则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A. 99% B. 97.5%C. 90%D. 无充分依据【知识点:独立性检验】解:B7. 给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有_______. 【知识点:独立性检验】 解:②④⑤8.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为2 3.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________. 【知识点:独立性检验】 解:0.059. 为加强素质教育,使学生各方面全面发展,某学校对学生文化课与体育课的成绩进行了调查统计,结果如下:在探究体育课成绩与文化课成绩是否有关时,根据以上数据可以得到2K 的观测值为________.(精确到0.001) 【知识点:独立性检验】 解:1.25510. 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众是否与年龄有关;________(填“是”或“否”) 【知识点:独立性检验】 解:是11. 为了了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:(平均每天喝500ml 以上为常喝,体重超过50kg 为肥胖)已知在30人中随机抽取一人,抽到肥胖的学生的概率为154. (1)请将上面的列联表补充完整(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由 参考数据:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,古典概型】解:(1)设常喝碳酸饮料肥胖的学生有x 人,154302=+x ,6=x (2)由已知数据可求得: 879.7523.82>≈K ,因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.12. 某大学高等数学老师这学期分别用B A ,两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(1)依茎叶图判断哪个班的平均分高?(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(3)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关”.下面临界值表仅供参考:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,简单抽样,概率】解(1)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高.(2)记成绩为86分的同学为A,B ,其他不低于80分的同学为C,D,E,F“从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)、(D,E)、(D,F)、(E,F)一共15个.“抽到至少有一个86分的同学”所组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)共9个,故93155P ==. (3)2240(3101017) 5.584 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关. 数学视野在实际问题中,经常会面临需要推断的问题,比说研制出一种新药,需要推断此药是否有效;有人怀疑吸烟的人更易患肺癌,需要推断患肺癌是否与吸烟有关;等等.在对类似问题作出推断时,我们不能仅凭主观意愿得出结论,需要通过试验来手机数据,并依据独立性检验的原理作出合理的推断.。

高中数学选修1,2《独立性检验的基本思想及其初步应用》教案

高中数学选修1,2《独立性检验的基本思想及其初步应用》教案

高中数学选修1,2《独立性检验的基本思想及其初步应用》教案高中数学选修1-2《独立性检验的基本思想及其初步应用》教案教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得到的观察值 . 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.不健康健康总计不优秀41626667优秀37296333三、课时小结:独立性检验的方法、原理、步骤四、巩固练习:某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?五、课外作业课时练习六、板书设计。

人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(9)

人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(9)

1.2独立性检验的基本思想及其初步应用本周题目:独立性检验的基本思想及其初步应用本周重点:(1)通过对实际问题的分析探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.;了解独立性检验的常用方法:三维柱形图和二维条形图,及其K²(或R²)的大小关系.(2)通过典型案例的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用。

(3)理解独立性检验的基本思想及实施步骤,能运用自己所学的知识对具体案例进行检验.本周难点:(1)了解独立性检验的基本思想;(2)了解随机变量的含义,太大认为两个分类变量是有关系的;(3)能运用自己所学的知识对具体案例进行检验与说明.本周内容:一、基础知识梳理1.独立性检验利用随机变量来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。

2.判断结论成立的可能性的步骤:(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。

(2)可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。

二、例题选讲例1.为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表所示:试问:50岁以上的人患慢性气管炎与吸烟习惯有关吗?分析:最理想的解决办法是向所有50岁以上的人作调查,然后对所得到的数据进行统计处理,但这花费的代价太大,实际上是行不通的,339人相对于全体50岁以上的人,只是一个小部分,已学过总体和样本的关系,当用样本平均数,样本方差去估计总体相应的数字特征时,由于抽样的随机性,结果并不唯一。

现在情况类似,我们用部分对全体作推断,推断可能正确,也可能错误。

如果抽取的339个调查对象中很多人是吸烟但没患慢性气管炎,而虽不吸烟因身体体质差而患慢性气管炎,能够得出什么结论呢?我们有95%(或99%)的把握说事件与事件有关,是指推断犯错误的可能性为5%(或1%),这也常常说成是“以95%(或99%)的概率”是一样的。

高中数学选修1-2教案1:1.2 独立性检验的基本思想及其初步应用教学设计

高中数学选修1-2教案1:1.2 独立性检验的基本思想及其初步应用教学设计

独立性检验的基本思想及其初步应用
一、教学目标
1、知识与技能:
通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题.
2、过程与方法:
通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。

通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力.
3、情感态度价值观:
通过本节课的学习,加强数学与现实生活的联系。

以科学的态度评价两个分类变量有关系的可能性。

培养学生运用所学知识,解决实际问题的能力。

对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。

教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。

二、教学重点
理解独立性检验的基本思想及实施步骤.
三、教学难点
1.了解独立性检验的基本思想;
2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。

四、教学方法
以“问题串”的形式,层层设疑,诱思探究。

用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容.
五、教学过程设计。

《独立性检验的基本思想及其初步应用》教案新人教A版选修

《独立性检验的基本思想及其初步应用》教案新人教A版选修

《独立性检验的基本思想及其初步应用》教案2(新人教A版选修1-2)课题:独立性检验的基本思想及其初步应用(第一课时)教学目标:1、理解独立性检验的基本思想;2、会从列联表、柱形图、条形图直观判断吸烟与患肺癌有关;3、了解随机变量K2的含义。

教学重点:理解独立性检验的基本思想。

教学难点:1、理解独立性检验的基本思想;2、了解随机变量K2的含义。

教学手段:多媒体课件。

教学方法:讲练结合。

教学过程:一、引入:问题:某医疗机构为了了解患肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个成年人,其中吸烟者2148人,不吸烟者7817 人,调查结果是:吸烟的2148 人中49人患肺癌, 2099人不患肺癌;不吸烟的7817人中42人患肺癌, 7775人不患肺癌。

根据这些数据能否断定:患肺癌与吸烟有关?从问题"吸烟是否与患肺癌有关系"引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。

吸烟与肺癌列联表患肺癌不患肺癌总计吸烟4920992148不吸烟4277757817总计9198749965在不吸烟者中患肺癌的比重是 0.54%在吸烟者中患肺癌的比重是2.28%说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。

通过数据和图表分析,得到结论是:吸烟与患肺癌有关。

但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。

二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:不患肺癌患肺癌合计不吸烟aba+b吸烟cdc+d合计a+cb+da+b+c+d样本容量 n=a+b+c+d假设H0 : 吸烟与患肺癌没有关系。

则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:作为检验在多大程度上可以认为"两个变量有关系"的标准。

三、结论:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d2×2列联表1)如果P(k10.828)= 0.001表示有99.9%的把握认为"X与Y"有关系;2)如果P(k 7.879)= 0.005表示有99.5%的把握认为"X与Y"有关系;3)如果P(k 6.635)= 0.01 表示有 99% 的把握认为"X与Y"有关系;4)如果P(k 5.024)= 0.025表示有97.5%的把握认为"X与Y"有关系;5)如果P(k 3.841)= 0.05 表示有 95% 的把握认为"X与Y"有关系;6)如果P(k 2.706)= 0.10 表示有 90% 的把握认为"X与Y"有关系;7)如果P(k≤2.706) , 就认为没有充分的证据显示"X与Y" 有关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修1-2《独立性检验基本思想及其初步应用》教案
High school mathematics elective 1-2 "basic idea of independe nce test and its preliminary application" teaching plan
高中数学选修1-2《独立性检验基本思想及
其初步应用》教案
前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角
度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的
作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准
的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和
计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文档下载后内容可
按需编辑修改及打印。

教学要求:通过探究“吸烟是否与患肺癌有关系”引出
独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.
教学重点:理解独立性检验的基本思想及实施步骤.
教学难点:了解独立性检验的基本思想、了解随机变量
的含义.
教学过程:
教学过程:
一、复习准备:
独立性检验的基本步骤、思想
二、讲授新课:
1.教学例1:
例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?
① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;
第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;
第三步:由学生计算出的值;
第四步:解释结果的含义.
② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.
2.教学例2:
例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:
喜欢数学课程不喜欢数学课程总计
男xxxxxxx
女xxxxxxx
总计xxxxxxx
由表中数据计算得到的观察值 . 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?
(学生自练,教师总结)
强调:①使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;
②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;
③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.
不健康健康总计
不优秀xxxxxxx
优秀xxxxxxx
三、课时小结:独立性检验的方法、原理、步骤
四、巩固练习:
某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?
五、课外作业课时练习
六、板书设计
-------- Designed By JinTai College ---------。

相关文档
最新文档