三角函数平面向量一题多解 28题89解

合集下载

高考数学解答题专项练习:三角函数解三角形平面向量

高考数学解答题专项练习:三角函数解三角形平面向量

三角函数、解三角形、平面向量1.已知函数f(x)=2sin xcos x (1)求f(x)的最小正周期和单调递增区间; (2)当x ∈]2,0[π时,求函数f(x)的最大值和最小值。

2.已知函数()f x =(sin 2x ﹣cos 2x+)﹣sin 2(x ﹣),x ∈R .(1)求函数()f x 的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别为,,a b c ,且()1f B =,2b =,求△ABC 的面积的最大值.3.ABC ∆中,D 是BC 边上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin B C ∠∠;(Ⅱ)若1AD =,2DC =,求BD 边和AC 边的长.4.在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足.(1)求证:A ,B ,C 三点共线;(2)若,()22f x OA OC 2m AB 3⎛⎫=⋅-+⋅ ⎪⎝⎭的最小值为,求实数m 的值.5.已知A 、B 、C 是△ABC 三内角,向量=(﹣1,),=(cosA ,sinA ),且,(Ⅰ)求角A (Ⅱ)若.6.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cosA),向量n =(cosC ,c),且m ⋅n =3bcosB . (1)求cosB 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值.7.在锐角ABC ∆中,内角,,A B C 所对的边分别为,,a b c 2sin c A = (Ⅰ)求角C 的值;(Ⅱ)若c =ABC S =a b +的值. 8.设与是两个单位向量,其夹角为60°,且=2+,=﹣3+2.(1)求•; (2)求||和||; (3)求与的夹角.9.(2015秋•河西区期末)设平面内的向量,,,点P 在直线OM 上,且.(1)求的坐标;(2)求∠APB 的余弦值; (3)设t ∈R ,求的最小值.10.已知平面向量32a = (,),12b =- (,),41c =(,).(1)求满足n m +=的实数m ,n ;(2)若()()2a kc b a +⊥-,求实数k 的值.参考答案1.(1)3π) ∴ T=π 由-2π+2k π≦2x-3π≦2π+2k π, -12π+k π≦x ≦512π+k π∴ f(x)的单调增区间为: 5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k z ∈(2) 02x π≤≤∴22333x πππ-≤-≤sin 2123x π⎛⎫-≤-≤ ⎪⎝⎭∴()()max min 2,f x f x ==考点:1.三角函数的恒等变形及函数性质(整体思想);2.三角函数的性质.2.(1)()f x =(sin 2x ﹣cos 2x+)﹣sin 2(x ﹣),x ∈R=(﹣cos2x )﹣[1﹣cos (2x ﹣)]=sin2x ﹣cos2x=sin(2)6x π-, 令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到k π﹣≤x ≤k π+,k ∈Z则函数f (x )的单调递增区间[k k ]63ππππ+﹣,,k ∈Z(2)由f (B )=1,得到sin (2B ﹣)=1,∴2B ﹣=,即3B π=, 由余弦定理得:222b ac 2accosB =+﹣,即224a c ac 2ac ac ac =+≥=﹣﹣,即ac 4≤,∴ABC 1S acsinB 2==≤ ABC 的面积的最大值为.考点:三角函数的基本公式;正弦型函数的性质;余弦定理;三角形的面积;均值不等式. 3.(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABDADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =.由正弦定理可得sin 1sin 2B AC C AB ∠==∠(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以BD ABD ∆和中,由余弦ADC ∆定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.考点:正弦定理;三角形中的几何计算 4.解:∵(1),∴==﹣+,=,∴=×,∴∥,即A ,B ,C 三点共线.(2)由,∵,∴,∵=(1+sinx ,cosx ),从而 ()222222f x OA OC 2m AB 1sin x cos x 2m sin x 333⎛⎫⎛⎫=⋅-+⋅=++-+ ⎪ ⎪⎝⎭⎝⎭=﹣sin 2x ﹣2m 2 sinx+2=﹣(sinx+m 2)2+m 4+2.又,则t=sinx ∈[0,1],f (x )=g (t )=﹣(t+m 2)2+m 4+2.由于﹣m 2≤0,∴g (t )=﹣(t+m 2)2+m 4+2 在[0,1]上是减函数, 当t=1,即x=时,f (x )=g (t )取得最小值为,解得m=±,综上,.考点:平面向量数量积的运算. 5.解:(Ⅰ)∵∴即,∵∴∴(Ⅱ)由题知,整理得sin 2B ﹣sinBcosB ﹣2cos 2B=0∴cosB≠0∴tan 2B ﹣tanB ﹣2=0,∴tanB=2或tanB=﹣1 而tanB=﹣1使cos 2B ﹣sin 2B=0,舍去 ∴tanB=2, ∴tanC=tan[π﹣(A+B )]=﹣tan (A+B )===考点:同角三角函数基本关系的运用;平面向量数量积的运算;任意角的三角函数的定义;二倍角的正弦. 6.(1)因为m ⋅n =3bcosB ,所以acosC +ccosA =3bcosB . 由正弦定理,得sinAcosC +sinCcosA =3sinBcosB , 所以sin(A +C)=3sinBcosB ,所以sinB =3sinBcosB . 因为B 是△ABC 的内角,所以sinB ≠0,所以cosB =13. (2)因为a ,b ,c 成等比数列,所以b 2=ac .由正弦定理,得sin 2B =sinA ⋅sinC .因为cosB =13,B 是△ABC 的内角,所以sinB . 又11cos cos cos sin cos sin sin()tan tanC sin sin sin sin sin sin A C A C C A C A A A C A C A C +++=+==2sin sin 1sin sin sin sin B B A C B B ====考点:向量数量积、正弦定理、同角三角函数关系7.(12sin c A =及正弦定理,得sinsin a Ac C ==.sin 0,sin A C ≠∴=又ABC ∆是锐角三角形,3C π∴=.(2)c =3C π=,由面积公式,得1sin 23ab π=6ab =.① 由余弦定理,得222cos73a b ab π+-=,即227a b ab +-=.②由②变形得()237a b ab +=+ .③ 将①代入③得()225a b +=,故5a b +=. 考点:正弦定理;余弦定理; 8.解:(1)由与是两个单位向量,其夹角为60°,则=1×=,=(2+)•(﹣3+2)=﹣6+2+•=﹣6+2+=﹣;(2)||====, ||====(3)cos <,>===﹣,由于0≤<,>≤π,则有与的夹角.考点:向量的数量积的定义和性质;向量之间的夹角. 9.解:(1)∵点P 在直线OM 上,设∴,∴,解得,∴.(2),, ∴.(3),∴=2(t ﹣2)2+2.当t=2时,(+t)2取得最小值2,∴的最小值为.考点:平面向量数量积的运算;平面向量的坐标运算.10.(1)∵ (,2)mb m m =- ,(4,)nc n n = 得(4,2)mb nc n m m n +=-+且(3,2)a mb nc ==+∴ 4322n m m n -=⎧⎨+=⎩,得58,99m n ==(2) ∵(34,2)a kc k k +=++ ,2(5,2)b a -=- ,且()(2)a kc b a +⊥-∴5(34)2(2)0k k -⨯++⨯+=,∴ 1118k =-考点:向量的线性运算性质及几何意义;平面向量共线(平行)的坐标表示。

高考数学《三角函数与平面向量》专项训练及答案解析

高考数学《三角函数与平面向量》专项训练及答案解析

高考数学《三角函数与平面向量》专项训练一、单选题1.已知()1,2a =r ,()1,0b =r ,则2a b +=r r ( ) A .5 B .7 C .5 D .25 2.若3sin 122πα⎛⎫-= ⎪⎝⎭,则2sin 23πα⎛⎫-= ⎪⎝⎭( ) A .12 B .12-C .32D .3- 3.已知平面向量()()2,1,2,4a b ==r r ,则向量a r 与b r 的夹角的余弦值为( ) A .35 B .45 C .35- D .45- 4.若4sin 3cos 0αα-=,则2sin 22cos αα+=( )A .4825B .5625C .85D .43 5.将函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,则12x x -的最大值为( )A .πB .2πC .3πD .4π 6.已知042a ππβ<<<<,且5sin cos 5αα-=,4sin 45πβ⎛⎫+= ⎪⎝⎭则sin()αβ+=( ) A .31010- B .155- C .155 D .310 7.如图,已知ABC ∆中,D 为AB 的中点,13AE AC =uu u r uuu r ,若DE AB BC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .56-B .16-C .16D .568.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos cos a B b A =,则ABC ∆形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形 9.如图,在ABC V 中,1cos 4BAC ∠=,点D 在线段BC 上,且3BD DC =,15AD =,则ABC V 的面积的最大值为( )A .32B .4C 15D .2310.在ABC △中,角A B C ,,的对边分别为a b c ,,,已知25c =2sin cos sin sin a C B a A b B =-+5sin C ,点O 满足0OA OB OC ++=uu v uu u v uuu v ,3cos 8CAO ∠=,则ABC △的面积为( )A 55B .35C .52D 55二、填空题11.sin 613cos1063tan 30︒︒︒++的值为________.12.函数()21sin f x x =+的最小正周期是__________. 13.如图所示,正八边形12345678A A A A A A A A 的边长为2,若P 为该正八边形上的动点,则131A A A P⋅u u u u r u u u r 的取值范围________.14.将函数()3)13f x x π=+-的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则函数()g x 具有性质__________.(填入所有正确性质的序号) 33x π=-对称; ②图象关于y 轴对称;③最小正周期为π; ④图象关于点(,0)4π对称; ⑤在(0,)3π上单调递减 三、解答题15.若向量(3,0)(cos ,sin )(0)m x n x x ωωωω==->r r ,在函数()()f x m m n t =⋅++r r r 的图象中,对称中心到对称轴的最小距离为,4π且当[0,],()3x f x π∈时的最大值为1. (I )求函数()f x 的解析式;(II )求函数()f x 的单调递增区间.16.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin 32B m ⎛= ⎝u r ,cos ,cos 2B n B ⎛⎫= ⎪⎝⎭r ,且m n ⊥u r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,3b =,求ABC ∆的面积.17.如图所示,在ABC V 中,,A ∠,B ∠C ∠的对边分别为a ,b ,c ,已知2sin cos sin 0,b A B a B +=1a =,2c =.(1)求b 和sin C ;(2)如图,设D 为AC 边上一点,37BD CD =ABD △的面积.参考答案1.C【解析】【分析】求出向量2a b +r r 的坐标,然后利用向量模的坐标表示可求出2a b +r r 的值.【详解】()()()221,21,03,4a b +=+=r r Q,因此,25a b +==r r .故选:C.【点睛】本题考查向量模的坐标运算,考查计算能力,属于基础题.2.A【解析】【分析】 根据条件和二倍角公式,先计算出cos 26πα⎛⎫- ⎪⎝⎭的值,再将所要求的2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据诱导公式进行化简,得到答案.【详解】因为sin 122πα⎛⎫-= ⎪⎝⎭,所以2cos 21262πα⎛⎫⎛⎫-=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭12=- 2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos 26πα⎛⎫=-- ⎪⎝⎭ cos 26πα⎛⎫=-- ⎪⎝⎭ 12=.【点睛】本题考查三角函数中的给值求值,二倍角公式,诱导公式化简,属于中档题.3.B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r,得a b ==r r .设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.4.B【解析】【分析】由4sin 3cos 0αα-=,求得3tan 4α=,再由222tan 2sin 22cos tan 1αααα++=+,即可求出. 【详解】由4sin 3cos 0αα-=,求得sin 3tan cos 4ααα==, 而222222sin cos 2cos 2tan 2sin 22cos sin cos tan 1ααααααααα+++==++, 所以22322564sin 22cos 25314αα⨯++==⎛⎫+ ⎪⎝⎭. 故选:B .【点睛】本题主要考查已知正切值,齐次式求值问题的解法以及二倍角公式的应用,意在考查学生的数学运算能力,属于5.C【解析】【分析】首先利用函数图象的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.【详解】解:函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,得到226y sin x π⎛⎫=+ ⎪⎝⎭的图象,再向上平移1个单位,得到()2216g x sin x π⎛⎫=++ ⎪⎝⎭的图象, 由于若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,所以函数在1x x =和2x 时,函数()2216g x sin x π⎛⎫=++ ⎪⎝⎭都取得最大值. 所以()12262x k k Z πππ+=+∈,解得16x k ππ=+, 由于且1x ,[]22,2x ππ∈-,所以176x π=,同理2116x π=-,所以711366πππ+=. 故选:C .【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于中等题.6.D【解析】【分析】首先根据sin cos 5αα-=,求得sin 410πα⎛⎫-= ⎪⎝⎭,结合角的范围,利用平方关系,求得cos 410πα⎛⎫-= ⎪⎝⎭,利用题的条件,求得3cos 45πβ⎛⎫+= ⎪⎝⎭,之后将角进行配凑,使得()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用正弦的和角公式求得结果. 【详解】因为sin cos αα-=sin 4πα⎛⎫-= ⎪⎝⎭因为42a ππ<<,所以cos 410πα⎛⎫-= ⎪⎝⎭. 因为04πβ<<,4sin 45πβ⎛⎫+= ⎪⎝⎭,所以3cos 45πβ⎛⎫+= ⎪⎝⎭,所以()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 3455=+= 故选D.【点睛】 该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.7.C【解析】【分析】利用向量的线性运算将DE u u u r 用,AB AC u u u r u u u r表示,由此即可得到,λμ的值,从而可求λμ+的值.【详解】 因为1123DE DA AE BA AC =+=+u u u r u u u r u u u r u u u r u u u r ()111111236363BA BC BA BA BC AB BC =+-=+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以16λ=-,13μ=.故16λμ+=. 故选:C.【点睛】 本题考查向量的线性运算以及数乘运算在几何中的应用,难度一般.向量在几何中的应用可通过基底的表示形式进行分析.8.D【解析】【分析】 由cos cos a B b A=,利用正弦定理化简可得sin2A =sin2B ,由此可得结论. 【详解】∵cos cos a B b A=, ∴由正弦定理可得sin cos sin cos A B B A =, ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∴2A =2B 或2A +2B =π,∴A =B 或A +B =2π, ∴△ABC 的形状是等腰三角形或直角三角形故选:D .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.9.C【解析】【分析】设BAD θ∠=,则0BAC θ<<∠,根据三角形的面积公式求出AC ,AB ,然后由1sin 2ABC S AB AC BAC ∆=⋅∠()4213sin θϕ⎡⎤=+-⎣⎦,根据三角函数的性质求出面积的最大值. 【详解】解:设BAD θ∠=,则0BAC θ<<∠.3BD DC =Q ,AD =,34ABD ABC S S ∴=V V ,131242AB ADsin AB ACsin BAC θ∴⋅=⋅⋅∠, 83AC sin θ∴=,同理()8AB sin BAC θ=∠-,()1124ABC S AB ACsin BAC sin BAC sin θθθθθ⎫∴=⋅∠=∠-=-⎪⎪⎝⎭V()421(sin θϕ⎤=+-⎦其中tan ϕ=,0BAC θ<<∠Q ,∴当22πθϕ+=时,sin(2)1max θϕ+=,()ABC max S ∴=V故选:C .【点睛】本题考查了余弦定理和三角恒等变换,以及三角形的面积公式,考查了运算能力和转化能力,属于中档题.10.D【解析】【分析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-+,可得2222222a c b ac a b ac +-⨯=-+,即c =.又c =,所以4b =. 因为0OA OB OC ++=u u u v u u u v u u u v v ,所以点O 为ABC △的重心,所以3AB AC AO +=u u u v u u u v u u u v ,所以3AB AO AC =-u u u v u u u v u u u v, 两边平方得22|9|6cos AB AO AO AC CAO =-∠u u u v u u u v u u u v u u u v 2||AC +u u u v . 因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+u u u v u u u v u u u v u u u v u u u v , 于是29||AO -u u u v 940AO -=u u u v ,所以43AO =u u u v ,AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯u u u v u u u v =.因为ABC △的面积是AOC △面积的3倍.故ABC △【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题.11【解析】【分析】根据诱导公式,进行化简,从而得到答案.【详解】sin 613cos1063tan 30︒︒︒++()sin 253cos 17tan30︒︒︒=+-+()sin 73cos 17tan30︒︒︒=-+-+=cos17cos17tan 30︒︒︒-++=故答案为:3【点睛】 本题考查诱导公式化简,特殊角三角函数值,属于简单题.12.π【解析】【分析】利用二倍角公式化简函数的解析式,再利用余弦型函数的周期公式,即可求得函数的最小正周期.【详解】因为()21cos 2311sin 1cos 2222x f x x x -=+=+=-, 所以函数的最小正周期为22T ππ==. 故答案为:π.【点睛】本题主要考查二倍角公式的应用以及余弦型函数的周期公式的应用,属于基础题.13.⎡-+⎣【解析】【分析】由题意可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r 最小,当P 与4A 重合时,131A A A P⋅u u u u r u u u r 最大,求出即可. 【详解】由题意,正八边形12345678A A A A A A A A 的每一个内角均为135o ,且边长12182A A A A ==u u u u r u u u u r ,1317A A A A ==u u u u r u u u u r , 由正弦函数的单调性及值域可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r最小,且最小值为2cos112.5⎛⨯==-⎝⎭o当P与4A重合时,1318A A A P⋅==+u u u u r u u u r因此,131A A A P⋅u u u u r u u u r的取值范围是⎡-+⎣.故答案为:⎡-+⎣.【点睛】本题考查平面向量数量积的运算以及数形结合思想的应用,解题的关键就是找出临界位置进行分析,考查计算能力,属于中等题.14.②③④【解析】将函数()213f x xπ⎛⎫=+-⎪⎝⎭的图象向左平移3π个单位长度,得到2133y xππ⎡⎤⎛⎫=++-⎪⎢⎥⎝⎭⎣⎦()211x xπ=+-=-的图象向上平移1个单位长度,得到函数()g x x=的图象,对于函数()g x,由于当3xπ=-时,()g x=故()g x图象不关于直线3xπ=-对称,故排除①;由于该函数为偶函数,故它的图象关于y轴对称,故②正确;它的最小周期为22ππ=,故③正确;当4xπ=时,()0g x=,故函数的图象关于点,04π⎛⎫⎪⎝⎭对称,故正④确;在0,3π⎛⎫⎪⎝⎭上,()220,,3x g xπ⎛⎫∈ ⎪⎝⎭不是单调函数,故排除⑤,故答案为②③④.【方法点晴】本题主要考查三角函数的单调性、三角函数的周期性及奇偶性,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.15.3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分 【解析】解:(I )由题意得()()f x m m n t =⋅++r r r 2m m n =+⋅r r r23sin cos 33cos 222223)432x x x tx x t x t ωωωωωπω=⋅+=-++=-++L L L L 分 ∵对称中心到对称轴的最小距离为4π ()f x ∴的最小正周期为T π=2,12ππωω∴=∴=………………6分3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时 2,()333x x f x πππ∴-==即时取得最大值3t +)max (1,31,21()).832x f t t f x x π=∴+=∴=-∴=--n Q L L L L L L 分 (II )222,232k x k k Z πππππ-≤-≤+∈………………10分55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分16.(Ⅰ)23π;. 【解析】【分析】 (Ⅰ)由m n ⊥u r r 得出0m n ⋅=u r r ,利用平面向量数量积的坐标运算、二倍角公式以及同角商数关系可求得tan B =,结合B 的范围可得出角B 的值;(Ⅱ)利用余弦定理求出c 的值,然后利用三角形的面积公式即可求出ABC ∆的面积.【详解】(Ⅰ)m n ⊥u r r Q ,2sin cos sin 022B B m n B B B ∴⋅==+=u r r .化简得:tan B =,又0B Q π<<,23B π∴=;(Ⅱ)由余弦定理2222cos b a c ac B =+-得,2221122c c ⎛⎫=+-- ⎪⎝⎭,整理得220c c +-=,解之得:1c =,11sin 1122ABC S ac B ∆∴==⨯⨯=. 【点睛】 本题考查利用余弦定理解三角形、三角形面积的计算,涉及平面向量垂直的坐标表示,考查计算能力,属于基础题.17.(1)b =7;【解析】【分析】(1)通过正弦定理边化角,整理化简得到cos B 的值,再利用余弦定理,求出b ,根据正弦定理,求出sin C ;(2)根据正弦定理得到sin 1CBD ∠=,即2CBD π∠=,根据勾股定理得到BD =,根据三角形面积公式,求出ABD △的面积.【详解】(1)因为2sin cos sin 0b A B a B +=,所以在ABC V 中,由正弦定理sin sin sin a b c A B C ==,得2sin sin cos sin sin 0B A B A B +=,因为sin sin 0A B ≠,所以2cos 10B +=, 所以1cos 2B =-, 又0B π<<,所以23B π=, 由余弦定理得,2222cos b a c ac B =+-1142122⎛⎫=+-⨯⨯⨯- ⎪⎝⎭7=,所以b =,在ABC V 中,由正弦定理sin sin c b C B =, 所以sin sin c BC b=22sin π=7=; (2)在ABD △中,由正弦定理得,sin sin BD C CD CBD =∠,因为BD CD =sin sin C CBD =∠因为sin 7C =,所以sin 1CBD ∠=, 而()0,CBD π∠∈ 所以2CBD π∠=,由BD CD =,BD=CD =,所以222)1)+=,所以12t =,所以2BD =, 因为ABD ABC DBC ∠=∠-∠232ππ=-6π=,所以1sin 2ABD S AB BD ABD =⨯⨯∠V 11222=⨯4=. 【点睛】 本题考查正弦定理边角互化,正弦定理、余弦定理解三角形,属于简单题.。

文科数学二轮复习专题三角函数解三角形平面向量

文科数学二轮复习专题三角函数解三角形平面向量

专题一:三角函数、解三角形、平面向量【例题讲解】要点1:三角函数的概念、同角诱导公式的简单应用例1:如图,以Ox 为始边作角α与β(παβ<<<0) ,它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(53-,54) (1)求αααtan 112cos 2sin +++的值; (2)若OP ·0=OQ ,求)sin(βα+。

解:(1)由三角函数定义得53cos -=α,54sin =α∴原式αααααααααααα22cos 2cos cos sin )cos (sin cos 2cos sin 1cos 2cos sin 2=++=++=2=·(53-)2=2518 (2)OP ·0=OQ ,∴2πβα=-∴2παβ-=,∴53cos )2sin(sin =-=-=απαϖ54sin )2cos(cos ==-=απαβ ∴βαβαβαsin cos cos sin )sin(+=+25753)53(5454=⋅-+⋅=要点2:函数y=Asin(ωx+φ)的解析式、图象性质问题例2:已知函数()sin 2f x x =,()cos(2)6g x x π=-,直线x t =(t R ∈)与函数()f x 、()g x 的图象分别交于M 、N 两点.(1)当4t π=时,求||MN 的值; (2)求||MN 在[0,]2t π∈时的最大值.【解析】(1))cos(2)|4|||si 26n(4MN πππ⨯-⨯+=. …… 2分23|1cos |32π=-=. ……5分 (2)332cos(2)||sin 2cos 2|62||2|sin t t t MN t π=-+=-. ……8分 3|sin(2)|6t π=-. ……11分 ∵[0,]2t π∈,26[,]66t ππππ∈---, ……13分 ∴||MN 的最大值为3. ……15分要点3:三角变换及求值例3:已知向量)2,1(),cos ,(sin -==n A A m ,且0=⋅n m(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域解析:(Ⅰ)由题意得m ·n=sinA-2cosA=0,因为cosA ≠0,所以tanA=2.(Ⅱ)由(Ⅰ)知tanA=2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-.当1sin 2x =时,f(x)有最大值32,当sinx=-1时,f(x)有最小值-3所以所求函数f(x)的值域是33,.2⎡⎤-⎢⎥⎣⎦要点4:正、余弦定理的应用例4:在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.【命题立意】考查了正弦定理,余弦定理,考查了三角函数的恒等变换,三角函数的最值。

-三角函数三角形平面向量高考常考14种题型解题方法

-三角函数三角形平面向量高考常考14种题型解题方法

三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。

【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

三角函数、平面向量、解三角形大题

三角函数、平面向量、解三角形大题

三角函数、平面向量、解三角形大题:第一方面:向量大题例1:已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =u u u r u u u r ,求角α;(2)若1AC BC ⋅=-u u u r u u u r ,求22sin sin 21tan ααα++的值.解:(1)因为()()cos 3,sin ,cos ,sin 3AC BC αααα=-=-u u u r u u u r由AC BC =u u u r u u u r 得()()2222cos 3sin cos sin 3αααα-+=+- 整理得sin cos αα= ,所以tan 1α=因为3,22ππα⎛⎫∈⎪⎝⎭ ,所以54πα= (2)因为1,AC BC •=-u u u r u u u r 所以()()cos cos 3sin sin 31αααα-+-=- 即2sin cos 3αα+= ,所以()24sin cos 9αα+= ,得52sin cos 9αα=- ,所以()()22sin sin cos 2sin sin 252sin cos sin cos 1tan 9cos ααααααααααα++===-++.第二方面:三角函数大题例2.1:已知53)4cos(=+πx ,且471217ππ<<x ,求:① x x sin cos + 的值;②x xx tan 1sin 22sin 2-+的值。

解:(1)Θ471217ππ<<x ,πππ2435<+<∴x由53)4cos(=+πx 得54)4sin(-=+πx 所以524)4sin(2sin cos -=+=+πx x x(2)由524sin cos -=+x x 得2532)524()sin (cos 22=-=+x x 即2572sin ,25322sin 1=∴=+x x )4cos()4sin(2sin sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22ππ++⋅=-+=-+=-+x x x x x x x x x xx x x x x x x 由(1)知54)4sin(-=+πx ,53)4cos(=+πx 所以x xx tan 1sin 22sin 2-+=)4cos()4sin(2sin ππ++⋅x x x =752853)54(257-=-⨯ 小结:本试题主要是考查了两角和差公式的运用,和二倍角公式的综合运用。

利用三角函数解决平面向量问题

利用三角函数解决平面向量问题在数学学科中,平面向量问题是一个常见的考察点。

平面向量的运算和性质在解决实际问题中具有广泛的应用。

而解决平面向量问题中,三角函数是一种常用的工具,它可以帮助我们简化问题的推导和计算过程。

本文将通过几个实际应用的例子,说明如何利用三角函数解决平面向量问题。

首先,我们先来了解一下三角函数的基础知识。

在平面直角坐标系中,我们通常用坐标轴上的角度来表示方向。

而三角函数则是用来描述角度与比例关系的函数。

常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)等。

一、解决平面向量的夹角问题在平面向量的问题中,经常需要求解向量之间的夹角。

这时,我们可以利用三角函数中求角度的函数来解决。

以两个向量A和B为例,设它们的夹角为θ,我们可以通过以下公式来求解夹角:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A和向量B的数量积,|A|和|B|分别表示向量A和向量B的模。

通过求解夹角,我们可以判断两个向量之间的相对方向关系,并进一步解决问题。

二、解决平面向量的投影问题平面向量的投影问题是另一个常见的问题类型。

在平面直角坐标系中,我们可以将一个向量投影到另一个向量上,从而得到它在另一个向量方向上的分量。

利用三角函数,我们可以很方便地求解向量的投影。

以向量A在向量B方向上的投影为例,投影向量记作P,其长度为P的模,我们有以下公式:P = |A|·cosθ其中,θ表示向量A和向量B之间的夹角。

利用这个公式,我们可以通过已知向量的模和夹角,计算出向量的投影。

三、解决平面向量的平衡问题在物理学领域中,平面向量的平衡问题也经常被提到。

平衡问题通常是在已知一些力大小和方向的情况下,求解使体系保持平衡所需的额外力。

这时,我们可以利用三角函数和向量相加减的方法来解决。

以一个由两个力F1和F2组成的平衡系统为例,设额外力为F,我们有以下公式:F = - F1 - F2其中,-F1表示力F1的反方向,同理-F2表示力F2的反方向。

高考中的三角函数解三角形平面向量解答题

高考中的三角函数、解三角形、平面向量解答题三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一.近几年对三角函数的要求基本未作调整,主要考查三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和、差角与倍角公式等.解答题主要考查三角函数的性质、三角函数的恒等变换或三角函数的实际应用,一般出现在前两个解答题的位置.平面向量是连接代数与几何的桥梁,是高考的重要内容之一.近年高考中平面向量与解三角形的试题是难易适中的基础题或中档题,一是直接考查向量的概念、性质及其几何意义;二是考查向量、正弦定理与余弦定理在代数、几何问题中的应用.一、课堂演练1.(2013·安徽卷)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解析: (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4. 当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 2.已知函数f (x )=sin x +cos x .(1)若f (x )=2f (-x ),求cos 2x -sin x cos x 1+sin 2x的值; (2)求函数F (x )=f (x )·f (-x )+f 2(x )的最大值和单调递增区间.解析: (1)∵f (x )=sin x +cos x ,∴f (-x )=cos x -sin x .∵f (x )=2f (-x ), ∴sin x +cos x =2(cos x -sin x ),且cos x ≠0,∴tan x =13, ∴cos 2x -sin x cos x 1+sin 2x =cos 2x -sin x cos x 2sin 2x +cos 2x =1-tan x 2tan 2x +1=611. (2)由题知F (x )=cos 2x -sin 2x +1+2sin x cos x =cos 2x +sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1. ∴当sin ⎝⎛⎭⎫2x +π4=1时,F (x )max =2+1. 由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ) 得 π8+k π≥x ≥-3π8+k π(k ∈Z ), 故所求函数F (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ).3.(2013·武汉武昌区联合考试)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x . (1)求函数f (x )的最小正周期和值域;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,满足2AC →·CB →=2ab ,c =22,f (A )=12-34,求△ABC 的面积S .解析: (1)∵f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x . ∴函数f (x )的最小正周期T =π,值域为⎣⎡⎦⎤12-32,12+32. (2)∵2AC →·CB →=2ab ,∴2ba cos(π-C )=2ab ,∴cos C =-22.∵C ∈(0,π),∴C =3π4. 又f (A )=12-34,∴12-32sin 2A =12-34,∴sin 2A =12. 而0<A <π4,∴A =π12,B =π6. 由正弦定理,得a sin π12=b sin π6=c sin 3π4,即a 6-24=b 12=2222. ∴a =6-2,b =2. ∴S =12ab sin C =12×(6-2)×2×22=3-1. 4.(2013·湖北八校联考)已知锐角三角形ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,定义向量m =(2sin B ,3),n =⎝⎛2cos 2B 2-1,cos 2B ),且m ⊥n . (1)求f (x )=sin 2x cos B -cos 2x sin B 的单调递减区间;(2)如果b =4,求△ABC 面积的最大值.解析: ∵m ⊥n ,∴m·n =2sin B cos B +3cos 2B =sin 2B +3cos 2B =2sin ⎝⎛⎭⎫2B +π3=0, (1)易知f (x )=sin ⎝⎛⎭⎫2x -π3,由2x -π3∈⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z )得,f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ).(2)由余弦定理知16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥ac , ∴S △ABC =12ac sin π3≤43(当且仅当a =c =4时取等号). 即△ABC 面积的最大值为4 3. ∴2B +π3=k π(k ∈Z ),∴B =k π2-π6(k ∈Z ),∵0<B <π2,∴B =π3二、方法归纳总结1.高考中此类题目经常出现,解决此类题目思路是“一化二求”,即通过恒等变换(降幂、辅助角公式应用)将其解析式化为y =Asin(ωx +φ),y =Acos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)的形式,再研究其各种性质.2.研究性质要结合函数图象,学会:(1)函数图象的对称轴都经过函数的最值点,对称中心的横坐标都是函数的零点;(2)相邻两对称轴(对称中心)间的距离都是半个周期;(3)图象上相邻两个最大(小)值点之间的距离恰好等于一个周期;(4)熟记正余弦函数的单调区间。

高考数学大一轮复习 专题2 三角函数、平面向量综合题的解答课件 文 北师大版


【求解】 (1)由已知得f(x)=12sin2x+π6+34,则T=22π=π
令t=2x+
π 6
,由2kπ-
π 2
≤t≤2kπ+
π 2
(k∈Z),得单调递增区间
为kπ-π3,kπ+π6(k∈Z).
(2)法一:(先进行周期变换再进行相位变换)
①把函数f(x)的图像向下平移
3 4
个单位,得函数y=
1 2
专题二 三角函数、平面向量综合题的解答
三角函数是重要的基本初等函数,它在解决高中数学的其他 问题上具有非常广泛的应用,是高中数学中主要的基础知识,也 是高考必考的热点和难点.该部分内容由于概念多、公式多、解 题的方法灵活,就有不少难点问题,主要是三角函数的图像和性 质、三角恒等变换以及三角函数和其他知识的交汇问题.平面向 量是高中数学的重要的基础知识之一,由于其兼具代数与几何的 双重特征,是解决代数与几何问题的有力工具.
个单位,得函数y=
sin 2x的图像;
④把函数y=sin 2x的图像上所有点的纵坐标不变,横坐标变
为原来的2倍,得到函数y=sin x的图像.
【反思】 三角函数图像变换的关键是要弄清由哪个函数平
移得到哪个函数以及平移变换和伸缩变换的顺序.
探究二 解三角形 新课标高考对解三角形的考查,以正弦定理、余弦定理的综 合运用为主,在解题时,要分析清楚题目条件,利用正弦定理、 余弦定理转化为三角形中各边之间的关系或各角之间的关系,并 结合三角形的内角和为180°,诱导公式,同角三角函数基本关 系,两角和与差的正弦、余弦、正切公式进行化简求值.在近几 年的高考中,对解三角形的考查力度有所加强,而且更加注重知 识点的综合运用,没有怪题、偏题.
探究一 三角函数的图像与性质 三角函数的图像与性质是高考考查的重点,其中图像的变换 是重中之重,函数的各种变换,都是对自变量x与函数值y进行的 变换.准确作出三角函数的图像,可以帮助我们迅速而又准确地 解决相关问题,而求解三角函数性质问题的关键是将三角函数解 析式化为f(x)=Af(ωx+φ)+b的形式.

高考数学 专题2 三角函数、平面向量综合问题的解答课件 文 新人教A版

专题二
三角函数、平面向量综合问题的解答
本专题主要包括三部分内容:三角函数,平面向量、解三角形, 所以“角”“关系”与“运算”串成了这部分每年的高考热点. (1)三角函数的图象与性质是三角函数的重点,准确把握三角函 数的定义域、值域、周期性、奇偶性、单调性、最值等是解决图象 问题的关键.
(2)角的变化是三角恒等变换的关键,熟练记忆和角、差角、倍 角的三角函数公式,这是三角函数化简求值的基础,三角函数综合 问题的求解都需要先利用这些公式把三角函数解析式化成“一角一 函数”的形式,进而研究三角函数的图象与性质,这些公式是联系 三角函数各个部分的纽带. (3)正、余弦定理是实现三角形中边角互化的依据,三角形的有 关性质及向量的运算在解三角形中起着重要作用. (4)向量的几何表示及坐标运算是向量的核心知识.高考中对这 部分既可以单独成题,也可以综合考查,是每年的必考内容.
热点三
向量运算与三角形综合应用
向量的有关概念可以与三角形结合起来,如向量的模与三角形 的边长联系,向量的夹角与三角形内角联系.向量的运算与正、余 弦定理结合,为求解三角形带来了方便. → → → → (2012· 高考江苏卷)在△ABC 中,已知AB· AC=3BA· BC. (1)求证:tan B=3tan A; (2)若 cos C= 5 ,求 A 的值. 5
不同角的三角函数的运算规律”,对公式要会“正用”、“逆用”、 “变形用”,记忆公式要注意角、三角函数名称排列以及连接符号 “+”,“-”的变化特点.(2)在使用三角恒等变换公式解决问题 时,“变换”是其中的精髓,在“变换”中既有公式的各种形式的 变换,也有角之间的变换.(3)本题的易错点是易用错公式和角的拆 分不准确.
ωx-3(ω>0)在一个周期内的图象如图所示,A 为 图象的最高点 B,C 为图象与 x 轴的交点,且△ABC 为正三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目及解答(a+-证法二:由正弦定理,sina b c A+≥⇒+2<三角函数图像变换问题的2,所以2BD =(0,)πθ∈,所以(2)由0[1,1]41010b a bb a b a >⎧⎪⎪-∉-⎪⎨⎪-+≥⎪++≥⎪⎩得44a b a b <->或若4,a b <-则302a b b +<-<<;若4,a b >则由10b a ++≥得1413b a b b <≤+⇒<,故51223a b b +≤+<<. (3)由20[1,1]442(1)0b a b a b b >⎧⎪⎪-∈-⎨⎪∆=-⨯-+≤⎪⎩得2218()22a b +-≤, 由柯西不等式,2222291112[8()]1()8282a b a b ⎛⎫⎛⎫ ⎪⨯≥+-+≥+- ⎪ ⎪ ⎪⎝⎭⎝⎭,故13222a b a b +-≤⇒+≤, 当且仅当2218()2218()2a b a b ⎧+-=⎪⎪⎨⎪=-⎪⎩即4323a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,此时满足1[1,1]42a b -=-∈-. 综上,a b +的最大值为2.第6题 三角形内角平分线定理的2种证法三角形内角平分线定理:△ABC 中,AD 平分BAC ∠交边BC 于D ,则AB DB AC DC=. 证法一:初中平面几何证法 利用平行线分线段成比例 证明:过D 作DE AC交AB 于E ,则ADE DAC ∠=∠,又DAE DAC ∠=∠,所以DAE DAC ∠=∠,所以AE DE =,又由DE AC 得,DB EB EB AB DC EA ED AC ===,所以AB DBAC DC =. 证法二:高中三角证法 正弦定理法 证明:在△ABD 和△ACD 中,sin sin AB ADBBD BAD ∠=∠, sin sin AC ADCCD CAD∠=∠, 而BAD CAD ∠=∠,ADB ADC π∠+∠=,所以sin sin ,BAD CAD ∠=∠sin sin ,ADB ADC ∠=∠所以AB DBAC DC=. 说明:还可以利用面积法第7题 三角形重心定理的2种证法三角形重心定理:三角形的三条中线交于一点,该点到每个顶点的距离等于它到该顶点对边中点距离的2倍.如图,AD BE CF 、、是△ABC 的三条中线,则它们交于一点G ,且2AG BG CGGD GE GF===. 证法一:初中平面几何证法,构造三角形中位线法连接EF ,由已知EF 为△ABC 的中位线, 所以,EFBC 12EF BC =, 设CF BE 、交于1G ,则再由EFBC 得11112BG CG BCG E G F EF===,同理可证AD BE 、的交点2G 满足同样的性质,所以12G G 、重合于G ,且2AG BG CGGD GE GF=== 证法二:高中向量几何证法,利用相等向量法在中线AD 上取点1G 满足112AG G D=,则112AG G D =,于是123AG AD =,又D 为BC 中点,所以1()2AD AB AC =+,所以11()3AG AB AC =+, 对于平面ABC 内任意点O ,11()3OG OA OB OA OC OA -=-+-所以11()3OG OA OB OC =++,同理在中线BE 上取点2G 满足222BG G E=,则21()3OG OA OB OC =++,在中线CF 上取点3G 满足332CG G F=,则31()3OG OA OB OC =++, 所以123OG OG OG ==,所以123G G G 、、重合于G 且 2.AG BG CG GD GE GF===第8题 垂心定理的2种证法若AD 、BE 、CF 是△ABC 的三条高,则AD 、BE 、CF 相交于一点H .H 叫做△ABC 的垂心.证法一:初中平面几何证法,运用四点共圆性质证明:设△ABC 的两条高AD 、BE 相交于点H ,连结CH 交AB 于点F . ∵AD ⊥BC 于E ,BE ⊥AC 于E ,∴A 、B 、D 、E 四点共圆,∴∠1=∠ABE , 同理∠2=∠1,∴∠2=∠ABE , ∵∠ABE+∠BAC =90°, ∴∠2+∠BAC =90°即CF ⊥AB .证法二:高中解析几何法,坐标法如图,以直线BC 为x 轴,高AD 为y 轴,建立直角坐标系, 设A(0 , a) , B(b , 0) , C(c , 0),由两条直线垂直的条件1,BE AC ck k a =-=1,CF AB b k k a=-=则三条高的直线方程为:解(2)和(3)得()(),c bx b x c aa-=-()0b c x -=,)0,0(><≠c b c b∴0=x ,这说明BE 和CF 得交点在AD 上,所以三角形的三条高相交于一点。

第9题 勾股定理的2种证法勾股定理:直角三角形ABC 中,90ACB∠=,则222BCAC AB +=.证法1:初中平面几何证法,构造正方形法做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点 L.∵ AF = AC ,AB = AD ,∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积 = 矩形ADLM 的面积 + 矩形MLEB 的面积∴ 222b a c += ,即222BC AC AB +=因为AB CB CA =-,所以证法2:高中向量几何证法,利用数量积法22()AB CB CA =-222CB CB CA CA=-+又CB CA ⊥,所以0CBCA =,所以222AB CB CA=+,即222||||||AB CB CA =+,即222BC AC AB +=.第10题 梯形中位线定理的2种证法cba cb a ABCD EFGH MLKAD 0(1)BE ()(2)CF ()(3)x cy x b a by x c a==-=-:::梯形中位线定理 若E 、F 分别是梯形ABCD 的腰AD 、BC 的中点,则EF ∥AB ∥CD 且1()2EFAB CD =+. 证法1:初中平面几何证法,构造三角形中位线法证明:延长DF 到G ,使FG DF =,又BF FC =,DFC BFG ∠=∠所以DFC GFB ∆≅∆, 所以DF FG =,又E 为AD 中点, 所以 1,2EF AG EF AG = ,又,,DC BG DC BG =所以EF ∥AB ∥CD ,且1()2EFAB CD =+. 证法2: 高中向量几何证法,利用共线向量法,最好利用向量加法的多边形法则 证明:因为EFED DC CF =++,EF EA AB BF =++,又0,0,ED EA FC FB +=+= 2EF AB DC =+,又AB DC ,所以设(0)AB DC λλ=>,则1(1)2EFDC λ=+, 所以EFDC ,所以EF AB ,所以EF ∥AB ∥CD ,又可得,又可得11||(1)||(||||)22EF DC AB DC λ=+=+即1()2EF AB CD =+.即1()2EF AB CD =+.第11题 正弦定理的5种证明方法在⊿ABC 中,角A 、B 、C 的对边分别为a b c 、、,则,sin sin sin a b cA B C==这就是正弦定理. 在这个定理的证明过程中蕴涵着丰富的几何意义.为了简单,仅以锐角三角形为例作简要说明.直角三角形的情形非常简单, 钝角三角形的情形与锐角三角形类似. 证法一 三角形高法2ac =cos(cos(CD b CD 因为AB =CB CA -,所以CB CA -)•CD , cos(cos(CD b CD sin sin .a B b A =所以a b=. b c=.证法三 解析几何法如图建立平面直角坐标系,使A 点在x 轴上方,由三角函数的定义,无论ACB ∠是直角、锐角还是钝角,都有(cos ,sin )A b C b C ,又(,0)B a 两点的距离公式,22||(cos )(sin 0)c AB b C a b C ==-+-,两边平方得222222sin cos 2cos c b C a b C ab C =++-,即2222cos c a b ab C =+-.第13题 求数量积的2种方法例1若等边△ABC 的边长为32,平面内一点M 满足1263CM CB CA =+,则MB NA ⋅ =__________.思路点拨:一种方法是建立平面直角坐标系,将问题转化为向量的坐标运算即可; 另一种方法是将MB MA ,用CB CA ,表示,然后用数量积的定义计算. 方法一:以BC 的中点为原点,BC 所在直线为x 轴建立如图(1)所示的 平面直角坐标系,根据题设条件可知)0,3(),0,3(),3,0(C B A - 设),(y x M ,则)3,3(),0,32(),,3(-=-=-=CA CB y x CM由CA CB CM 3261+=得: )2,3()3,3(32)0,32(61),3(-=-+-=-y x2,0==∴y x ,∴点M 的坐标为)2,0(,(0,1),(3,2)MA MB ∴==--2-=⋅∴MB MA . 方法二:由于1211()6336MA CA CM CA CB CA CA CB =-=-+=- CB CA CA CB CB CM CB MB 6532)3261(+-=+-=-==⋅∴MB MA ⋅-)6131(CB CA 2225275()3691836CA CB CA CA CB CB -+=-+⋅-又ABC ∆是边长为32的等边三角形, 6,1222=⋅==∴CB CA CB CA ,21236561871292-=⨯-⨯+⨯-=⋅∴MB MA B(a,0)图3CA (bcosC,bsinC )图(1)第14题 求数量积的2种方法例2在正三角形ABC 中,D 是BC 边上的点,AB=3,BD=1,则AB AD ⋅=________. 方法一:如图所示,B=60°,由余弦定理得AD 2=32+12-2×3×1×cos 60°=7, ∴AD=7,再由余弦定理得cos ∠BAD=2223(7)15714237+-=⨯⨯, 所以5715AB AD AB AD cos BAD 37142⋅=⋅∠=⨯⨯=. 方法二:∵AD AB BDAB AD AB (AB BD)=+∴⋅=⋅+, = 22AB AB BD AB AB BD cos 120+⋅=+⋅︒=9+3×1×115()22-=.第15题 一个向量题的4种解法在ABC ∆中,若对于任意t R ∈,||||BA tBC AC -≥,求角.C 解法1:由||||BA tBC AC -≥得:22()BA tBC AC -≥,22222BA t BC tBA BC AC +-⋅≥,即222220t BC tBA BC BA AC -⋅+-≥,所以22224()4()0BA BC BC BA AC ∆=⋅--≤,2222224cos 4()0BA BC B BC BA AC ⋅--≤, 2222cos ()0BA B BA AC --≤,222sin 0BA B AC -+≤,即||||sin AC BA B ≤,sin sin sin B C B ≤,1sin C ≤,又sin 1C ≥,所以sin 1C =,所以2C π=.解法2:由||||BA tBC AC -≥得:22()BA tBC AC -≥,()()0BA tBC AC BA tBC AC -+⋅--≥,2解法3:由|||BA tBC AC -≥2cos tac B b ≥222cos 0t ac Bt b --≥,sin C B ,1sin C ≤,又sin 1C ≥,所以sin 1C =于是原题化为||||DA AC ≥恒成立,根据垂线段最短通过上面两种解法的比较可以看出,利用平面向量的三角形法则和共线向量的意义可以大大缩减运算量,提 三角中的特殊变换与一般变换(2sin()sin()2sin sin A B A B B C ⇒+-=,因为sin()sin 0A B C +=≠,所以sin()sin A B B -=, 又,0,A B B πππ-<-<<<所以A B B -=,即2.A B = 法二:(分析法)考虑先证明sin sin 2A B =,只要证明sin 2sin cos A B B =,只要证明22222a c b a b ac+-=,只要证2222()a c b a c b =+-,注意到由已知22a b bc -=,只要证22()a c b bc c =+,只要证2()a b b c =+,由已知此式成立,所以sin sin 2A B =成立, 所以2A B =或2A B π+=,由2A B π+=结合A B C π++=可得B C b c =⇒=,又2()a b b c =+,所以222a b c =+,所以2A π=,4B C π==,所以2A B =,综上2A B =。

相关文档
最新文档