三角函数解应用题(专题)

合集下载

人教版初3数学9年级下册 第28章(锐角三角函数)应用题综合训练(含解析)

人教版初3数学9年级下册 第28章(锐角三角函数)应用题综合训练(含解析)

初中三角函数应用题综合一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:19.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.2012.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 m.20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)【解答】解:由题意知,四边形CDBM、CDEF、EFMB是矩形,∴BM=CD=1.5米,CE=DF=10米.在Rt△ADM中,∵tan∠ADM=,∴DM==AM.在Rt△AFM中,∵tan∠AFM=,∴FM==AM.∵DF=DM﹣FM,∴AM﹣AM=10.∴AM=10.AM=5.∴AB=AM+MB=5+1.5≈5×1.73+1.5=8.65+1.5=10.15=10.2(米).答:这棵树AB的高度为10.2米.2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.【解答】解:(1)由题意得:BD=5km,CD=5km,∠BAC=90°,AB=3km,CA=4km,∴BC===5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∴∠CBD=90°,∴∠BDC=45°,∴∠ADC=∠BDC﹣∠BDA=45°﹣10°=35°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD===(km).∴公园D与小明家A的距离为km.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,AC=80千米,∴CD=AC•sin30°=80×=40(千米),BC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,AC=80千米,∴AD=AC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴BD===40(千米),∴AB=BD+AD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.【解答】解:方法一:在Rt△EDF中,DE=1m,EF=0.6m,∴tan∠EDF===,在Rt△BCD中,CD=6m,∵tan∠BDC=tan∠EDF,∴=,∴BC=3.6m,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m;方法二:由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴,∵DE=1m,EF=0.6m,CD=6m,∴=,解得:BC=3.6,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)【解答】解:过E作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHE中,∠OHE=90°,OE=25cm,∠AOE=53°,∴HO=OE×cos53°=15cm,EH=20cm,EB=HA=25﹣15=10(cm),所以铁环钩离地面的高度为10cm;(2)∵铁环钩与铁环相切,∴∠EOH+∠OEH=∠OEH+∠DEN=90°,∠DEN=∠EOH,∴DE==,在Rt△DEN中,∠DNE=90°,EN=BC=AC﹣AB=53﹣20=33(cm),DE===55(cm),∴铁环钩的长度DE为55cm.6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.【解答】解:(1)由题意得:在Rt△ADC中,AD==≈51.9(米),在Rt△BDC中,BD===30(米),∴AB=AD﹣BD≈51.9﹣30=21.9(米),答:AB的长为21.9米;(2)不超速,理由:∵汽车从A到B用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵39.42千米/小时<40千米/小时,∴这辆校车在AB路段不超速.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.【解答】解:(1)由题意得:∠ABC=∠DCE=∠FEG=90°,在Rt△DCE中,CE===2m,∵∠DEC=∠AEB,∴△DEC∽△AEB,∴=,∴=,∵∠FGE=∠AGB,∴△FGE∽△AGB,∴=,∴=,∴=,∴EB=(8+12)m,∴=,∴AB=8+4≈14.92m,答:旗杆AB的高度为14.92米;(2)由(1)得:△DEC∽△AEB,∴=,∴=,由(1)得:△FGE∽△AGB,∴=,∴=,∴=,∴EB=,∴=,∴AB=,答:旗杆AB的高度为m.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:1【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.9.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m【解答】解:由题意可知,四边形BFDE为矩形,∴DE=BF,在Rt△BAF中,∠BAF=30°,AB=600m,则BF=AB=300(m),∴DE=300m,在Rt△CBE中,∠CBE=45°,BC=800m,∴CE=BC=400(m),∴CD=CE+DE=(300+400)m,故选:C.10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m【解答】解:∵迎水坡AB的坡比为1:=,BC=4m,∴AC=BC=4(m),故选:B.11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.20【解答】解:由题意得:四边形AEFD是矩形,∴DF=AE,∵迎水坡AB的坡角α=45°,坡长AB=10米,∴DF=AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan C=i===,∴∠C=30°,∴CD=2DF=2AE=20(米),故选:A.12.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 20.62 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)【解答】解:∵DE的坡度为i1=1:,∴tan∠DEC==,∴∠DEC=30°,∴DC=DE=5(m),∵四边形ABCD为矩形,∴AB=CD=5m,∵斜坡AF的坡度为i2=1:4,AB=5m,∴BF=4AB=20(m),在Rt△ABF中,AF==≈20.62(m),∴斜坡AF的长度约为20.62米,故答案为:20.62.13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).【解答】解:(1)在Rt△ABC中,AB=2m,∠ABC=45°,∴AC=BC=AB•sin45°=2×=(m),答:舞台的高AC为m;(2)在Rt△ADC中,∠ADC=30°,则CD===,∴BD=CD﹣BC=(﹣)m,答:DB的长度为(﹣)m.14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,则QG⊥BA,∴设QG=x米,∵山坡的坡度为i=1:2.4,∴AG=2.4x米,由勾股定理得:x2+(2.4x)2=5.22,解得:x=2,则QG=2米,AG=2.4x=4.8米,∴EF=NG=4.8+1.2=6(m),在Rt△PEF中,∠PEF=53°,EF=6m,则PF=EF•tan∠PEF=6×tan53°≈6×=8(m),∵FQ=EN﹣QG=3﹣2=1(m),∴PQ=8+1=9(m).答:信号塔PQ的高约为9m.三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°【解答】解:由题意得:∠ADB=42°,∠BDC=90°,∴∠ADC=∠BDC﹣∠ADB=90°﹣42°=48°,故选:C.16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,∠BAF=30°,AB=10米,∴BF=AB=5(米),AF=BF=5(米).∴BG=AF+AE=(5+15)(米),在Rt△BGC中,∠CBG=45°,∴△BGC是等腰直角三角形,∴CG=BG=(5+15)(米),在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15(米),∴CD=CG+GE﹣DE=5+15+5﹣15=(20﹣10)(米),即宣传牌CD的高度是(20﹣10)米,故选:A.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米【解答】如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴==,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高为米.故选:B.18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 14.7 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD,即6=AB﹣AB,解得:AB=≈14.7(米),∴建筑物的高度约为14.7米,故答案为:14.7.19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 (15+15) m.【解答】解:设BC的长为x米.在Rt△CBD中,∠D=90°,∠CBD=45°,∴CD=BC=x米,在Rt△CAD中,∠ACD=90°,∠DAC=30°,∴tan∠CAD===,解得:x=15+15,答:楼房DC的高度为(15+15)米,故答案为:(15+15).20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).【解答】解:延长DC交BF于F,过A作AH⊥DC于H,则HF=AB=1.6m,AH=BF,在Rt△ACF中,∵∠CBF=20°,BC=10m,∴CF=BC•sin20°≈10×0.34=3.4(m),BF=BC•cos20°≈10×0.94=9.4(m),∴AH=BF=9.4m,在Rt△ADH中,∵∠DAH=55°,∴DH=AH•tan55°≈9.4×1.43≈13.4(m),∴DC=DH+HF﹣CF=13.4+1.6﹣3.4=11.6(m),答:树木CD的高度约为11.6m.21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.四.解直角三角形的应用−仰角俯角问题(共1小题)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【解答】解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.。

三角函数应用题

三角函数应用题

三角函数应用题在数学中,三角函数是一类描述角和三角形之间关系的函数。

它们在几何、物理、工程等领域中都有广泛的应用。

今天我们就来看几个关于三角函数的实际应用题。

题目一:船长测量船到岸边的距离某船长在海上航行,他利用望远镜测量船到岸边的距离为450米,角度为30°。

请帮助船长计算船实际距离岸边的距离。

解题思路:根据三角函数中正弦函数的定义,正弦函数是对边与斜边的比值。

设实际距离为x,则sin30°=450/x,解得x=450/sin30°≈900米。

题目二:高楼顶部的钢丝张力某座高楼的屋顶有一根斜着的钢丝,已知钢丝与地面的夹角为60°,钢丝的长度为200米。

求钢丝的张力。

解题思路:根据三角函数中余弦函数的定义,余弦函数是邻边与斜边的比值。

设钢丝张力为T,则cos60°=邻边/200,解得邻边=200cos60°≈100米。

再根据正弦函数的定义,sin60°=钢丝张力/200,解得钢丝张力=200sin60°≈173.21牛顿。

题目三:天文测距天文学家利用角度差测量两颗星星间的距离,已知两颗星星的距离为400光年,夹角为20°。

根据此信息,求两颗星星间的实际距离。

解题思路:根据正切函数的定义,切线函数是对边与邻边的比值。

设实际距离为d,则tan20°=400/d,解得d=400/tan20°≈1152.32光年。

通过以上几个实际应用题,我们可以看到三角函数在解决各种实际问题中的重要性和实用性。

希望大家在学习三角函数的过程中能够灵活运用,将数学知识与实际应用相结合,更好地理解和掌握相关知识。

三角函数不仅仅是一堆抽象的公式,更是与我们的生活息息相关的数学工具。

愿大家在学习中取得更好的成绩!。

专题复习:三角函数的综合应用题编

专题复习:三角函数的综合应用题编

专题复习:三角函数的综合应用题编(推荐时间:推荐时间:7070分钟分钟) )1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1)1),,b =(cos x ,3sin 2x ),x ∈R .(1)(1)若函数若函数f (x )=1-3,且x ∈ëêéûúù-π3,π3,求x 的值;的值;(2)(2)求函数求函数y =f (x )的单调增区间,的单调增区间,并在给出的坐标系中画出并在给出的坐标系中画出y =f (x )在区间[0[0,,π]上的图象.上的图象.解 (1)(1)依题设得依题设得f (x )=2cos 22x +3sin 2x =1+cos 2x +3sin 2x =2sin èçæø÷ö2x+π6+1.由2sin èçæø÷ö2x +π6+1=1-3,得sin èçæø÷ö2x +π6=-32.∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6, ∴2x +π6=-π3,即x =-π4. (2)(2)当-当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ), 即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为ëêéûúù-π3+k π,π6+k π(k ∈Z ),x 0 π6 π3 π2 2π3 5π6 π y232-122. 已知向量a =(cosx +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos 2x . (1)(1)求函数求函数f (x )的值域;的值域;(2)(2)若若f (θ)=15,θ∈ëêéûúùπ6,π3,求sin 2θ的值.的值.解 (1)f (x )=a ·b -cos 2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin èçæø÷ö2x +π6-1,f (x )的值域为的值域为[[-3,1]3,1]..(2)(2)由由(1)(1)知知f (θ)=2sin èçæø÷ö2θ+π6-1,由题设2sin èçæø÷ö2θ+π6-1=15,即sin èçæø÷ö2θ+π6=35,∵θ∈ëêéûúùπ6,π3,∴,∴22θ+π6∈ëêéûúùπ2,5π6, ∴cos èçæø÷ö2θ+π6=-45,∴sin 2θ=sin ëêéûúùèçæø÷ö2θ+π6-π6=sin èçæø÷ö2θ+π6cos π6-cos èçæø÷ö2θ+π6sinπ6=35×32-èçæø÷ö-45×12=33+410.3. 已知向量m =èçæø÷ösin A ,12与n =(3(3,,sin A +3cos A )共线,其中A 是△ABC的内角.的内角.(1)(1)求角求角A 的大小;的大小;(2)(2)若若BC =2,求△ABC 面积S 的最大值.的最大值.解 (1)(1)∵∵m ∥n ,∴,∴sin sin A ·(sin A +3cos A )-32=0.∴1-cos 2A 2+32sin 2A -32=0, 即32sin 2A -12cos 2A =1, 即sin èçæø÷ö2A -π6=1.∵A ∈(0(0,,π),∴,∴22A -π6∈èçæø÷ö-π6,11π6. 故2A -π6=π2,A =π3. (2)(2)∵∵BC =2,由余弦定理得b 22+c 22-bc =4,又b 22+c 22≥2bc ,∴bc ≤4(4(当且仅当当且仅当b =c 时等号成立时等号成立)), 从而S △ABC =12bc sin A =34bc ≤34×4= 3.即△ABC 面积S 的最大值为 3.4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c 已知cos A -3cos C cos B=3c -ab . (1)(1)求求sin Csin A的值;的值;(2)(2)若若B 为钝角,b =1010,求,求a 的取值范围.的取值范围. 解 (1)(1)由正弦定理,设由正弦定理,设asin A =bsin B =csin C=k ,则3c -a b =3k sin C -k sin A k sin B =3sin C -sin Asin B , 所以cos A -3cos C cos B =3sin C -sin Asin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin Csin A=3. (2)(2)由由sin C sin A =3得c =3a . 由题意知îíìa +c >ba 2+c 2<b2,又b =1010,所以,所以52<a <10.5. 已知函数f (x )=A sin(ωx +φ)èçæø÷ö其中x ∈R ,A >0>0,,ω>0>0,-,-π2<φ<π2的部分图象如图所示.图象如图所示.(1)(1)求函数求函数f (x )的解析式;的解析式;(2)(2)已知函数已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-的横坐标分别为-1,1,51,1,5,,求sin ∠MNP 的值.的值.解 (1)(1)由图可知,由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4.又f (1)(1)==sin èçæø÷öπ4+φ=1,且-π2<φ<π2,所以π4+φ=π2,解得φ=π4. 所以f (x )=sin èçæø÷öπ4x +π4. (2)(2)因为因为f (-1)1)==0,f (1)(1)==1,f (5)(5)==sin èçæø÷ö5π4+π4=-=-11, 所以M (-1,0)1,0),,N (1,1)(1,1),,P (5(5,-,-1)1)..所以所以||MN |=5,|PN |=2020,,|MP |=37. 由余弦定理得由余弦定理得cos cos∠∠MNP =5+2020--3725×20=-35. 因为∠MNP ∈(0(0,,π), 所以sin sin∠∠MNP =45.6. 已知向量a =(cos α,sin α),b =(cosx ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π. (1)(1)若若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;的值; (2)(2)若若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.的值.解 (1)(1)∵∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4, ∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).令t =sin x +cos x èçæø÷öπ4<x <π,则2sin x cos x =t 2-1,且-,且-1<1<t < 2.则y =t 2+2t -1=èçæø÷öt +222-32,-,-1<1<t <2,∴t =-22时,y min =-32,此时sin x +cos x =-22,即2sin èçæø÷öx +π4=-22,∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12. ∴函数f (x )的最小值为-32,相应x 的值为11π12.的夹角为,cos=a·b==π.ø÷ö+π3+∴52sin 2+32cos 2=-35.。

三角函数型应用题(高一).docx

三角函数型应用题(高一).docx

三角函数型应用题(高一)1.如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(RtAFHE, H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,分别落在线段上.已知AB = 20米,AD = iOy/3米,iB ZBHE = 0.(1)试将污水净化管道的长度厶表示为&的函数,并写出定义域;(2)若sin&+cos0 = “,求此时管道的长度厶;(3)问:当&取何值时,污水净化效果最好?并求出此时管道的长度.n cEH =-^— FH = -^- cos& sin 〃『於由于込曲旳叭—<tan6^<V3 厶=』- +』- + ——-—— 3 6 3 cos & sin& sin&・cos&6 3⑵ sin& + cos& = "时,sin&cos0 = * 厶=20(血+ 1); 厶二亠+亠+ 」 ]0严& + COS& + 1) (3) cos& sin& sin& cos &二 sin& cos&sin 0 • cos 0 =-——- 0 G [―,—]设sm 〃 + cos& = f 贝g2 由于 6 3f = sin & + cos 0 = \/2 sin (& + —) G [^ + *, A /2] 所以 4 2在 2 内单调递减,石+10 =兰0 =兰2时 6,3时,厶的最大值20(石+ 1)米答:当一氏或一亍时所铺设的管道最短,为20(的+1)米.解:(1)于是当2.某居民小区内建有一块矩形草坪ABCD,佔二50米,BCG5羽米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的屮点,点£在边BC上,点F在边AD上,且ZEOF=90。

中考数学专题 初中三角函数应用题10道-含答案

中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。

三角函数的应用题练习题(基础)

三角函数的应用题练习题(基础)

三角函数的应用题练习题(基础)题目1: 三角函数的高度应用某个人站在一座高楼的窗户旁,离地面的距离是20米。

该人仰望斜顶角度为30度的楼顶,试计算楼顶的高度是多少米?答案:首先,我们可以利用正弦函数来解决这个问题。

正弦函数定义为:sin(θ) = 对边/斜边。

按照这个定义,我们可以得到以下方程:sin(30度) = 对边/20米对方程进行求解,我们可以得到:对边 = 20米 * sin(30度)利用计算器,我们可以得到:对边 = 10米因此,楼顶的高度是10米。

题目2: 三角函数的距离应用一辆汽车正在沿着直路行驶。

从汽车起点到终点的直线距离为1000米。

汽车行驶的角度与直线路线的夹角为45度。

试计算汽车实际行驶的距离是多少米?答案:对于这个问题,我们可以使用余弦函数来求解。

余弦函数定义为:cos(θ) = 临边/斜边。

应用于这个问题,我们可以得到以下方程:cos(45度) = 临边/1000米对方程进行求解,我们可以得到:临边 = 1000米 * cos(45度)利用计算器,我们可以得到:临边 = 707.106米因此,汽车实际行驶的距离是707.106米。

题目3: 三角函数的速度应用一艘船以20米/秒的速度顺水行驶。

河流的流速为10米/秒,且方向与船垂直。

试计算船在水中实际的速度是多少米/秒?答案:对于这个问题,我们可以使用正切函数来求解。

正切函数定义为:tan(θ) = 对边/临边。

应用于这个问题,我们可以得到以下方程:tan(θ) = 10米/秒 / 20米/秒对方程进行求解,我们可以得到:tan(θ) = 0.5利用计算器,我们可以得到:θ = 26.565度因此,船在水中实际的速度是约为26.565米/秒。

三角函数应用题练习及答案

三角函数的应用题第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。

解:∵∠DAC=90° 由勾股定理,有 CD 2=AD 2+AC 2 ∵AD=3,DC=5 ∴AC=4 ∵∠B=30° ∴AB=2AC ∴AB=8[例2]如图,△ABC 中,∠B=90°,D 是BC 上一点,且AD=DC ,若tg ∠DAC=41,求tg ∠BAD 。

探索:已知tg∠DAC 是否在直角三角形中?如果不在怎么办?要求∠BAD 的正切值需要满足怎样的条件?点拨:由于已知中的tg ∠DAC 不在直角三角形中,所以需要转化到直角三角形中,即可地D 点作AC 的垂线。

又要求∠BAD 的正切值应已知Rt△BAD 的三边长,或两条直角边AB 、BD 的长,根据已知可知没有提 供边长的条件,所以要充分利用已知中的tg∠DAC 的条件。

由于AD=DC ,即∠C=∠DAC,这时也可 把正切值直接移到Rt△ABC 中。

解答:过D 点作DE⊥AC 于E ,41DAC =∠tg 且AE DE DAC =∠tg设DE=k ,则AE=4k∵AD=DC,∴∠DAC=∠C,AE=EC ∴AC=8k∵41==BC AB tgC设AB=m ,BC=4m 由勾股定理,有AB 2+BC 2=AC 2∴k m 17178=k BC 171732=∴由勾股定理,有CD 2=DE 2+EC 2k CD 17=∴ k BD 171715=∴由正切定理,有.815=∠∴=∠BAD tg AB DBBAD tg[例3]如图,四边形ABCD 中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB 。

探索:已知条件提供的图形是什么形?其中∠D=90°,AD=3,DC=4,可提供什么知识?求sinB 应放在什么图形中。

点拨:因已知是四边形所以不能求解,由于有∠D=90°,AD=3,DC=4,这样可求AC=5,又因有AB=13,BC=12,所以可证△ABC 是Rt△,因此可求sinB 。

专题17 以三角函数为背景的应用题(原卷版)

专题17 以三角函数为背景的应用题1、【2019年高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC 和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.2、【2018江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室△,要求,A B均在线段MN上,,C D 大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP均在圆弧上.设OC与MN所成的角为θ.△的面积,并确定sinθ的取值范围;(1)用θ分别表示矩形ABCD和CDP(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.3、【2017年江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为107cm,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.容器Ⅱ容器ⅠGOHFED CBAO 1H 1G 1F 1E 1D 1C 1B 1A 1对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.题型一、有几何或者几何体有关的问题以几何为载体的应用题常见与圆、扇形等特色的图形,此类问题的关键是把各个线段表示出来,进二列出函数的解析式,与几何体有关的导数问题,常常涉及到表面积与体积的问题,解题关键就是通过引入参数表示表面积或者体积,然后运用导数进行求解。

三角函数的应用题及解答

三角函数的应用题及解答三角函数是数学中一个非常重要的分支,其应用广泛且深入。

本文将列举几个三角函数的应用题,并给出详细的解答过程。

1. 问题描述:某建筑物高度为100米,离该建筑物水平面的观察角为30°,求观察点到建筑物底部的距离。

解答过程:根据三角函数的定义,正切函数可以表示观察点到建筑物底部的距离与建筑物高度之间的关系。

设观察点到建筑物底部的距离为x,则有tan(30°) = 100/x。

解以上方程,可得观察点到建筑物底部的距离x = 100/tan(30°) = 100/√3。

因此,观察点到建筑物底部的距离约为57.74米。

2. 问题描述:一辆汽车以40km/h的速度直线行驶,车头的倾斜角度为15°,求车头离直线道路的垂直距离。

解答过程:根据三角函数的定义,正切函数可以表示车头离直线道路的垂直距离与车速和倾斜角度之间的关系。

设车头离直线道路的垂直距离为y,则有tan(15°) = y/40。

解以上方程,可得车头离直线道路的垂直距离y = 40*tan(15°)。

因此,车头离直线道路的垂直距离约为10.93米。

3. 问题描述:一个航天器发射到外太空,离地球表面的垂直高度为500公里,航天器的视线与地球表面的夹角为60°,求航天器的真实高度。

解答过程:根据三角函数的定义,正弦函数可以表示真实高度与垂直高度之间的关系。

设航天器的真实高度为h,则有sin(60°) = h/500。

解以上方程,可得航天器的真实高度h = 500*sin(60°)。

因此,航天器的真实高度约为433.01公里。

通过以上例题,我们可以看到三角函数在实际问题中的应用。

无论是建筑物的观察角、汽车的倾斜角度还是航天器的视线角度,三角函数都能提供准确的数学描述和解答。

总结起来,三角函数是数学中一项重要而实用的工具,通过对角度和长度之间的关系的研究和运用,我们可以解决各种实际问题。

三角函数的试题及答案

三角函数的试题及答案题目:三角函数的试题及答案一、选择题(每题2分,共10题)1. 在三角函数中,sin^2(x) + cos^2(x) = ?A. 0B. 1C. 2D. -12. 以下哪个选项表示sin(π/6)的值?A. √2/2B. √3/2C. 1/2D. 13. 若tan(x) = √3,则x的取值范围是?A. (-∞, -π/3) ∪ (π/3, +∞)B. (-∞, -π/4) ∪ (π/4, +∞)C. (-∞, -π/6) ∪ (π/6, +∞)D. (-∞, -π/2) ∪ (π/2, +∞)4. 若sin(x) = -1/2,且x > 0,则x的值是?A. 3π/2B. π/6C. 7π/6D. π/25. 若cot(x) = 0,且x > 0,则x的值是?A. π/4B. π/2C. πD. 3π/26. 以下哪个选项表示cos^2(x) = 1 - sin^2(x) 的恒等式?A. sin(2x)B. 1/cos(x)C. tan^2(x)D. sec(x)7. 若cos(x) = -√2/2,且x > 0,则x的值是?A. π/4B. π/6C. 5π/4D. π/38. 若sec(x) = 2,且x > 0,则x的值是?A. π/6B. 5π/6C. 6πD. 09. 若sin(2x) = 1/2,且x > 0,则x的值是?A. π/12B. π/6C. π/3D. π/410. 若cot(x) + tan(x) = 1,且x ≠ kπ,其中k为整数,则x的值是?A. 0B. π/4C. π/6D. π/2二、解答题1. 解方程 2sin^2(x) - 3sin(x) + 1 = 0,其中0 ≤ x ≤ 2π。

解答:设sin(x) = t,则方程化简为 2t^2 - 3t + 1 = 0。

解这个二次方程,可以得到 t = 1 或 t = 1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数解应用题
19.在一次海面搜救行动中,我国的海巡搜救船在某海域的A,B两处探测到C 处有疑似飞机黑匣子的脉冲信号,已知A,B两处相距2700米,探测线EC,FC 与海平面所在直线GH的夹角分别是32°和45°,试确定疑似脉冲信号所在点C 与GH的距离,(精确到0.1米)
19.如图,河流两岸a、b互相平行,C,D是河岸a上间隔50m的两个电线杆,某人在河岸b上的A处测得∠DAB=35°,然后沿河岸走了100m到达B处,测得∠CBE=62°,作CE⊥b于点E,求河流的宽度CE(结果精确到个位).
7、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).
20.某过街天桥的设计图是梯形ABCD (如图所示),桥面DC 与地面AB 平行,DC=62米,AB=88米.左斜面AD 与地面AB 的夹角为23°,右斜面BC 与地面AB 的夹角为30°,立柱DE ⊥AB 于E ,立柱CF ⊥AB 于F ,求桥面DC 与地面AB 之间的距离(精确到0.1米)
21.(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB .如图,在山外一点C 测得BC 距离为20m ,∠CAB=54°,∠CBA=30°求
隧道AB 的长.(参考数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈精确到个位)
21.(8分)如图,一楼房AB后有一假山,其坡度为i=1 :√3山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20
45,求楼房AB的高.(注:坡度i是指坡米.小丽从楼房顶测得E点的俯角为
面的铅直高度与水平宽度的比)
22、如图,台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形式气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。

(1)该城市是否会受到这次台风的影响?请说明理由。

(2)若会受到台风的影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
6、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条
直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)
3、)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为。

相关文档
最新文档