三角函数应用题
三角函数应用题练习及答案

三角函数的应用题考点一: 锐角三角函数的定义及性质例1.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=53,AB =4,则AD 的长为( ) A .3 B .316 C .320 D .516例2.直线y=kx-4与y 轴相交所成的锐角的正切值为12,则k 的值为 .1.在Rt △ABC 中,∠C=90°,BC=4,AC=3,则cosA 的值为2.如图,在△ABC 中,∠C=90°,∠B=50°,AB=10,则BC 的长为( ) ° ° ° D.10cos50°考点二: 特殊角的三角函数值例3.计算:2102452(3.14)π---+-例4.化简2)130(tan - =( )A 、331- B 、13- C 、133- D 、13-1.计算:2.计算45tan 30cos 60sin -的值是 。
3.已知在△ABC 中,若2sin 1cos 02A B ⎛⎫-+-= ⎪ ⎪⎝⎭,求∠C 的度数。
考点三: 锐角三角函数的关系例6.在△ABC 中,∠C =90°,sinA =35,则tanA ·cosA 的值是( )A 、35B 、45C 、925D 、16251.如果α是锐角,且22sin sin 541α+︒=,那么α的度数是( )A .54°B .46°C .36°D .26°2.已知∠A +∠B =90°,则下列各式中正确的是( )=sinB =cosB =cosB =tanB[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。
[例2]如图,四边形ABCD中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB。
[例3]如图,在河的对岸有水塔AB,今在C处测得塔顶A的仰角为30°,前进20米后到D处,又测得A的仰角为45°,求塔高AB。
三角函数应用题

三角函数应用题在数学中,三角函数是一类描述角和三角形之间关系的函数。
它们在几何、物理、工程等领域中都有广泛的应用。
今天我们就来看几个关于三角函数的实际应用题。
题目一:船长测量船到岸边的距离某船长在海上航行,他利用望远镜测量船到岸边的距离为450米,角度为30°。
请帮助船长计算船实际距离岸边的距离。
解题思路:根据三角函数中正弦函数的定义,正弦函数是对边与斜边的比值。
设实际距离为x,则sin30°=450/x,解得x=450/sin30°≈900米。
题目二:高楼顶部的钢丝张力某座高楼的屋顶有一根斜着的钢丝,已知钢丝与地面的夹角为60°,钢丝的长度为200米。
求钢丝的张力。
解题思路:根据三角函数中余弦函数的定义,余弦函数是邻边与斜边的比值。
设钢丝张力为T,则cos60°=邻边/200,解得邻边=200cos60°≈100米。
再根据正弦函数的定义,sin60°=钢丝张力/200,解得钢丝张力=200sin60°≈173.21牛顿。
题目三:天文测距天文学家利用角度差测量两颗星星间的距离,已知两颗星星的距离为400光年,夹角为20°。
根据此信息,求两颗星星间的实际距离。
解题思路:根据正切函数的定义,切线函数是对边与邻边的比值。
设实际距离为d,则tan20°=400/d,解得d=400/tan20°≈1152.32光年。
通过以上几个实际应用题,我们可以看到三角函数在解决各种实际问题中的重要性和实用性。
希望大家在学习三角函数的过程中能够灵活运用,将数学知识与实际应用相结合,更好地理解和掌握相关知识。
三角函数不仅仅是一堆抽象的公式,更是与我们的生活息息相关的数学工具。
愿大家在学习中取得更好的成绩!。
九年级三角函数应用题

九年级三角函数应用题1.在某高速公路建设中,需要确定隧道AB的长度。
已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°。
求隧道AB的长度(3≈1.73)。
2.在一次数学活动课上,老师带领学生去测一条南北流向的河的宽度。
如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上。
沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上。
请根据以上数据求这条河的宽度(参考数值:tan31°≈0.6)。
3.甲、乙两船同时从港口出发。
甲船以60海里/时的速度沿XXX方向航行,乙船沿北偏西30°方向航行。
半小时后,甲船到达C点,乙船正好到达甲船正西方向的B点。
求乙船的速度。
4.港口B在港口A的西北方向。
上午8时,一艘轮船从港口A出发,以15海里/时的速度向正北方向航行。
同时,一艘快艇从港口B出发也向正北方向航行。
上午10时,轮船到达D处,同时快艇到达C处。
测得C处在D处的北偏西30°的方向上,且C、D两地相距100海里。
求快艇每小时航行多少海里(结果精确到0.1海里/时,参考数据2≈1.41,3≈1.73)。
5.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示。
量得角A为54°,斜边AB的长为2.1m,BC边上露出部分BD长为0.9m。
求铁板BC边被掩埋部分CD的长(结果精确到0.1m,参考数据sin54°=0.81,cos54°=0.59,tan54°=1.38)。
6.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°。
使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm(结果精确到0.1cm,参考数据3≈1.732)。
三角函数的应用专项训练

三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。
高中三角函数经典例题50道

高中三角函数经典例题50道1.求解三角形中角度的相关问题是高中数学学习中的重要内容。
例如,考虑正三角形ABC,已知∠A=60°,求∠B和∠C的大小。
2.在三角形ABC中,已知∠A=30°,∠C=60°,求∠B的大小。
3.若在直角三角形ABC中,∠A=30°,求∠C的大小。
4.在锐角三角形ABC中,已知边b=5,c=10,∠A=30°,求边a的长度。
5.在钝角三角形ABC中,边a=6,b=10,∠A=120°,求边c的长度。
6.若在任意三角形ABC中,边a=8,b=6,∠A=45°,求∠B的大小。
7.在直角三角形ABC中,边a=1,b=√3,求∠A和∠B 的大小。
8.若在锐角三角形ABC中,已知边a=5,b=7,求∠A 和∠B的大小。
9.在任意三角形ABC中,边a=10,b=15,∠A=30°,求∠B的大小。
10.若在直角三角形ABC中,边b=4,c=5,求∠A和∠C的大小。
11.在锐角三角形ABC中,已知边b=8,c=10,∠A=60°,求∠C的大小。
12.若在任意三角形ABC中,边a=7,c=9,∠A=45°,求边b的长度。
的长度。
14.在锐角三角形ABC中,已知∠A=45°,∠B=60°,求∠C的大小。
15.若在任意三角形ABC中,边a=12,b=16,求∠A和∠B的大小。
16.在直角三角形ABC中,已知边b=8,c=10,求∠A和∠C的大小。
17.在锐角三角形ABC中,边a=5,b=8,∠C=60°,求边c的长度。
18.若在任意三角形ABC中,边a=7,b=10,∠B=30°,求边c的长度。
19.在直角三角形ABC中,边a=2,c=√5,求∠A和∠B的大小。
20.在锐角三角形ABC中,已知边b=3,c=4,∠A=45°,求∠C的大小。
21.若在任意三角形ABC中,边a=9,c=12,∠C=45°,求边b的长度。
1.5 三角函数的应用(分层练习)(解析版)

第一章 直角三角形的边角关系1.5 三角函数的应用精选练习一、单选题1.(2022·江苏泰州·九年级期中)一条上山直道的坡度为17∶,沿这条直道上山,则前进100米所上升的高度为( )A .700米B.米C.米D.2.(2022·吉林省第二实验学校九年级阶段练习)某书店拿取高处书籍的登高梯如图位置摆放,登高梯AC 的顶端A 恰好放在书架的第七层的顶端.已知登高梯的长度AC 为3米,登高梯与地面的夹角ACB Ð为72o ,则书架第七层顶端离地面的高度AB 为( )A .3sin 72°米B .3sin 72o 米C .3cos 72°米D .3cos 72o米3.(2022·江苏苏州·九年级期中)如图,小王在高台上的点A 处测得塔底点C 的俯角为α,塔顶点D 的仰角为β,已知塔的水平距离AB a =,则此时塔高CD 的长为( )A .sin sin a a a b +B .tan tan a a a b +C .tan tan aa b +D .tan tan tan tan a a b a b+【答案】B【分析】在Rt △ABD 和Rt ABC △中,利用锐角三角函数求出,BD BC ,即可求解.【详解】解:根据题意得:90ABD ABC Ð=Ð=°,在Rt △ABD 中,tan tan BD AB a b b ==,在Rt ABC △中,tan tan BC AB a a a ==,∴tan tan CD BD BC a a a b =+=+.即此时塔高CD 的长为tan tan a a a b +.故选:B【点睛】本题主要考查了解直角三角形,熟练掌握锐角三角函数是解题的关键.4.(2022·山东济南·模拟预测)小明去爬山,在山脚A 看山顶D 的仰角30CAD Ð=°,小明在坡比为5:12的山坡上走1300米到达B 处,此时小明看山顶的仰角60DBF Ð=°,则山高CD 为( )米A .(600-B .()250C .(350+D .【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.5.(2022·河北石家庄·九年级期中)如图,一块矩形薄木板ABCD 斜靠在墙角MON 处(OM ON ^,点A ,B ,C ,D ,O ,M ,N 在同一平面内),已知AB m =,AD n =,ADO a Ð=,则点B 到ON 的距离等于( )A .cos cos m n a a×+×B .sin cos m n a a ×+×C .cos sin m n a a×+×D .sin sin m n a a×+×过点B 作BH ON ^于H ∴B 到ON 的距离是BH ∵OM ON ^,矩形ABCD ∴BAQ DAO DAO Ð+Ð=Ð∴ADO BAQ a Ð=Ð=,6.(2022·河北·石家庄市第四十二中学九年级期中)如图,沿AB 方向架桥BD ,以桥两端B D 、出发,修公路BC 和DC ,测得150ABC Ð=°,1800BC =m ,105BCD Ð=°,则公路DC 的长为( )A .900mB .mC .mD .1800m【点睛】本题考查解直角三角形和三角形内角和定理,熟练掌握直角三角形边角关系是解题的关键.二、填空题7.(2022·广西贵港·九年级期中)桔棉,亦叫“桔皋”,我国古代井上汲水的工具.它是在井旁架上设一杠杆,杠杆上竹竿一端A 处系绳子,绳子另一端悬绑汲器,竹竿另一端B 处绑石块等重物,用不大的力量即可将灌满水的汲器提起,桔棒的使用体现了我国古代劳动人民的智慧.如图是《天工开物·水利》中的桔棉图,若竹竿A ,B 两处的距离为12m ,当汲器伸到井口时,绳子受重力作用垂直于水平面,此时竹竿AB 与绳子的夹角为53°,则绑重物的B 端与悬绑汲器的绳子之间的距离是_______m.(忽略提水时竹竿产生的形变)(参考数据:sin 530.8cos530.6tan 53 1.3°»°»°»,,)由题意得,在Rt ABC △∴sin BC AB BAC =Ðg ,∵12m AB BAC =Ð=,∴()120.89.6m BC »´=,故答案为:9.6.【点睛】本题考查解直角三角形的应用,熟练掌握解直角三角形相关知识是解题的关键.8.(2022·山东·淄博市张店区第九中学九年级期中)倡导“低碳环保”让“绿色出行”成为一种生活常态.小明买了一辆自行车作为代步工具,各部件的名称如图1所示,图2是该自行车的车架示意图,上管36cm AC =,且上管AC 与立管AB 互相垂直,下管45cm BC =,座管AE 可以伸缩,点A B E ,,在同一条直线上,且75ABD Ð=°.若座管AE 伸长到18cm ,则座垫E 到后下叉BD 的距离为______cm .(结果精确到1cm ,参考数据sin750.97°»,cos750.26°»,tan75 3.73°»)∵45cm BC =,36cm AC =,∴22245AB BC AC =-=-在Rt FBE V 中,sin EF EB =´故答案为:44.9.(2022·山东济南·九年级期中)如图,太阳光线与地面成30°的角,照射在小木棒AB 上,小木棒在地面上的投影CD 的长是8cm ,则小木棒AB 的长是______cm .10.(2022·江苏苏州·九年级期中)一艘观光游船从港口A 以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故.一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援.海警船大约需_____小时到达事故船C 处,(sin 530.8cos530.6°»°»,)【点睛】本题考查了解直角三角形的应用键.三、解答题11.(2022·重庆市万盛经济技术开发区溱州中学九年级期中)隋唐洛阳城国家遗址公园里有一地标性建筑物——明堂天堂.现已成为中外游客到洛阳旅游打卡的网红地、如图,天堂外观5层,内部9层,由建筑主体、台基和宝顶三部分组成.为测量天堂AB (左边较高的建筑物)的高度,几名中学生在天堂旁边明堂的台基E 处测得天堂建筑主体顶端C 处的仰角为22°,往前水平行进14米至F 处,测得天堂顶端点A 的仰角为30°,已知天堂宝顶AC 高188.米,明堂台基EF 距地面DB 的高DE 为10米,请计算天堂AB 的高的值.(结果精确到1米;参考数据:sin 220.37°»,cos 220.93°»,tan 220.40°» 1.73»)12.(2022·江苏苏州·九年级期中)图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图2是其侧面结构示意图(MN 是基座的高,MP 是主臂,PQ 是伸展臂).已知基座高度MN 为0.5米,主臂MP长为α的范围是:060a °<£°,伸展臂伸展角β的范围是:45135b °££°.(1)如图3,当45a =°时,伸展臂PQ 恰好垂直并接触地面,伸展臂PQ 长为 米;(2)若(1)中PQ 长度不变,求该挖掘机最远能挖掘到距点N 水平正前方多少米的土石.(结果保留根号)∵45a =°,∴PHM V 为等腰直角三角形,∴sin 3PH PM a ==∴45QPH Ð=°,∴sin 45 3.5QH PH PQ ==°=´∴7232MH MPPH =+=+一、填空题1.(2022·陕西汉中·九年级期末)某区域平面示意图如图所示,AB 和BC 是两条互相垂直的公路,800AB =米,甲勘测员在A 处测得点D 位于北偏东45°,乙勘测员在C 处测得点D 位于南偏东60°,300CD =米,则公路BC 的长为___________米.(结果保留根号)的面积为___________米2【分析】延长BA 交CD 于G 点,在Rt EFB D 中,根据锐角三角函数定义求出EF ,在Rt CGA V 中,根据锐角则3CG BF ==(米),由题意得:30EBF Ð=°,在Rt EFB D 中,tan BF EF =在Rt CGA V 中,AG CG =∴1AB CE EF AG =+-=+3.(2022·江苏苏州·九年级期中)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片OA OB ,,此时各叶片影子在点M 右侧成线段CD ,设太阳光线与地面的夹角为a ,测得2tan 3a =,8.5m 13m MC CD =,=,风车转动时,叶片外端离地面的最大高度等于 _____m .4.(2022·浙江温州·八年级期中)如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm)且AF BE ∥,60BAF Ð=°,10BD =,箱盖开起过程中,点A ,C ,F 不随箱盖转动,点B ,D ,E 绕点A 沿逆时针方向转动90°,即90BAB ¢Ð=°分别到点B ¢,D ¢,E ¢的位置,气簧活塞杆CD 随之伸长CD ¢已知直线BE B E ¢¢^,CD CB ¢=,那么AB 的长为______cm ,CD ¢的长为______cm .5.(2022·山东威海·九年级期中)如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,a=,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为30°.无tan2MC=米,则河流的宽度CD为人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中100______.\ME AB==,AM BEÐ=,tan由已知可得:BAC a\80Ð==米,ACMME ABAM二、解答题6.(2022·山东东营·九年级期中)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的北偏东15°方向,距离80千米的地方有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【点睛】此题考查了解直角三角形的应用—方向角问题以及勾股定理的应用.此题难度适中,注意掌握数形结合思想的应用,能从实际问题中整理出直角三角形是解答本题的关键.7.(2022·江苏苏州·九年级期中)一种拉杆式旅行箱的示意图如图所示,箱体长50cm AB =,拉杆最大伸长距离30cm BC =,(点A 、B 、C 在同一条直线上),在箱体的底端装有一圆形滚轮A e ,A e 与水平地面切于点D ,AE DN ∥,某一时刻,点B 距离水平地面40cm ,点C 距离水平地面61cm .(1)求圆形滚轮的半径AD 的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C 处且拉杆达到最大延伸距离时,点C 距离水平地面66.6cm ,求此时拉杆箱与水平面AE 所成角CAE Ð的大小(精确到1°,参考数据:sin500.77°»,cos500.64°»,tan50 1.19°»).【答案】(1)5cmAD =(2)50CAE °Ð=【分析】(1)作BH AF ^于点G ,交DM 于点H ,则ABG ACF ∽V V ,设圆形滚轮的半径AD 的长是cm x ,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)根据题意求得CF 的长,在Rt ACF V 中,求得sin CAE Ð,即可求得CAE Ð的度数.【详解】(1)解:设圆形滚轮的半径AD 的长是cm x ,作BH AE ^于点G ,交DM 于点H ,则BG CF ∥,∴ABG ACF ∽V V ,∴BG AB CF AC=,即4050615030x x -=-+,8.(2022·江苏苏州·九年级期中)如图,水坝的横截面是梯形()DC AB ABCD ∥,迎水坡BC 的坡角a 为30°,背水坡AD 的坡度i 为1:1.2,坝项宽 2.5DC =米,坝高5米.求:(1)坝底宽AB 的长(结果保留根号);(2)在上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽0.5米,背水坡AD 的坡度改为1:1.4,求横截面增加的面积(结果保留根号)。
三角函数应用题练习及答案

三角函数的应用题第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。
解:∵∠DAC=90°由勾股定理,有CD 2=AD 2+AC 2∵AD=3,DC=5∴AC=4∵∠B=30° ∴AB=2AC∴AB=8[例2]如图,△ABC 中,∠B=90°,D 是BC 上一点,且AD=DC ,若tg ∠DAC=41,求tg ∠BAD 。
探索:已知tg∠DAC 是否在直角三角形中?如果不在怎么办?要求∠BAD 的正切值需要满足怎样的条件? 点拨:由于已知中的tg ∠DAC 不在直角三角形中,所以需要转化到直角三角形中,即可地D 点作AC 的垂线。
又要求∠BAD 的正切值应已知Rt△BAD 的三边长,或两条直角边AB 、BD 的长,根据已知可知没有提供边长的条件,所以要充分利用已知中的tg∠DAC 的条件。
由于AD=DC ,即∠C=∠DAC,这时也可把正切值直接移到Rt△ABC 中。
解答:过D 点作DE⊥AC 于E ,41DAC =∠tg且AE DEDAC =∠tg设DE=k ,则AE=4k ∵AD=DC,∴∠DAC=∠C,AE=EC∴AC=8k ∵41==BC AB tgC设AB=m ,BC=4m由勾股定理,有 AB 2+BC 2=AC 2∴k m 17178=k BC 171732=∴由勾股定理,有CD 2=DE 2+EC 2 k CD 17=∴k BD 171715=∴ 由正切定理,有.815=∠∴=∠BAD tg AB DB BAD tg[例3]如图,四边形ABCD 中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB 。
探索:已知条件提供的图形是什么形?其中∠D=90°,AD=3,DC=4,可提供什么知识?求sinB 应放在什么图形中。
点拨:因已知是四边形所以不能求解,由于有∠D=90°,AD=3,DC=4,这样可求AC=5,又因有AB=13,BC=12,所以可证△ABC 是Rt△,因此可求sinB 。
三角函数的应用题练习题(基础)

三角函数的应用题练习题(基础)题目1: 三角函数的高度应用某个人站在一座高楼的窗户旁,离地面的距离是20米。
该人仰望斜顶角度为30度的楼顶,试计算楼顶的高度是多少米?答案:首先,我们可以利用正弦函数来解决这个问题。
正弦函数定义为:sin(θ) = 对边/斜边。
按照这个定义,我们可以得到以下方程:sin(30度) = 对边/20米对方程进行求解,我们可以得到:对边 = 20米 * sin(30度)利用计算器,我们可以得到:对边 = 10米因此,楼顶的高度是10米。
题目2: 三角函数的距离应用一辆汽车正在沿着直路行驶。
从汽车起点到终点的直线距离为1000米。
汽车行驶的角度与直线路线的夹角为45度。
试计算汽车实际行驶的距离是多少米?答案:对于这个问题,我们可以使用余弦函数来求解。
余弦函数定义为:cos(θ) = 临边/斜边。
应用于这个问题,我们可以得到以下方程:cos(45度) = 临边/1000米对方程进行求解,我们可以得到:临边 = 1000米 * cos(45度)利用计算器,我们可以得到:临边 = 707.106米因此,汽车实际行驶的距离是707.106米。
题目3: 三角函数的速度应用一艘船以20米/秒的速度顺水行驶。
河流的流速为10米/秒,且方向与船垂直。
试计算船在水中实际的速度是多少米/秒?答案:对于这个问题,我们可以使用正切函数来求解。
正切函数定义为:tan(θ) = 对边/临边。
应用于这个问题,我们可以得到以下方程:tan(θ) = 10米/秒 / 20米/秒对方程进行求解,我们可以得到:tan(θ) = 0.5利用计算器,我们可以得到:θ = 26.565度因此,船在水中实际的速度是约为26.565米/秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)由题意:四边形ABED是矩形,可得DE=AB=7米.
在Rt△DEH中,∵∠EDH=45°,
∴HE=DE=7米,
∴BH=EH+BE=8.5米.
(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.
在 中, ,
,
,
米.
【点睛】
此题重点考察学生对直角三角形的性质,矩形的性质,三角形正切值的综合应用能力,抓住直角三角形的性质,角与边之间的关系,三角形正切值的计算方法是解题的关键。
三角函数应用
学校:___________姓名:___________班级:___________考号:___________
24.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.
【点睛】本题考查了解直角三角形的应用,正确作出辅助线构造直角三角形是解题的关键.
29.山顶A到地面BC的高度AC是 米.
【解析】【分析】作DH⊥BC于H.设AE=x.在Rt△ABC中,根据tan∠ABC= ,构建方程即可解决问题即可.
【详解】作DH⊥BC于H,设AE=x,
∵DH:BH=1:3,
在Rt△BDH中,DH2+(3DH)2=6002,
28.如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据: ≈1.41, ≈1.73)
29.如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)
【详解】
如图作BN⊥CD于N,BM⊥AC于M.
在RT△BDN中,
BD=30,BN:ND=1: ,
∴BN=15,DN= ,
∵∠C=∠CMB=∠CNB=90°,
∴四边形CMBN是矩形,
∴CM=BM=15,BM=CN= ,
在RT△ABM中,tan∠ABM= ,
∴AM= ,
∴AC=AM+CM= .
【点睛】
构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念。
(1)计算古树BH的高;
(2)计算教学楼CG的高.(参考数据: ≈14, ≈1.7)
25.如图,甲建筑物AD,乙建筑物BC的水平距离 为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).
∴BC=CD=40m.
∵在Rt△ADC中,tan∠ADC= .
∴ .
∴AB≈7.6(m).
答:旗杆AB的高度约为7.6m.
【点睛】
此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.
33.10米
【解析】
【分析】
根据三角形的外角性质求出∠CBD,根据等腰三角形的判定定理求出BC,根据正弦的定义求出BE,计算即可.
34.(1)小华与地面的垂直距离为3.9米;(2)楼房 的高度是20.2米.
【解析】
【分析】
(1)利用在Rt△BCD中,∠CBD=15°,BD=15,得出CD=BD•sin15°求得答案即可;
(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.
【详解】
解:(1)在 中, , ,所以 米,故小张与地面的垂直距离为3.9米;
33.如图,小明在M处用高1.5米(DM=1.5米)的测角仪测得学校旗杆AB的顶端B的仰角为32°,再向旗杆方向前进9米到F处,又测得旗杆顶端B的仰角为64°,请求出旗杆AB的高度(sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,结果保留整数).
34.小张想测量楼房 的高度,他从楼底的 处沿着斜坡向上行走 ,到达坡顶 处.已知斜坡的坡角为 .(以下计算结果精确到 )
25. .
【解析】
【分析】
根据题意求出线段长度,再在直角三角形中解三角函数即可求出答案.
【详解】
解:由题意知: ,
在 中, ,
, ;
在 中, , ,
, ;
,
, , ,
答:这两座建筑物顶端 、 间的距离为 .
【点睛】
本题考查了解直角三角形的应用,要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
27.如图,为了测量出楼房AC的高度,从距离楼底C处 米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1: 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).
28.A处与灯塔B相距109海里.
【解析】【分析】直接过点C作CM⊥AB求出AM,CM的长,再利用锐角三角函数关系得出BM的长即可得出答案.
【详解】过点C作CM⊥AB,垂足为M,
在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,
∴AM=MC,
由勾股定理得:AM2+MC2=AC2=(20 ×2)2,
(2)在 中, ,所以 为等腰直角三角形,所以 , 米,所以 米.
故楼房 的高度是20.2米.
【点睛】
本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.
35.旗杆 的高度约为 .
【解析】
【分析】
在Rt△BDC中,根据tan∠BDC= 求出BC,接着在Rt△ADC中,根据tan∠ADC= = 即可求出AB的长度
答案
24.(1)BH =8.5米;(2)CG= 18.0米.
【解析】
【分析】
此题涉及的知识点是直角三角形的性质,矩形的性质,相似三角形的性质,正切值得计算的综合应用,难度偏大,解题时先由直角三角形的性质求出边的长度,再作辅助线构建条件,通过设未知数列出正切值得方程,解出未知数,从而根据对应关系求得解。
26.云梯需要继续上升的高度 约为9米.
【解析】
【分析】
过点 作 于点 , 于点 ,在 中,求得AD的长;在 中,求得CD的长,根据BC=CD-BD即可求得BC的长.
【详解】
过点 作 于点 , 于点 ,
∵ ,
∴ ,
∴四边形 为矩形.
∴ 米.
∴ (米),
由题意可知, , ,
∵ ,
∴ ,
在 中, ,
∴ (米).
在Rt△PCB中,cos∠BPC= ,
∴PB= =40 ≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题源自关键.31.EF约为140m
【解析】
【分析】
分别过A、C作AM、CN垂直于EF,根据正切的定义求出CN,得到AM,根据正切的定义列式计算即可.
26.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4, ≈1.4)
∴DH=60 ,BH=180 ,
在Rt△ADE中,∵∠ADE=45°,
∴DE=AE=x,
∵又HC=ED,EC=DH,
∴HC=x,EC=60 ,
在Rt△ABC中,tan33°= ,
∴x= ,
∴AC=AE+EC= +60 = ,
答:山顶A到地面BC的高度AC是 米.
【点睛】本题考查解直角三角形——仰角问题,借助仰角构造直角三角形并解直角三角形,熟练应用数形结合思想与方程思想解答问题是关键.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, )
32.如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
解得:AM=CM=40,
∵∠ECB=15°,
∴∠BCF=90°﹣15°=75°,
∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,
在Rt△BCM中,tanB=tan30°= ,即 ,
∴BM=40 ,
∴AB=AM+BM=40+40 ≈40+40×1.73≈109(海里),
答:A处与灯塔B相距109海里.
30.此时轮船所在的B处与灯塔P的距离是98海里.
【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45°,AP=80(海里),
在Rt△APC中,cos∠APC= ,
∴PC=PA•cos∠APC=40 (海里),
(1)求小明此时与地面的垂直距离 的值;
(2)小明的身高 是 ,他站在坡顶看楼顶 处的仰角为 ,求楼房 的高度.( , , )