复系数与实系数多项式因式分解

合集下载

实系数多项式因式分解定理

实系数多项式因式分解定理

实系数多项式因式分解定理实系数多项式因式分解定理是高中数学中的基础知识点之一,也是数学学习的重要环节。

它是指给定一个实系数多项式,可以通过分解成若干个单项式之积的形式来表示。

本文将通过分步骤阐述,来简单介绍实系数多项式因式分解定理。

一、根据多项式的次数选择合适的方法在进行实系数多项式因式分解时,首先需要确定多项式的次数。

如果是1次多项式,则可以直接进行一次式的分解;如果是2次多项式,则考虑二次方程求根的方法来分解;如果是3次或3次以上的多项式,则可应用求有理根和非有理根的方法来进行分解。

二、确定多项式的所有根求出多项式的所有根是进行因式分解的前提。

对于n次多项式,根据代数学基本定理可知,其最多有n个根。

可以利用有理根定理、因式定理、综合除法等方法,求出多项式的所有根。

三、利用多项式各个根的特点进行分解将多项式的根全部求出后,就需要利用这些根的特点,进行分解。

比如一次多项式可以表示为(x-a),二次多项式可以分解为(x-a)(x-b),三次多项式则可分解为(x-a)(x-b)(x-c)等等。

对于没有有理根的多项式,可以进行辗转相除法,将这个多项式化为一个低一次多项式与一个高一次的多项式之积的形式,再进行分解。

四、检验分解是否正确分解完多项式后,需要检查分解是否正确。

可以通过将每个单项式展开相加,来比较与原多项式的系数是否一致。

如果展开后得到的式子,与原多项式相同,则说明该分解是正确的。

综上所述,通过利用以上的步骤,我们就可以较为简便地进行实系数多项式因式分解了。

多项式的因式分解是数学学习的重要环节,对于熟练掌握多项式的因式分解方法的人来说,不仅可以简化计算,而且可以在考试中快速地得出正确答案。

因此,我们要认真学习多项式的因式分解这一知识点,提高自己的数学水平。

复数域与实数域上多项式的因式分解

复数域与实数域上多项式的因式分解
其中an为f ( x)的首项系数, c1 , , cs , p1 , , pr , q1 , , qr 全是实数, l1 , , ls ,k1 , , kr是正整数,且pi2 4qi 0, i 1, 2, , r;l1 ls 2(k1 kr ) n ( f ( x)).
10
首页 上页 下页 返回 结束
设 f ( x) C[x], 并且( f ( x)) 1, 则存在 C, 使得f ( x) ( x ) f1( x),其中( f1( x)) 0.
2
首页 上页 下页 返回 结束
推论1 设 p( x) C[x], 则p( x)是C上的不可约多 项式 ( p( x)) 1.
即:在复数域C上所有次数大于1的多项式全是 可约的.
an n
a n1 n1
a1 a0 0
即 f ( ) 0, 所以也是 f ( x)的根.
7
首页 上页 下页 返回 结束
因此 f ( x)能被
g( x) ( x )( x ) x2 -( )x
整除.
因 和 都是实数,所以g( x)是实系数多
项式, 故有
f ( x) g( x)h(x),
证 对f ( x)的次数用数学归纳法. 因一次多项式本身不可约,定理成立. 假设定理对次数 n的多项式来说成立.
设f ( x)是n次多项式,由代数基本定理, f ( x)有一复根.
如果是实数, 那么
f ( x) ( x ) f1( x)
其中f1 ( x)是n 1次实系数多项式.
如果不是实数, 那么也是f ( x)的根,于是
次式与二次不可约多项式的乘积. 故f ( x)也可以分解成实系数的一次式与二次不
可约多项式的乘积.
12
首页 上页 下页 返回 结束

高等代数定理汇总前三章

高等代数定理汇总前三章

第一章多项式定理1对于数域上的任意两个多项式f(x),g(x),其中g(x)≠0,g(x)|f(x)的充分必要条件是g(x)除f(x)的余式为零.定理2对于P[x]中任意两个多项式f(x),g(x),在P[x]中存在一个最大公因式ⅆ(x),且ⅆ(x)可以表成f(x),g(x)的一个组合,即有P[x]中多项式u(x),v(x)使ⅆ(x)=u(x)f(x)+ν(x)g(x).定理3P[x]中两个多项式f(x),g(x)互素的充分必要条件是有P[x]中的多项式u(x),v(x)使u(x)f(x)+ν(x)g(x)=1.定理4如果(f(x),g(x))=1,且f(x)|g(x)ℎ(x),那么f(x)|ℎ(x).推论如果f1(x)|g(x),f2(x)|g(x),且(f1(x),f2(x))=1,那么f1(x)f2(x)|g(x).定理5如果p(x)是一个不可约多项式,那么对于任意的两个多项式f(x),g(x),由p(x)|f(x)g(x)一定推出p(x)|f(x)或者 p(x)|g(x).因式分解及唯一性定理数域P上每一个次数≥1的多项式f(x)都可以唯一地被分解成数域P上一些不可约多项式的乘积.定理6如果不可约多项式p(x)是f(x)的k重因式(k≥1),那么它是微商f′(x)的k−1重因式.推论1如果不可约多项式p(x)是f(x)的k重因式(k≥1),那么p(x)是f(x),f′(x),⋯,f(k−1)(x)的因式,但不是f(k)(x)的因式.推论2不可约多项式p(x)是f(x)的重因式的充分必要条件为p(x)是f(x)与f′(x)的公因式.推论3多项式f(x)没有重因式的充分必要条件是f(x)与f′(x)互素.定理7(余数定理)用一次多项式x−α去除多项式f(x),所得的余式是一个常数,这个常数等于函数值f(α).推论α是f(x)的根的充分必要条件是(x−α)|f(x).定理8P[x]中n次多项式(n≥0)在数域P中的根不可能多于n个,重根按重数计算.如果多项式f(x),g(x)的次数都不超过n,而它们对n+1个不同的数α1,α2,⋯,αn+1有相同的值,即f(αi)=g(αi),i=1,2,⋯,n+1,那么f(x)=g(x).代数基本定理每个次数≥1的复系数多项式在复数域中有一根.复系数多项式因式分解定理每个次数≥1的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理每个次数≥1的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理10(高斯引理)两个本原多项式的乘积还是本原多项式.定理11如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.设f(x)=a n x n+a n−1x n−1+⋯+a0是它的一个有理根,其中r,s互素,那么必是一个整系数多项式,而rs有s|a n,r|a0.特别地,如果f(x)的首项系数a n=1,那么f(x)的有理根都是整根,而且是a0的因子.定理13(艾森斯坦判别法)设f(x)=a n x n+a n−1x n−1+⋯+a0是一个整系数多项式.如果有一个素数p,使得1)p∤a n;2)p|a n−1, a n−2, ⋯, a0;3)p2∤a0,那么f(x)在有理数域上是不可约的.第二章行列式定理1对换改变排列的奇偶性.推论个在全部n级排列中,奇、偶排列的个数相等,各有n!2定理2任意一个n级排列与排列12⋯n都可以经过一系列对换互变,并且所作对换的个数与这个排列有相同的奇偶性.行列式性质1 行列互换,行列式不变.性质2 如果行列式一行为零,那么行列式为零.性质3 如果某一行是两组数的和,那么行列式就等于两个行列式的和,而这两个行列式除这一行以外全与原来行列式的对应行一样.性质4 如果行列式中有两行相同,那么行列式为零. 性质5 如果行列式中两行成比例,那么行列式为零. 性质6 把一行的倍数加到另一行,行列式不变.性质7 对换行列式中两行的位置,行列式反号.定理3设ⅆ=|a 11a 12⋯a 1n a 21a 22⋯a 2n ⋮⋮⋮a n1a n2⋯a nn|, A ij 表示元素a ij 的代数余子式,则下列公式成立:a k1A i1+a k2A i2+⋯+a kn A in={ⅆ,当k =i ,0,当k ≠i ; a 1l A 1j +a 2l A 2j +⋯+a nl A nj={ⅆ,当l =j ,0,当l ≠j.用连加号简写为∑a ks A is =n s=1{ⅆ,当k =i ,0,当k ≠i ; ∑a sl A sj=n s=1{ⅆ,当l =j ,0,当l ≠j.定理4(克拉默法则)如果线性方程组{a11x1+a12x2+⋯+a1n x n=b1,a21x1+a22x2+⋯+a2n x n=b2,⋯⋯⋯⋯a n1x1+a n2x2+⋯+a nn x n=b n的系数矩阵A=[a11a12⋯a1n a21a22⋯a2n ⋮⋮⋮a n1a n2⋯a nn]的行列式,即系数行列式ⅆ=|A|≠0,那么线性方程组有解,并且解是唯一的,解可以通过系数表为x1=d1d ,x2=d2d,⋯,x n=d nd,其中ⅆj是把矩阵A中第j列换成方程组的常数项b1,b2,⋯,b n所组成的矩阵的行列式.定理5如果齐次线性方程组{a11x1+a12x2+⋯+a1n x n=0,a21x1+a22x2+⋯+a2n x n=0,⋯⋯⋯⋯a n1x1+a n2x2+⋯+a nn x n=0的系数矩阵的行列式|A|≠0,那么它只有零解.换句话说,如果方程组有非零解,那么必有|A|=0.第三章线性方程组定理1在齐次线性方程组{a11x1+a12x2+⋯+a1n x n=0,a21x1+a22x2+⋯+a2n x n=0,⋯⋯⋯⋯a s1x1+a s2x2+⋯+a sn x n=0中,如果s<n,那么它必有非零解.定理2设α1,α2,⋯ ,αr与β1,β2,⋯,βs是两个向量组.如果1)向量组 α1,α2,⋯ ,αr可以经β1,β2,⋯,βs线性表出;2)r>s,那么向量组α1,α2,⋯ ,αr必线性相关.推论1如果向量组 α1,α2,⋯ ,αr可以经向量组β1,β2,⋯,βs线性表出,且α1,α2,⋯ ,αr线性无关,那么r≤s.推论2任意n+1个n维向量必线性相关.推论3两个线性无关的等价的向量组,必含有相同个数的向量.定理3一向量组的极大线性无关组都含有相同个数的向量.定理4矩阵的行秩与列秩相等. 定理5n×n矩阵A=[a11a12⋯a1n a21a22⋯a2n ⋮⋮⋮a n1a n2⋯a nn]的行列式为零的充分必要条件是A的秩小于n. 推论齐次线性方程组{a11x1+a12x2+⋯+a1n x n=0,a21x1+a22x2+⋯+a2n x n=0,⋯⋯⋯⋯a n1x1+a n2x2+⋯+a nn x n=0 有非零解的充分必要条件是它的系数矩阵A=[a11a12⋯a1n a21a22⋯a2n ⋮⋮⋮a n1a n2⋯a nn]的行列式等于零.定理6一矩阵的秩是r的充分必要条件为矩阵中有一个r级子式不为零,同时所有r+1级子式全为零.。

实系数多项式

实系数多项式

55
第一章 多项式
若 不为实数,则 也是 f ( x) 的复根,于是
f ( x) ( x )( x ) f2( x) x2 ( )x f2( x)
设 a bi ,则 a bi, 2a R , a2 b2 R 即在R上 x2 ( )x 是 一个二次不可约多项式.
从而 ( f2 ) n 2. 由归纳假设 f1( x) 、f2( x)可分解成一次因式与二次
不可约多项式的乘积. 由归纳原理,定理得证.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
66
推论1
第一章 多项式
f ( x) R[ x], f ( x) 在R上具有标准分解式 f ( x) an( x c1)k1 ( x c2 )k2 ( x cs )ks ( x2 p1x q1)l1
一、复系数多项式
第一章 多项式
1. 代数基本定理
f ( x) C[x] , 若 ( f ( x)) 1 , 则 f ( x) 在复数域 C上必有一根.
推论1(代数基本定理的等价叙述) f ( x) C[x] , 若 ( f ( x)) 1 , 则存在 x a C[x] ,
f ( x) a( x 1)r1 ( x 2 )r2 ( x s )rs
其中1,2 , ,s是不同的复数,r1,r2, ,rs Z+
推论2 f ( x) C[x],若 ( f ( x)) n ,则 f ( x) 有n个 复根(重根按重数计算).
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic Un多项式

11. 因式分解技巧-实数集与复数集内的分解 -单墫

11. 因式分解技巧-实数集与复数集内的分解 -单墫

11.实数集与复数集内的分解.因式分解应当分解到“底”,也就是应当把多项式分解为既约(不可约)多项式的乘积.什么是既约多项式呢?这要看在什么数集内分解.例如,2x 3-没有有理根,因而不能分解为两个有理系数的一次因式的乘积.换句话说,在有理数集内32-x 是既约多项式,但是在实数集内,因为),3)(3(32-+=-x x x 所以32-x 不是实数集内的既约多项式,到目前为止,我们的讨论都是在有理数集内进行的,本单元介绍一元多项式在实数集与复数集内的分解.11.1 求 根 公 式一次多项式永远是既约的.x 的二次三项式c bx ax ++2在复数集内的因式分解非常简单,可以用求根公式求得,242aac b b x -±-= )1( 从而 C bx ax ++2 ⋅-----+--=)24)(24(22aac b b x a ac b b x a )2( 在实数集内,当042≥-ac b 时,c bx ax ++2也可以用(2)式分解.如果,042<-ac b 那么 c bx ax ++2是实数集内的既约多项式.如果ac b 42-不是有理数的平方,那么C bx ax ++2就是有理数集内的既约多项式.如果ac b 42-是有理数的平方,那么c bx ax ++2可以用(2)分解,其实,用十字相乘更为方便:例1 分解因式:.7322--x x解 由于 ,7,3,2-=-==c b a ,065)7(24)3(422>=-⨯⨯--=-ac b65不是有理数的平方,所以在有理数集内7322--x x 是既约多项式.在实数集与复数集内可得 7322--x x⋅--+-=)4653)(4653(2x x 例2 分解因式:.7322+-x x解 由于 ,7,3,2=-==c b a,047724)3(422<-=⨯⨯--=-ac b所以在实数集内7322+-x x 是既约多项式(当然也是有理数集内的既约多项式).在复数集内可得7322--x x),4473)(4473(2i x i x --+-= 其中i 称为虚数单位,满足等式 .12-=i例3 分解因式:⋅+-89322x x 解 由于 ,89,3,2=-==c b a ,08924)3(422=⨯⨯--=-ac b 所以在有理数集内可得.)43(2893222-=+-x x x 这也是89322+-x x 在实数集与复数集内的分解式, 例4 分解因式:.2322--x x解 由于 ,2,3,2-=-==c b a,525)2(24)3(4222==-⨯⨯--=-ac b所以2322--x x 在有理数集内可以分解.事实上,由十字相乘可得 ).2)(12(2322-+=--x x x x当然,这式子也可以用(2)来分解.11.2 代 数 基 本 定 理在复数集内,每一个x 的(不是常数的)多项式至少有一个根.即对于多项式0111)(a x a x a x a x f n n n ++++=-- (n 是正整数).一定有复数c 使得.0)(=c f这个结论称为代数基本定理.根据代数基本定理,每个x 的次数大于1的多项式f (x)都有一次因式x-c ,因此在复数集内,只有一次多项式是既约多项式.由代数基本定理容易推出:n 次多项式f(x)恰好有n 个根,如果n x x x ,,,21 是0111)(a x a x a x a x f n n n n ++++=-- 的n 个根,那么)3).(())(()(21n n x x x x x x a x f ---=每一个复数都可以写成a+bi 的形式,其中a 、b 为实数,i 是上面已经说过的虚数单位,在b≠0时,a+bi 称为虚数.虚数a+bi 与a- bi 称为共轭复数,它们的和为,2)()(a bi a bi a =-++它们的积为22222))((b a i b a bi a bi a +=-=-+(因为)12-=i即共轭复数的和与积都是实数.如果bi a x +=1与bi a x -=2是一对共轭复数,那么两个共轭的一次因式1x x -与2x x -的积为))((21x x x x --)]()][([bi a x bi a x --+-=),(2222b a ax x ++-=是实系数的多项式,对于实系数多项式f(x),我们可以用(3)式把它分解为复数集内的一次因式的积.有一条定理告诉我们:实系数多项式的虚数根是两两共轭的.于是,对每一对共轭的复数根(例如上面所说的21x x 、),我们把相应的两个共轭的一次因式(例如 1x x -与2x x -)乘起来,产生一个实系数的二次因式,这样就得到了f(x)在实数集内的分解.因此,在实数集内,每个多项式可以分解为一次因式与二次因式的积.换句话说,在实数集内,既约多项式一定是一次多项式或二次多项式.从理论上说,在实数集或复数集内,只要求出f(x)的根,就可以把f(x)分解,三次多项式与四次多项式虽然有求根公式,但是,公式的形状比二次多项式复杂得多.次数大于4的多项式没有求根公式,往往只能求出根的近似值.因此,对于具体问题,仍然需要用一些特殊的方法来分解.例5 分解因式:.124+-x x解 由第9单元例3,我们知道124+-x x 不能分解为两个有理系数的二次因式的积,它没有有理根(易验证±1都不是它的根),因而也没有有理系数的一次因式,所以,在有理数集内,124+-x x 是既约多项式.在实数集内,可以用拆项后配方的方法,得到 124+-x x2243)12(x x x -++=2223)1(x x -+=).13)(13(22+-++=x x x x在复数集内,还可以利用求根公式,进一步得到124+-x x)13)(13(22+-++=x x x x⋅--+--+++=)23)(23)(23)(23(i x i x i x i x 11.3 单 位 根.多项式1-n x 的根称为n 次单位根.一次单位根只有1.二次单位根有两个,即±1.由于 14-x )1)(1(22+-=x x),)()(1)(1(i x i x x x -+-+=所以四次单位根有4个,即±1,±i,前两个是实数,后两个是虚数,例6 分解因式:.13-x 解 在有理数集内,熟知),1)(1(123++-=-x x x x这也是13-x 在实数集内的分解式. 在复数集内,13++x x 还可用(2)进一步分解为),231)(231(12i x i x x x ---+--=++ 所以 ⋅+--+---=-)231)(231)(1(13i x i x x x 231i +-与231i --是两个三次(虚)单位根(1是实三次单位根),我们把231i +-记为w ,容易看出,2312i --=ω 并且 .1,1,1223ωωωωω-=+-=+= (4)一般地,在复数集内有n 个n 次单位根,它们是),,,2,1(2sin 2cosn k nk i n k =+ππ (5) 其中 .12sin 2cos =+n n i n n ππ例7 分解因式:.15-x 解 在复数集中,15-x 的根为,54sin 54cos ,52sin 52cosππππi i ++ ,1,58sin 58cos ,56sin 56cos ππππi i ++ 由(3),得 15-x ⋅-----=)54sin 54cos )(52sin 52cos)(1(ππππi x i x x ⋅----)58sin 58cos )(56sin 56cos (ππππi x i x 因为 ,52sin 52cos 58sin 58cos ππππi i -=+ 与52sin 52cos ππi +共轭,又 ,54sin 54cos 56sin 56cos ππππi i -=+ 与54sin 54cos ππi +共轭,并且 ,1cos sin 22=+αα 所以 )52sin 52cos )(52sin 52cos (ππππi x i x +--- 22)52(sin )52cos (ππ+-=x ,1)52cos 2(2+-=x x π )54sin 54cos )(54sin 54cos (ππππi x i x +--- .1)54cos 2(2+-=x x π 所以在实数集内,可得15-x⋅+-+--=]1)54cos 2(][1)52cos 2()[1(22x x x x x ππ 在有理数集内,由第2单元例13,得),1)(1(12345++++-=-x x x x x x1234++++x x x x 在有理数集内是既约多项式,这将在第12单元中证明.在(5)中,如果k 与n 互质(最大公约数为1),那么nk i n k ππ2sin 2cos +称为本原单位根.例如,对于n-15,与15互质的是1,2,4,7,8,11,13,14,共有8个,也就是说有8个15次本原单位根,可以证明,与n 饮本原单位根对应的一次因式的积是一个整系数的多项式.它称为分圆多项式,例如34x x +12+++x x 就是一个分圆多项式.11.4 攻 玉 之 石“他山之石,可以攻玉”,三次虚单位根w 可以帮助我们在有理数集内分解因式,例8 分解因式:.2245++++x x x x解 w 是多项式2245++++x x x x 的一个根.事实上,利用(4),可知 2245++++ωωωω222++++=ωωωω)122++=ωω(,0=于是ω-x 是2245++++x x x x 在复数集内的因式,它的共轭因式2ω-x 也是2245++++x x x x 的因式,又 ,1))((22++=--x x x x ωω从而12++x x 是2245++++x x x x 的因式.所以 2245++++x x x x)222()()(223345+++++-++=x x x x x x x x).2)(1(32+-++=x x x x这里,23+-x x 没有有理根,因此是有理数集内的既约多项式.从例1可以知道:如果实系数多项式f(x)有虚根w(即f(w ) =O ),那么f(x)就有因式.12++x x 例9 证明:在m 、n 为自然数时,多项式11323++++n m x x有因式+2x .1+x 证明 因为 11323++++n m ωω12++=ωω,0=所以,12++x x 是11323++++n n x x 的因式.例10 分解因式:.1510++x x解 12++x x 是1510++x x 的因式,所以把1510++x x 分组分解,得1510++x x)()()()(4565677898910x x x x x x x x x x x x ++-+++++-++=-+++)(345x x x)1()(223+++++x x x x x).1)(1(345782+-+-+-++=x x x x x x x x134578+-+-+-x x x x x x 是有理数集内的既约多项式,这一点将在12单元予以证明. 例11 分解因式:.115-x解 115-x1)(35-=x)1)(1(5105++-=x x x+-+-++++++-=45782234)(1)(1)(1x x x x x x x x x x x ().13+-x x )6((最后一步利用了例7及例10).如果沿另一途径分解:115-x1)(53-=x]1)()()())[(1(32333433++++-=x x x x x [根据例7]).1)(1)(1(369122++++++-=x x x x x x x )7(比较(6)、(7),我们知道136912++++x x x x 不是有理数集内的既约多项式,它可分解为136912++++x x x x).1)(1(34578234+-+-+-++++=x x x x x x x x x x例12 分解因式:.)(444y x y x +++ 解 w 是多项式44)1(1++⋅+x x 的根.事实上,利用(4),可得44)1(1+++ωω42)(1ωω++=21ωω++=,0=因此,12++x x 是44)1(1+++x x 的因式,22y xy x ++是x y x (++444)y +的因式(这个判断对解444)(y x y x +++)464(43223444y xy y x y x x y x ++++++=)232(2432234y xy y x y x x ++++=)]()()[(2432232232234y xy y x xy y x y x y x y x x ++++++++=.)(2222y xy x ++=小 结在复数集内,)1(≥n n 次多项式。

高等代数实系数和复系数多项式的因式分解

高等代数实系数和复系数多项式的因式分解


n−2
(ε 2
+
ε
n+2 2
)x
+
1].
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
例题选讲
例 设 f(x), g(x) 是两多项式,且 f(x3) + xg(x3) 可被 x2 + x + 1 整除, 则 f(1) = g(1) = 0.
两边取共轭数,有
f(α¯) = anα¯n + an−1α¯n−1 + · · · + a0 = 0,
这就是说,f(α¯) = 0,α¯ 也是 f(x) 的根.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实系数多项式因式分解定理
. .. . . ..
高斯与代数基本定理
代数基本定理在代数乃至整个数学中起着基础作用. 据说,关于 代数学基本定理的证明,现有 200 多种证法. 迄今为止,该定理 尚无纯代数方法的证明. 大数学家 J.P. 塞尔曾经指出:代数基本 定理的所有证明本质上都是拓扑的. 美国数学家 John Willard Milnor 在数学名著《从微分观点看拓扑》一书中给了一个几何直 观的证明,但是其中用到了和临界点测度有关的 sard 定理. 复变 函数论中,对代数基本定理的证明是相当优美的,其中用到了很 多经典的复变函数的理论结果.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
高斯与代数基本定理
该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完 整. 接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于 1772 年又重新证明了该定理,后经高斯分析,证明仍然很不严 格的. 代数基本定理的第一个严格证明通常认为是高斯给出的 (1799 年在哥廷根大学的博士论文),高斯后来又给出了另外三个 证法,其中第四个证法是他 71 岁公布的,并且在这个证明中他 允许多项式的系数是复数.

《高等代数课后答案》(邱著)

《高等代数课后答案》(邱著)

《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。

可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。

以下是阳光网编著的《高等代数》答案(邱著)阅读地址。

希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。

《高等代数Ⅰ》课程教学大纲

《高等代数Ⅰ》课程教学大纲

《高等代数Ⅰ》课程教学大纲一、课程基本信息二、课程教学目标通过《高等代数Ⅰ》的教学,使学生掌握多项式及代数学的基础知识和基础理论、初步熟悉和掌握抽象的、严格的代数方法、理解具体与抽象、特殊与一般,有限与无限等辩证关系,提高抽象思维、逻辑推理及运算能力,为学习本专业其余课程奠定基础。

应达到的具体能力目标:具有独立思维能力和解决实际问题能力;具有较强的抽象思维和逻辑推理能力;熟练的计算能力及其应用代数工具解决实际问题的能力三、教学学时分配《高等代数Ⅰ》课程理论教学学时分配表四、教学内容和教学要求第一章多项式(18学时)(一)教学要求1. 了解一元多项式的运算,复系数多项式因式分解定理、实系数多项式因式分解定理;2. 理解多项式的带余除法;3. 掌握整除的概念与性质,带余除法定理及证明,最大公因式的概念与求法,多项式互素的概念与性质,因式分解及唯一性定理。

4. 理解多项式在不同的数域的因式分解形式;5. 掌握Eisenstein判别法,会求有理系数多项式的根。

(二)教学重点与难点(内容五号仿宋GB2312,段前段后0行,段落固定值18磅)教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k重因式与k重根的关系;教学难点:因式分解及唯一性定理,多项式根的理论,复(实)系数多项式分解定理,本原多项式,Eisenstein判别法。

(三)教学内容第一节数域1. 代数研究的基本问题2. 数域的定义第二节一元多项式1. 基本知识2. 多项式的运算规律3. 一元多项式环第三节整除概念1. 例解多项式竖式除法,普通除法2. 定理(带余除法)3. 整除,余式,因式,倍式4. 多项式整除的充要条件5. 整除的几个性质第四节最大公因式1. 公因式,最大公因式的定义2. 求最大公因式的方法3. 辗转相除法4. 互素及特性第五节因式分解定理1. 不可约多项式2. 不可约多项式的性质3. 因式分解唯一性定理4. 标准分解式第六节重因式1. k重因式2. 重因式的性质3. 求重因式的方法第七节多项式函数1. 余数定理2. 多项式函数与多项式的根第八节复系数与实系数多项式的因式分解1. 复系数多项式的因式分解定理与标准分解式2. 代数基本定理3. 实系数多项式因式分解定理第九节有理系数多项式1. 有理数域上一元多项式多项式的因式分解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推论1 f ( x) C[x], 若 ( f ( x)) 1, 则 f ( x) 在 C
上具有标准分解式
f ( x) a( x 1)r1 ( x 2 )r2 ( x s )rs
其中1,2 , ,s是不同的复数,r1,r2, ,rs Z+
证:对 f ( x) 的次数作数学归纳. ① ( f ( x)) 1 时,结论显然成立. ② 假设对次数<n的多项式结论成立. 设 ( f ( x)) n,由代数基本定理, f ( x)有一复根 . 若 为实数, 则 f ( x) ( x ) f1( x),其中( f1 ) n 1.
( x2 pr x qr )kr
其中 c1,c2 , ,cs , p1, , pr ,q1, ,qr R, k1, ,ks ,l1, , ls Z ,
且 p2 4q 0, i 1,2 r ,即 x2 pi x qi 为 R上的不可约多项式.
推论2 f ( x) C[x],若 ( f ( x)) n ,则 f ( x) 有n个 复根(重根按重数计算).
二、实系数多项式
命题:若 是实系数多项式 f ( x) 的复根,则 的共轭复数 也是 f ( x) 的复根.
证:设 f ( x) an xn an1xn1 a0 , ai R 若 为根,则
n
n
f ( ) an n an1 n1 a0 0 两边取共轭有 f ( ) an n an1 n1 a0 0 ∴ 也是为 f ( x)复根.
实系数多项式因式分解定理
f ( x) R[x],若 ( f ( x)) 1, 则 f ( x)可唯一 地分解成一次因式与二次不可约因式的乘积.
n
n
k cos 2k i sin 2k , k 1,2, , n
n
n
∴ xn 1 ( x 1)( x )( x 2 ) ( x n1)
2) 在实数域范围内
∵ k nk , k k 2cos 2k , k k 1
若 不为实数,则 也是 f ( x)的复根,于是
f ( x) ( x )( x ) f2( x) ( x2 ( )x ) f2( x)
设 a bi ,则 a bi, 2a R , a2 b2 R 即在R上 x2 ( )x 是 一个二次不可约多项式.
一、复系数多项式 二、实系数多项式
一、复系数多项式
1. 代数基本定理
f ( x) C[ x] , 若 ( f ( x)) 1 , 则 f ( x) 在复数域 C上必有一根.
推论1 f ( x) C[ x] , 若 ( f ( x)) 1 , 则存在 x a C[x] ,
n k 1, 2, , n
∴ 当n为奇数时
xn 1 ( x 1)[ x2 ( n1)x n1]n1 Nhomakorabean1
n1 n1
[ x2 ( 2 2 ) x 2 2 ]
( x 1)( x2 2x cos 2 1) [ x2 2 x cos n 1 1]
使 (x a) | f ( x) . 即, f ( x) 在复数域上必有一个一次因式.
推论2 复数域上的不可约多项式只有一次多项式,即 f ( x) C[x], ( f ( x)) 1, 则 f ( x)可约.
2. 复系数多项式因式分解定理
f ( x) C[x], 若( f ( x)) 1, 则 f ( x)在复数域 C 上可唯一分解成一次因式的乘积.
从而 ( f2 ) n 2. 由归纳假设 f1( x) 、f2( x)可分解成一次因式与二次 不可约多项式的乘积. 由归纳原理,定理得证.
推论1
f ( x) R[ x], f ( x) 在R上具有标准分解式 f ( x) an( x c1)k1 ( x c2 )k2 ( x cs )ks ( x2 p1x q1)k1
n
n
当n为偶数时
xn 1 ( x 1)( x 1)[ x2 ( n1)x n1]
n2
n2
n2 n2
[ x2 ( 2 2 ) x 2 2 ]
( x 1)( x 1)( x2 2x cos 2 1) [ x2 2x cos n 2 1]
推论2 实数域上不可约多项式只有一次多项式和某些二 次不可约多项式,所有次数≥3的多项式皆可约.
例1 求 xn 1 在 C 上与在 R 上的标准分解式. 解: 1) 在复数范围内 xn 1 有n个复根,
1, , 2, , n1
这里 cos 2 i sin 2 , n 1
相关文档
最新文档