切线方位角计算坐标最终版
怎样计算不完整缓和曲线起点及终点的坐标及切线方位角资料

通过弧长计算出园心角,通过园心角计算出弦长,以及这段园曲线的弦切角,直线的方位角加上(左转减,右转加)这个弦切角就是弦的方位角,这样就可以求出园曲线的终点(也就是下一段曲线的直缓点)的坐标.怎样计算不完整缓和曲线起点及终点的坐标及切线方位角以上为一条匝道的曲线图及要素表。
第一缓和段长度根据公式c=R*L及C=A*A,图中A=100,R=150,可算出第一缓和段的长度为66.667米。
而HY里程减去YH里程为60.902米。
因此此段缓和曲线是在离其起点5.765米的地方与前段圆曲线相交。
图上标为YH点。
固此YH点并非第一缓和段起点。
第二缓和段也有同样的问题,DZD点亦非第二缓和段终点。
问题:怎样计算第一缓和段真正起点的坐标和第二缓和段真正终点的坐标。
及切线方位角。
本人水平有限,苦苦思索未得其解。
在此劳烦各位同仁给予小弟支援。
不胜感谢!测量路上诚与仁兄们携手同行,让我们的测量之路多一丝欣慰,少一分苦闷。
QQ26889412E-mail: yujuying@ 注:曲线要素表可能看不清楚。
但可以把图片另存为一个文件。
然打开此文件就非常清楚了。
1.计算出Y1H的坐标及方位角;2.计算出过渡段缓和曲线在Y1H点的支距dx,dy及偏角β;3.由Y1H的方位角及偏角β可反算出过渡缓和曲线虚起点的方位角。
4.由Y1H的坐标、dx,dy及方位角可反算出过渡缓和曲线起点的坐标。
(用支距到大地坐标的变换公式反算。
关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。
工程测量坐标正反算通用程序(终极篇)

第五篇坐标正反算通用程序(终极篇)1. 坐标正算主程序(命名为ZBZS)第1行:Lbl 0:”K=”?K:”BIAN=”? Z:”α=”?B第2行:Prog “A”第3行:”X=”:N+Zcos(F+B)◢第4行:”Y=”:E+Zsin(F+B)◢第5行:”F=”:F►DMS◢第6行:Goto 0K——计算点的里程BIAN——计算点到中桩的距离(左负右正)α——取前右夹角为正2. 坐标反算桩号和偏距主程序(命名为ZBFS)第1行:”X1=”? C:”Y1=”?D:”K1=”?K第2行:Lbl 0:Prog “A”第3行:Pol(C-N,D-E):Icos(F-J)→S:K+S→K第4行:Abs(S)>0.0001=>Goto 0第5行:”K1=”:K◢第6行:”BIAN=”:Isin(J-F)→Z◢X1——取样点的X坐标Y1——取样点的Y坐标K1——输入时为计算起始点(在线路内即可),输出时为反算点的桩号Z——偏距(左负右正)注:在9860或9960中需将第3行替换为Pol(C-N,D-E): List Ans[1]→I :List Ans[2]→J:Icos(J-F)→S:K+S →K,正反算主程序所有输入赋值多加一赋值符号(→),其他所有除数据库外的程序均保持不变3. 计算坐标子程序(命名为XYF)为了简洁,本程序由数据库直接调用,上述中的正反算主程序不直接调用此程序第1行:K-A→S:(Q-P)÷L→I第2行:N+∫(cos(F+X(2P+XI)×90÷π),0,S)→N第3行:E+∫(sin(F+X(2P+XI)×90÷π),0,S)→E第4行:F+S(2P+S I)×90÷π→F第5行:F<0=>F+360→F: F>360=>F-360→F4. 数据库(命名为A)第1行:K≤175.191=>Stop(超出后显示Done)第2行:175.191→A:428513.730→N:557954.037→E:92°26′40″→F:0→P:1/240→Q:70.417→L:K≤A+L =>GoTo 1(第一缓和曲线)第3行:245.607→A: 428507.298→N:558024.092→E: 100°50′59.4″→F: 1/240→P:1/240→Q:72.915→L: K≤A+L =>Goto 1(圆曲线)第4行:318.522→A: 428482.988→N:558092.538→E: 118°15′25.2″→F: 1/240→P: 0→Q: 55.104→L: K≤A+L =>Goto 1(第二缓和曲线)第5行:373.627→A:428453.283→N:558138.912→E:124°50′4.5″→F:0→P:-1/180→Q:67.222→L:K≤A+L=>Goto 1:Stop(下一曲线的第一缓和曲线,示例为S型曲线,超出后显示Done)第6行:Lbl 1:Prog “XYF”A——曲线段起点的里程N——曲线段起点的x坐标E——曲线段起点的y坐标F——曲线段起点的坐标方位角P——曲线段起点的曲率(半径倒数,直线为0,左负右正)Q——曲线段终点的曲率(半径倒数,直线为0,左负右正)L——曲线段长度(尽量使用长度,为计算断链方便)说明:(1)正算主程序可以计算一般边桩的坐标,如要计算类似涵洞端墙的坐标需增加两个变量,具体方法参考本程序集中的第1篇辛普生公式的坐标计算通用程序(2)适用于任意线形:直线(0→P、0→Q)、圆曲线(圆半径倒数→P、圆半径倒数→Q)、缓和曲线(0或圆半径倒数→P、圆半径倒数或0→Q)、卵形曲线(接起点圆的半径倒数→P、接终点圆的半径倒数→Q),曲线左转多加一负号。
坐标、方位角计算公式

任意点弧长 Li 78.395 任意点坐标 Xi 3980635.151 夹角(弧度) β 0.013827147
任意点弧长 Li 54.0597884 任意点坐标 Xi 3978587.104 HZ点 X 3978533.044
夹角(弧度) β 0.004620884 任意点坐标 Yi 534083.5446
以下均以左偏曲线为准 缓和曲线(ZH—HY) ZH点 圆曲线半径 缓和曲线长 偏向 X Y 方位角(弧度) R L0 左负右正 3980699.535 534128.2716 3.750289136 3500 190 -1 弦与ZH点切线 弦方位角 切线方位角 任意点切线支距 任意点玄长 的夹角(弧度) (弧度) (弧度) Xi Yi Dzh-p θ α zh-p α p 78.39483261 0.120751222 78.3949256 0.001540294 3.748748841 3.745668251 圆曲线(HY-YH) HY点 圆曲线半径 偏向 任意点弧长 X Y 方位角(弧度) R 左负右正 Li 3980542.689 534021.0483 3.723146393 3500 -1 48.39501446 切线方位角 任意点切线支距 任意点坐标 任意点玄长 (弧度) Xi Yi Dzh-p α p Xi Yi -40.62186782 -26.30406746 48.39462894 3.709319246 3980502.067 533994.7443 缓和曲线(HZ—YH) HZ点 圆曲线半径 缓和曲线长 偏向 X Y 方位角(弧度) R L0 左负右正 3978533.044 533445.0466 3.143874487 3500 190 1 弦与HZ点切线 弦方位角 切线方位角 任意点切线支距 任意点玄长 的夹角(弧度) (弧度) (弧度) Xi Yi Dzh-p θ α zh-p α p 54.0597623 0.039595878 54.0597768 0.000732446 3.144606933 3.146071826 已知ZH点坐标,求HZ点坐标 ZH点 切线长 转角 偏向 X Y 方位角(弧度) T θ 左负右正 3980699.535 534128.2716 3.750289136 1190.1232 0.606415785 -1
方位角的计算公式

计算公式一、方位角的计算公式二、平曲线转角点偏角计算公式三、平曲线直缓、缓直点的坐标计算公式四、平曲线上任意点的坐标计算公式五、竖曲线上点的高程计算公式六、超高计算公式七、地基承载力计算公式八、标准差计算公式一、方位角的计算公式1. 字母所代表的意义:x1:QD的X坐标y1:QD的Y坐标x2:ZD的X坐标y2:ZD的Y坐标S:QD~ZD的距离α:QD~ZD的方位角2. 计算公式:1)当y2- y1>0,x2- x1>0时:2)当y2- y1<0,x2- x1>0时:3)当x2- x1<0时:二、平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD~JD的方位角α2:JD~ZD的方位角β:JD处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U:JD的X坐标V:JD的Y坐标A:方位角(ZH~JD)T:曲线的切线长,D:JD偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X′=U+Tcos(A+180°) Y′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X″=U+Tcos(A+D)Y″=V+Tsin(A+D)四、平曲线上任意点的坐标计算公式1. 字母所代表的意义:P:所求点的桩号B:所求边桩~中桩距离,左-、右+M:左偏-1,右偏+1C:JD桩号D:JD偏角Ls:缓和曲线长A:方位角(ZH~JD)U:JD的X坐标V:JD的Y坐标T:曲线的切线长,I=C-T:直缓桩号J=I+L:缓圆桩号:圆缓桩号K=H+L:缓直桩号2. 计算公式:1)当P<I时中桩坐标:Xm=U+(C-P)cos(A+180°)Ym=V+(C-P)sin(A+180°)边桩坐标:Xb=Xm+Bcos(A+90°)Yb=Ym+Bsin(A+90°)2)当I<P<J时中桩坐标:Xm=U+Tcos(A+180°)+GcosOYm=V+Tsin(A+180°)+GsinO边桩坐标:Xb=Xm+Bcos(A+MW+90°)Yb=Ym+Bsin(A+MW+90°)3)当J<P<H时中桩坐标:边桩坐标:Xb=Xm+Bcos(O+MW+90°)Yb=Ym+Bsin(O+MW+90°)4)当H<P<K时中桩坐标:Xm=U+Tcos(A+MD)+GcosOYm=V+Tsin(A+MD)+GsinO边桩坐标:Xb=Xm+Bcos(A+MD-MW+90°)Yb=Ym+Bsin(A+MD-MW+90°)5)当P>K时中桩坐标:Xm=U+(T+P-K)cos(A+MD)Ym=V+(T+P-K)sin(A+MD)边桩坐标:Xb=Xm+Bcos(A+MD+90°)Yb=Ym+Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;若要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。
角度、坐标测量计算公式细则

计算细则1、坐标计算:X¹=X+Dcosα,Y¹=Y+Dsinα。
式中Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y²-y¹)/(x²-x¹)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180 如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y²-y¹)+(x²-x¹),1)、当y²-y¹>0,x²-x¹>0时;α=arctan(y²-y¹)/(x²-x¹)。
2)、当y²-y¹<0,x²-x¹>0时;α=360°+arctan(y²-y¹)/(x²-x¹)。
3)、当x²-x¹<0时;α=180°+arctan(y²-y¹)/(x²-x¹)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y²-y¹)/(x²-x¹)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
方位角的计算公式

计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。
工程测量中坐标方位角计算公式
工程测量中坐标方位角计算公式在工程测量中,坐标方位角是指一个点相对于参考方向的角度。
它是测量中常用的一个重要参数,用于确定物体或地点的位置和方向。
坐标方位角的计算公式主要基于三角函数的运算和几何原理,下面将详细介绍它的计算方法。
我们需要明确坐标方位角的定义。
在工程测量中,通常以正北方向为参考方向,以逆时针方向为正方向,来确定一个点的方位角。
方位角的范围是0°到360°,其中0°表示正北方向,90°表示正东方向,180°表示正南方向,270°表示正西方向,360°又回到正北方向。
对于任意一个点,我们可以通过计算该点相对于参考方向的角度来确定它的方位角。
具体的计算公式如下:方位角 = arctan((Y - Y0) / (X - X0))其中,X0和Y0表示参考点的坐标,X和Y表示待测点的坐标。
这个公式基于斜率的概念,通过计算两点之间的斜率来确定方位角。
需要注意的是,由于计算中使用了反正切函数arctan,所以计算结果的范围是-90°到90°,即仅限于第一象限和第四象限。
为了得到完整的方位角范围,我们需要进行一些额外的处理。
在计算公式中,我们可以根据X和X0的大小关系,以及Y和Y0的大小关系来确定方位角的象限。
具体的处理方法如下:如果X > X0且Y > Y0,那么方位角为计算结果;如果X < X0,那么方位角为180°加上计算结果;如果X > X0且Y < Y0,那么方位角为360°加上计算结果;如果X = X0且Y > Y0,那么方位角为90°;如果X = X0且Y < Y0,那么方位角为270°;如果X = X0且Y = Y0,那么方位角没有定义。
通过这些处理,我们可以得到完整的方位角范围。
在实际的工程测量中,坐标方位角的计算非常重要。
圆 缓和曲线中线上点位切线方位角计算
P
曲线左偏时:k -1 HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
圆曲线线路中线点位切线方位角计算
3、HY~HY段切线方切线方位角分析:
• k4+900点在JD3的曲线YH-HZ段上,由所给已知条件知:
• 本曲线为右偏,其HZ点切线方位角为 HZ切 9703526
(3)求k2+300点切线方位角
• k2+300点在JD3的圆+缓和曲线上,由所给已知条件知:
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解: l k p kZH K 2 300 K 2 206.253 93.747
l 2 180 001127 2Rl0
曲线右偏:k 1
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解:
0
l0 2R
180
30 16 57
曲线右偏: k 1
K P K HY 180 104257
R
0 405954
p切 ZH切 k
7102635 405954 7602629
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(1)求p点切线的切偏角
l2 180 2Rl0
l kHZ kP
P切
P
HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(2)求p点切线方位角 p切
p切 HZ切 k
曲线右偏时:k 1
P切
解:
l kHZ kP K4 946.780 K4 900 46.780
公路卵形曲线任意点坐标和切线方位角的计算方法
方法求卵形曲线上任意一点的坐标和切线方位角. 首先 ,缓和曲线的长度 l 为 :
l = K9 + 309. 542 - K8 + 700 = 549. 542 m 取式 (12) 的前三项 ,求得切线支距坐标为 :
x = 546. 393
y = 43. 725 利用式 (13) 及求得的支距坐标计算 K8 + 760 中桩在大地坐标系中的坐标为 :
Zhang Lingling1 , Zhang Zhiwei2
(1. School of Civil Engineering ,Lanzhou Jiaotong Universit y ,Lanzhou 730070 ,China ; 2. The Fift h Engineering Limited Co mpany ,China Railway 13t h Bureau Group ,Changchun 130033 ,China )
图 1 卵形曲线 Fig. 1 Oval curve
2. 1 缓和曲线起点坐标和方位角计算
首先需要计算实际并不存在只是在计算过程中
起辅助作用的完整缓和曲线段的起点即 ( H Z) 点的
桩号 、坐标和切线方位角 ,这样卵形曲线段的计算就
转化为完整缓和曲线段的计算 ,其解算过程如下 : 1) 卵形曲线参数 C 的计算公式为 :
表 1 卵形曲线参数 Tab. 1 Parameters of oval curve
坐标
X
Y
328 465. 153
518 718. 666
切线方位角 85°28′01″
328 400. 212
518 886. 371
115°05′49″
备 注 卵形曲线为右偏曲线
方位角计算方法
坐标方位角:以坐标纵轴的北端顺时针旋转到某直线的夹角γ>0边线点坐标计算曲率变化点坐标的计算道路设计中,一般只给出了中线交点的坐标,如图1所示的i,j,k点的坐标及曲线参数,它们包括偏角γ,切线长T,缓和曲线长l0,曲线总长L,外距E及曲率半径R。
测设前需根据上述设计参数求出ZH,HY,YH,HZ等曲率变化点的平面坐标,其中ZH和HZ点的坐标计算公式为xZH=xj+Tcosαji (1a)yZH=yj+Tsinαji (1b)xHZ=xj+Tcosαjk (2a)yHZ=yj+Tsinαjk (2b)式中αji,αjk分别为j点至i点及j点至k点的坐标方位角。
在图1所示的ZH-x′-y′假定坐标系中,HY点的坐标为〔1〕(3a) (3b) 则(4a) 4b)HY点的大地坐标为xHY=xZH+SZH-HYcos(αij+R′ΖΗ-ΗY) (5a)yHY=yZH+SZH-HYsin(αij+R′ΖΗ-ΗY) (5b)需注意的是,式(4b)仅要求为象限角,且R′ZH-HY是有符号的。
如以i→j→k为前进方向,本文定义偏角γ的符号为,相对于i→j方向,j→k右偏角时γ>0,左偏角时γ<0。
由图1不难看出,当γ>0时,式(3b)中的y′HY取“+”号,故R′ZH-HY>0;而r<0时,式(3b)中y′HY取“-”号,故R′ZH-HY<0。
可见,编程时可以通过γ的正负自动对y′HY取号。
因缓和曲线ZH-HY与缓和曲线HZ-YH是对称的,所以YH点的大地坐标为xYH=xHZ+SZH-HYcos(αkj-R′ΖΗ-ΗY) (6a)yYH=yHZ+SZH-HYsin(αkj-R′ΖΗ-ΗY) (6b)缓和曲线中线点与边线点的坐标计算当曲线弧长l在区间(0,l0)取值时,中线点位于缓和曲线ZH-HY内。
令C=Rl0,当γ>0时,距ZH点曲线长为l,缓和曲线中线上对应P点在ZH-x′-y′直角坐标系中的坐标为〔1〕(7a) (7b)与P点相对应的缓和曲线边线点的坐标为〔2〕(8a) (8b)式中:ρ=57.29577951,为弧度转换为度的系数;D为道路的半宽。