图形的平移与旋转

合集下载

第三章 .图形的平移与旋转

第三章 .图形的平移与旋转

- 1 -第三章 图形的平移与旋转1.图形的平移一、基本知识点1、平移:在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动叫平移。

2、对应点、对应边、对应角。

3、平移改变了图形的位置,但不改变图形的形状和大小。

4、平移的性质:(1)平移后的图形与原图形对应点所连的线段平行或在同一条直线上且相等。

(2)平移后的图形与原图形的对应线段平行(或在同一直线上)且相等。

(3)平移后的图形与原图形的对应角相等。

5、平移作图6、坐标系中的平移 二、知识巩固与拓展1、下列哪种运动不属于平移( )A,急刹车的汽车在地面上的运动 B,高层建筑的电梯的运动 C,小球自由落体 D,时钟分针的运动2、如图3.1.,1,△ABC 沿着BC 方向平移到△DEF 的位置,若BE=2cm ,则CF= cm.3、在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位得到P /点,则P /点的坐标 为 。

4、平移△ABC ,是A 平移到E 点处。

5、如图3.1.2,将周长为10的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长等于 。

6、如图3.1.3,将面积为4的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的2倍,那么图中的四边形ACED 的面积等于 。

7、如图3.1.4,将直角三角形ABC 沿射线BC 的方向平移得到△DEF,求图中阴影部分面积。

8、如图3.1.5,矩形ABCD 中,横向阴影部分是矩形,另一部分是平行四边形,根据图中的尺寸,求空白部分面积。

9、在如图的方格纸中: (1)、作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)、作出将△A 1B 1C 1先向右平移6格,再向下平移2格,得到的△A 2B 2C 2 。

10、△ABC 的三个顶点坐标分别为A(0,2),B (-2,0),C(2,0).李佳把△ABC 平移后得到△A 1B 1C 1 ,并写出了三个顶点坐标A 1(0,0),B 1 (-3,-2),C 1(3,-2). (1)你认为李佳所写的三个顶点坐标正确吗?(2)如果李佳所写的三个顶点纵坐标都正确,三个顶点的横坐标中只有一个正确,那么你能帮李佳正确写出三个顶点的坐标吗?(3)如果李佳所写的点B 1 (-3,-2)正确,你能写出△ABC 平移到△A 1B 1C 1的方法吗?A BCD E F 3.1.1图 A B C EA B CD E F 3.1.2图 BA C D EF 3.1.3图 AB CD E F 3.1.4图A BC D a ccb 3.1.5图 MN B A C- 2 -3.2图形的旋转一、基本知识1、旋转的概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

平移与旋转PPT课件

平移与旋转PPT课件

旋转是将图形绕某一点转动一定的角度,其实质是点的旋转。旋转不改
变图形中各点之间的相对位置关系,但改变其角度。
03
平移与旋转的联系
平移和旋转都是图形在平面内的运动,它们都可以改变图形的位置,但
不改变其形状和大小。在实际应用中,平移和旋转常常结合使用,以实
现图平移
在实际应用中,物体往往同时进行平 移和旋转运动,这种运动称为复合运 动。
旋转运动
旋转运动是围绕一个固定点进行的运 动,物体在平面内以该点为中心进行 旋转,其轨迹是一个圆或一个圆弧。
计算机图形学
计算机图形学是研究计算机生成 和操作图形的科学,它广泛应用 于游戏开发、电影制作、建筑设
计等领域。
平移与旋转是计算机图形学中基 本变换之一,通过这些变换可以
三维平移
总结词
三维平移是指空间内的移动,可以沿 三个方向进行。
详细描述
在三维空间中,三维平移可以表示为在 x轴、y轴和z轴上的三个单位向量的组 合,例如[1,0,0]、[0,1,0]和[0,0,1]。三 维平移会改变物体的位置和方向。
03 旋转的数学表示
一维旋转
总结词
一维旋转是指绕着一条直线进行的旋转。
都有广泛的应用。
THANKS FOR WATCHING
感谢您的观看
总结词
一维平移是指沿一个方向进行的移动。
详细描述
在数学中,一维平移通常表示为在坐标轴上的一个单位向量,例如在x轴上,可 以表示为[1,0,0]。一维平移不改变物体的方向,只改变位置。
二维平移
总结词
二维平移是指平面内的移动,可以沿两个方向进行。
详细描述
在二维坐标系中,二维平移可以表示为在x轴和y轴上的两个单位向量的组合, 例如[1,0]和[0,1]。二维平移会改变物体的位置,但不改变方向。

图形的平移和旋转

图形的平移和旋转

图形的平移和旋转知识点1.平移的定义与规律关键:平移不改变图形的形状和大小,也不会改变图形的方向.(1)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(2)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的. 2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向. (2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图: 旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.小试牛刀1.平移是由_________________________________________所决定。

2. 平移不改变图形的 和 ,只改变图形的 。

3.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度。

4.(2010年兰州市)如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .5、(2008年湖北省咸宁市)如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论,其中正确的是_____ ①△AED ≌△AEF ; ②BE DC DE += ③S △ABE +S △ACD >S △AED ; ④222BE DC DE +=例题讲解1、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF. (1)指出旋转中心及旋转角度.(2)判断AE 与CF 的位置关系.(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2,问四边形AECD 的面积是多少?(第8题图)A B C D E F A B C DE2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF3、如图,已知正方形ABCD的对角线AC、BD相交于O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,求证:OE=OF。

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法图形的平移和旋转图形的平移和旋转是空间几何中非常重要的概念,它们帮助学生更好地理解图形的变换和运动。

本文将详细介绍图形的平移和旋转的概念和方法,并通过实例加深读者对这些概念的理解。

一、图形的平移平移是指将图形在平面上沿着指定的方向移动一段距离,而保持图形的形状和大小不变。

在平面坐标系中,平移可以通过改变图形的坐标来实现。

对于二维平面中的图形,平移涉及两个要素:平移的向量和平移的距离。

以坐标平面上的一个点P(x, y)为例,如果向量V(a, b)表示平移向量,则平移后的新点P'(x', y')的坐标可表示为:x' = x + ay' = y + b这样,对于平面上的其他点也可以进行同样的平移操作。

通过改变平移向量V的值,可以实现不同的平移方向和距离。

二、图形的旋转旋转是指将图形绕着某个固定点旋转一定角度,而保持图形的形状和大小不变。

在平面几何中,旋转可以通过改变图形中每个点的坐标来实现。

旋转涉及三个要素:旋转中心、旋转角度和旋转方向。

假设旋转中心为点O(x0, y0),旋转角度为θ,旋转方向为顺时针。

对于平面上的任一点P(x, y),其旋转后的新点P'的坐标可表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0类似地,通过改变旋转角度和旋转中心的值,可以实现不同的旋转效果。

需要注意的是,对于逆时针旋转,只需将旋转角度取负。

三、图形的平移和旋转实例为了更好地理解图形的平移和旋转,下面举例说明。

例一:平移操作考虑一个正方形,其中心点为O(0, 0),边长为2。

要将这个正方形向右平移4个单位,可将平移向量设为V(4, 0)。

根据平移公式,正方形的每个顶点的新坐标可计算如下:A(0, 0) 平移 4 个单位后的新坐标:A'(4, 0)B(2, 0) 平移 4 个单位后的新坐标:B'(6, 0)C(2, 2) 平移 4 个单位后的新坐标:C'(6, 2)D(0, 2) 平移 4 个单位后的新坐标:D'(4, 2)如此,正方形向右平移4个单位后,每个顶点的新坐标确定,从而实现了整个图形的平移操作。

图形的平移与旋转

图形的平移与旋转

图形的平移与旋转图形的平移和旋转是几何学中常见的操作,可以用于改变图形的位置和方向。

在本文中,我们将介绍图形平移和旋转的定义、原理、应用以及相关的数学概念和公式。

一、平移的定义与原理平移是指将一个图形在平面上沿着某个方向移动一定的距离,而不改变图形的形状和方向。

平移的原理是将图形的每一个点都按照相同的方式进行移动。

在二维平面上,平移可以通过向量来表示。

假设一个点的坐标为 (x, y),平移向量为 (a, b),那么平移后这个点的新坐标为 (x+a, y+b)。

也就是说,平移向量中的每一个分量都等于图形中每一个点的坐标在对应方向上的平移量。

二、旋转的定义与原理旋转是指将一个图形绕着某个点(旋转中心)按照一定的角度进行旋转,而不改变图形的大小。

旋转的原理是将图形的每一个点都按照相同的方式进行旋转。

同样在二维平面上,旋转可以通过向量来表示。

假设一个点的坐标为 (x, y),旋转角度为θ(弧度制),旋转中心为原点 (0, 0),那么旋转后这个点的新坐标为 (x', y'),其中x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)也就是说,旋转后的点的新坐标可以通过将旋转矩阵与原坐标矩阵相乘的方式计算得出。

三、平移与旋转的应用平移和旋转在几何学和计算机图形学中有着广泛的应用。

下面我们来介绍一些常见的应用场景。

1. 图像处理:在图像处理中,平移和旋转常常用于改变图像的位置和角度。

通过对图像进行平移和旋转操作,可以实现图像的校正、调整和修饰。

2. 动画制作:在动画制作中,平移和旋转用于控制和改变动画中的图形的位置和角度。

通过对图形进行平移和旋转操作,可以实现图形的移动、旋转和变形,为动画添加更多的变化和效果。

3. 机器人运动控制:在机器人运动控制中,平移和旋转用于控制和改变机器人的位置和朝向。

通过对机器人进行平移和旋转操作,可以实现机器人的移动和旋转,为机器人的运动提供更多的灵活性和精确性。

图形的旋转与平移

图形的旋转与平移

图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。

本文将介绍图形的旋转和平移的概念、特性及其应用。

一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。

图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。

2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。

3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。

图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。

在计算机图形学中,旋转可用于实现图像的变换和动画效果。

二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。

图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。

2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。

3. 平移距离:指图形平移的具体距离。

平移常用于地图上的位置标记、机械设计、建筑设计等领域。

在计算机图形学中,平移可用于实现图像的拖动和位置调整。

三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。

例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。

旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。

通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。

总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。

通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。

无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。

理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D
M O
C
O
B
·
N
知识应用
4、在下列的每组图形里,分别有两个矩形。请指出在哪一组图 形中,竖立的矩形可以看成是横放的矩形按顺时针方向方向旋 转90度后形成的( )
A
B
C
D
5、 下列说法正确的【 】 A、平移不改变图形的形状和大小,而旋转则改变图形的形状和 大小; B、平移和旋转的共同点是改变图形的位置; C、图形可以向某方向平移一定距离,也可以向某方向旋转一定 距离; D、由平移得到的图形也一定可由旋转得到.
9、请你作出四边形ABCD绕点O顺时针旋 转60度后的图形。
A D
B
C
·
O
10、请利用平移、轴对称或旋转等 图形变换说明右图是通过怎样的 “基本图形”如何变换得到的。
E
O
11、如图,分别在△ABC的AB、AC两边上向外 作正方形ABDE和ACFG,连接EC、BG.问图中存 在一个图形是由另一个图形绕某点沿某个方 向旋转某个角度所得吗?请说明你的理由.
6. 如图所示的四个两两相联的等圆,是我国“一汽”生 产的大众汽车的车牌标志,右边的三个圆环可以看做是 左边的圆环经过 得到的。
7、将图形
按顺时针方向旋转90度后的图形是(
)
A
B
C
A B
D
D E H G
8、如右图,矩形ABCD经过平 移后成为矩形EFGH,矩形长 和宽分别为6和4,图中DE=5, 那么矩形ABCD平移的距离为 _________
G
依据
平移与旋转的性质
图形欣赏的方式(72—74、81)
先找基本图 再看基本图与其它图形的关系
文字表述形式1:本图形可由什么基本图 绕哪个点旋转多少度(或如何平移、对称) 得到。 文字表述2:本图形可由什么基本图绕哪个 点旋转多少度,再怎样平移得到。
文字表述3:本图形可由什么基本图如何变 换,得到什么图,再将得到的图如何旋转 (或平移、轴对称)得到。
B
C
E
平移的特征与性质
1、平移不改变图形的形状和大小,平移 前后两图形全等;
2、平移后对应点所连的线段平行且相等; 3、对应线段平行且相等;
A D
4、对应角相等。
B
F
C E
平移与旋转作图的思路:
先找出画图的条 件、已知图形中 的关键点
再作关键点平移、 旋转后的对应点
最后按原来的方 式将对应点连结 成图形
图形的平移与旋转 复 习
回顾与思考:
概念
平移 旋转
性质 简单作图
图形欣赏 图案设计
应用
旋转的特征与性质 (1)图形上的每一点都绕旋转中心沿相 同方向转动了相同的角度. (2)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. A (3)对应点到旋转中心的 距离相等. (4)旋转前后两图形 D 全等。
图案设计方法
先确定基本图
对基本图进行变换作图
平移 轴对称
旋转
得到你心仪的美妙图案
知识应用
1、如图,菱形ABCD可看成是 时针旋转 度得到的。 绕 点按 2.如图,绕点O旋转的两个图形的对应点M与N到旋转中心O 的距离 (相等或不相等); 3、如图,正方形ABCD经过旋转后到达正方形AEFG的位置, 旋转中心是点________,旋转角度是__________,点C的对应 点是点__________;
E G A D F B C
12、PA=1,PB=2,PC=3,以点B为旋转中心将 △ABP旋转使点A与点C重合这时P点旋转到G点。 (1)画出旋转后的图形,此时△ABP以点B为旋转 中心旋转了多少度? D (2)求出PG的长度 A (3)请你猜想△PGC P 的形状,并说明理由。
B
C
A P
D
B
Cபைடு நூலகம்
相关文档
最新文档