图形的平移和旋转专题复习
第三章 图形的平移与旋转复习-

①旋转中心 ②旋转方向 ③旋转角度
作图 ②确定图形中的关键点 ③将关键点沿指定方向旋转指定的角度 ④连点成图
B
C O
图形特点:
①图形的形状大小都不变 ②旋转过程中每个点都沿相同方向转过了相同角度 ③任意一对对应点与旋转中心的连线所成角都是旋转角 ④对应点到旋转中心的距离相等
6.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA的长度 得到△EFA .求△ABC所扫过的图形面积.
B F
C
A(C)
E
7.如图Rt△ABC的斜边AB=12cm,∠ABC=60°,以点B为中心旋转△ABC,使点 C旋转到AB边延长线上的点D处,AC边转到DE的位置,求图中的阴影部分的面 积 . E C A D
3.探索图形之间的变换关系,综合运用平移和旋转解决 问题。 总之,图形的平移与旋转是图形变换思想的主要体现, 通过对图形的观察、操作、实践、探索以及合情推理等过 程,要体会运动变化的思想以及动与不动、变与不变的辨 证关系;借助图形的直观性,进一步认识图形及其特征。
(第3题)
4.四张扑克牌如图(1)所示放在桌 子上,小敏把其中一张旋转180º后 得到如图(2)所示,则她所旋转的 A 牌从左数起是 ( ) A.第一张 B.第二张 C.第三张 D.第四张
5.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规 律闪烁,下一个呈现出来的图形是( B )。
A
B
C
D
二、巩固提升
如图,方格纸中,每个小正方形的边长都是单位1, △ ABC 与 △A1B1C1关于O点成中心对称. (1)画出将△A1B1C1 沿直线DE方向向上平移5个单位得到 △A2 B2C2 (2)画出将△A2 B2C2绕点O顺时针旋转180°得到 △A3 B3C3; (3)求出四边形 CC3C1C2的面积.
2024年中考数学一轮复习课件:图形的平移、旋转与位似

(3) 在(2)中,△ABC旋转过程中所扫过的面积为
π+
.
考点四位似
典例6 如图,△AOB与△COD是位似图形,且OA=AC,则△AOB与
△COD的相似比为
1∶2
.
典例7 (2022·
启东二模)如图,矩形OABC与矩形ODEF是位似图形,
点O到DC的距离为 .
OM= MN
考点三网格中的图形变换作图题
典例4 如图,在平面直角坐标系中,O是坐标原点,点A,B的坐标分别
为(3,1),(2,-1).
(1) 画出△OAB绕点O按顺时针方向旋转180°后得到的图形;
解:(1) 如图,△OA'B'即为所求作.
(2) 在y轴的左侧以点O为位似中心作△OAB的位似图形△OCD,
D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13. (2023·龙东地区)如图,在Rt△ABC中,∠BAC=30°,BC=2,E
是斜边AB的中点,把Rt△ABC绕点A按顺时针方向旋转一定角度得到
Rt△AFD(点C,B的对应点分别为D,F),连接CF,EF,CE.在旋转
的过程中,△CEF面积的最大值是
是
6
.
7. (2023·
金华)在平面直角坐标系中,将点(4,5)绕原点O按逆时针
(-5,4)
方向旋转90°,得到的点的坐标为
1
2
3
4
5
6
复习题图形的平移和旋转

1.如图,在平面直角坐标系中,已知A(2,0),B(5,0),点P为线段AB外一动点,且P A=2,以PB为边作等边△PBM,则线段AM的最大值为()A.3B.5C.7D.2.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.3.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.4.探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.5.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.6.将一副直角三角板如图(1)放置,使含30°角的三角板的直角边和含45°角的三角板的直角边完全重合.(1)直接写出∠ADC的度数为;(2)含30°角的三角板位置保持不变,将含45°角的三角板绕点O顺时针方向旋转.①如图2,射线BA与射线DC交于点E,∠BED的平分线与∠BOD的平分线交于点F,求∠EFO的度数;②若将含45°角的三角板绕点O顺时针方向旋转一周至图2位置,在这一过程中,存在△COD的其中一边与AB平行,请你直接写出所有满足条件的平行关系及相应的旋转角度.7.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转°时,边CD恰好与边MN平行.(直接写出结果)9.已知:BC∥OA,∠B=∠A=120°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,则∠EOC的度数是;(3)在(2)的条件下,若平行移动AC,其它条件不变,如图3,则∠OCB:∠OFB的值是.10.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN是锐角.(1)则a=,b=;(2)若两灯同时转动,90秒时,两束光线的位置关系是;(填“平行”或“垂直”或“相交”)(3)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?11.在等腰△ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.12.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.13.在一次数学课上,张老师让同学们独立完成课本第23页7.选择题(2)如图1,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°(1)请你也完成这道题;(2)在同学们都正确解答这道题后,张老师对这道题进行了变式:在(1)中AB∥EF不变,将点C移动到点C1位置(如图2所示),写出∠BAC1,∠AC1E,∠C1EF之间的数量关系,并证明.请你和这个班的同学一起解答这道题吧;(3)善于思考的小明想:将图1平移至与图2重合(如图3所示),当AC1,EC1分别平分∠BAC,∠CEF时,那么∠ACE与∠AC1E之间有怎样的数量关系?请你直接写出结果,不需要证明.14.如图,平移线段AB,使点A移动到点A1.(1)画出平移后的线段A1B1,分别连接AA1,BB1.(2)分别画出AC⊥A1B1于点C,AD⊥BB1于点D.(3)AA1与BB1之间的距离,就是线段的长度.(4)线段AB平移的距离,就是线段的长度.(5)线段BD的长度,是点B到直线的距离.15.如图,△ABC中,∠B=90°,把△ABC沿BC方向平移到△DEF的位置,若AB=4,BE=3,PE=2,求图中阴影部分的面积.16.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.17.已知:如图,在Rt△ABC中,∠ACB=90°,将这个三角形绕点A旋转,使点B落在边BC延长线上的点D处,点C落在点E处.求证:AD垂直平分线段CE.18.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;19.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H 在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.20.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.21.如图,在△ABC中,∠ACB=90°,BC=m,AB=3m,AC=n.(1)将△ABC绕点B逆时针旋转,使点C落在AB边上的点C1处,点A落在点A1处,在如图中画出△A1BC1;(2)求四边形ACBA1的面积;(用m、n的代数式表示)(3)将△A1BC1沿着AB翻折得△A2BC1,A2C1交AC于点D,写出四边形BCDC1与三角形ABC的面积的比值.22.如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=,b=;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?23.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC 的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.25.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.26.如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB 的大小;如果不存在,请说明理由.27.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28.如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.(1)说明AN=MB;(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.29.如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.30.四边形ABDF中,点C、E分别在AF、DF上,且AB=AC,BD=DE,∠BDF=2∠ABC,M为CE的中点.(1)画出△ACM关于点M成中心对称的图形;(2)求证:AM⊥DM;(3)若AM=DM,求∠ABC的度数.31.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?32.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB 重合,OA=OB=4,OC=OD=2,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度,OC⊥AB时旋转角α=度.发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC 的最大值与最小值.33.(1)如图1,E为等边△ABC内一点,CE平分∠ACB,D为BC边上一点,且DE=CD,连接BE,取BE中点P,连接AP,PD,AD,直接写出AP与PD的位置关系,并直接用等式表示AP与PD的数量关系;(2)如图2,把图1中的△CDE绕点C顺时针旋转α(60°<α<90°),其它条件不变,连接BE,点P为BE中点,连接AP,PD,AD,试问(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.34.如图,在平面直角坐标系中,△ABC顶点A的坐标是(1,3),顶点B的坐标是(﹣2,4),顶点C的坐标是(﹣2,﹣1),现在将△ABC平移得到△A′B′C′,平移后点B 和点A刚好重合.其中点A′,B′,C′分别为点A,B,C的对应点.(1)在图中画出△A′B′C′;(2)直接写出A′、C′点的坐标;(3)若AB边上有一点P,P点的坐标是(a,b),平移后的对应点是P′,请直接写出P′点的坐标.35.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.36.如图将△ABE向右平移3cm得到△DCF,已知△ABE的周长是16cm.(1)试判断AD与EF的关系,并证明.(2)求四边形ABFD的周长.37.如图,在△ABC中,∠B=90°,BC=6,AC=10,将△ABC绕点C顺时针旋转90°得到△DEC,并连接AE,求AE的长.38.Rt△ABC中,∠ABC=30°,将△ABC绕点C逆时针旋转至△A'B'C,使得点A'恰好落在AB上,A'B'交BC于点D,连接BB'.(1)求证:△A'B'C≌△A'B'B.(2)直接写出图中以点B为顶点的所有直角三角形.39.已知,如图,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.(1)指出△ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形;(2)若AE与BD交于点O,求∠AOD的度数.40.(1)如图,它的周长是cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.。
2024年中考数学总复习考点梳理第七章第三节图形的对称、平移与旋转

第三节 图形的对称、平移与旋转
返回目录
(2)AA′与BC之间的位置关系为_A_A_′_⊥__B_C_; 【解题依据】此问应用到的折叠(或轴对称)的性质为折__叠___前__后__对_ _应__点__的__连__线__被__折__痕__垂__直__平__分__(对__称__点__的__连__线__被__对__称__轴__垂__直__平__分__)_;
第三节 图形的对称、平移与旋转
教材改编题课前测
返回目录
1.[人教九上P67习题改编]下列图形中,是轴对称图形的是 _②__③__④_,是中心对称图形的是_①__②__④__,即是轴对称图形,又是 中心对称图形的是_②__④__.
第三节 图形的对称、平移与旋转
返回目录
2. [人教八上P56习题改编]如图,在Rt△ABC中,∠BAC=90°,
第三节 图形的对称、平移与旋转
返回目录
3.了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、 圆的轴对称性质;(2022年版课标将“了解”调整为“理解”) 4.认识并欣赏自然界和现实生活中的轴对称图形.
第三节 图形的对称、平移与旋转
返回目录
考情及趋势分析
年份 2023 2019 2018
∠B= 30°,AB=6,E,F分别为AB,AC上的点,连接EF,
且EF∥BC,将△ABC沿EF折叠,点A 的对应点A′恰好落在BC
边上,连接AA′.
(1)∠EA′F =_9_0_°_,∠A′EF =_3_0_°_, ∠AFA′=_1_2_0_°_; 【解题依据】此问应用到的折叠的性质为
第2题图
折__叠__前__后__两___部__分__图__形__对__应__角__相__等_;
/
新苏教版四年级下册数学《图形的平移、旋转和轴对称》专项复习试卷有答案

新苏教版四年级下册数学《图形的平移、旋转和轴对称》专项复习试卷有答案期末复习冲刺卷专项复习卷4 图形的平移、旋转和轴对称一、填空。
(每空2分,共28分)1.在可以通过旋转得到的图案下面的括号里画“√〞。
2.(1)( )号梯形向左平移6格得到1号梯形。
(2)3号梯形向( )平移( )格得到1号梯形。
3.(1)上面的图形中,只有1条对称轴的图形是( )。
(2)只有2条对称轴的图形是( )。
(3)有超过2条对称轴的图形是( )。
(4)( )不是轴对称图形。
(5)( )有无数条对称轴。
4.在英文字母“A、S、H 、P 、M、N、Q〞中,是轴对称图形的有( )。
5.在汉字“王、田、品、工、用、水、清、甲〞中,是轴对称图形的有( )。
二、判断。
(对的在括号里打“√〞,错的打“×〞。
每题2分,共8分)1. 等腰三角形和等边三角形都只有一条对称轴。
( )2.梯形不可能是轴对称图形。
( )3.左图可以通过平移得到。
( )4.钟面上的时针指着数字“6〞,当时针逆时针旋转90°以后,时针指着数字“3〞。
( )三、选择。
(将正确答案的字母填在括号里。
每题3分,共15分)1.以下图形中对称轴最多的是( )。
A.正五边形B.正方形C.半圆形2.下面的图形中,没有对称轴的是( )。
A.长方形B.等腰三角形C.平行四边形3.从6:00到9:00,时针旋转了( )。
A.30° B.90° C.180°4.将一条长8厘米的线段,沿一个端点旋转180°后,所得线段长度( )。
A.比8厘米长 B.比8厘米短C.是8厘米5.一个图形在方格中先向右平移8格,再向下平移3格,然后向左平移5格,最后向左平移3格,此时图形位于( )。
A.原位置B.原位置向下6格处C.原位置向下3格处四、操作题。
(共49分)1.(9分)(1)把四边形绕点A顺时针旋转90°。
(2)把平行四边形绕点B逆时针旋转90°。
图形的平移与旋转复习

平移的特征与性质
1、平移不改变图形的形状和大小,平移 前后两图形全等;
2、平移后对应点所连的线段平行且相等; 3、对应线段平行且相等;
Aபைடு நூலகம்D
4、对应角相等。
B C E F
旋转的特征与性质 (1)图形上的每一点都绕旋转中心沿相 同方向转动了相同的角度. (2)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. A (3)对应点到旋转中心的 距离相等. (4)旋转前后两图形 D 全等。
(1)三角形原来的位置
(2)旋转中心
A
D
(3)旋转角。 B C
4.在下图中,将大写字母 N 绕它右下侧的顶点按顺时 针方向旋转 90 ,作出旋转后的图案。
5.已知四边形ABCD和点O,画四边形A'B'C'D' 使它 与已知四边形关于点O对称。
画法:
B'
A'
D C O B
C' D'
A
四边形A'B'C'D'就是所求的四边形。
解:(1)连接CD; (2) 以CB 为一边作∠BCE , 使得∠BCE=∠ACD; (3) 在射线CE上截取CE=CB; (4) 连接DE 。 B △DEC 就是△ABC绕 O点旋 转后的图形。 C
E
A D
3. 在旋转过程中, 确定一个三角形旋转后的位置 ,除需要原来的位置外,还需要什么条件?
确定一个三角形旋转后的位置的条件: E
B
C
E
平移与旋转作图的思路:
先找出画图的条件、已知 图形中的关键点
再作关键点平移、旋转后 的对应点
最后按原来的方式将对应 点连结成图形
初中数学图形的平移,对称与旋转的知识点总复习附解析

初中数学图形的平移,对称与旋转的知识点总复习附解析一、选择题1.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.6.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣7b -,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】A【解析】【分析】 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【答案】D【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .17.如图,平面直角坐标系中,已知点B (3,2)-,若将△ABO 绕点O 沿顺时针方向旋转90°后得到△A 1B 1O ,则点B 的对应点B 1的坐标是( )A .(3,1)B .(3,2)C .(1,3)D .(2,3)【答案】D【解析】【分析】 根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.18.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.19.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.20.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.。
第三章-图形的平移与旋转复习学案

第三章《图形的平移与旋转》复习学案学习目标:1.能判断实例中的平移和旋转。
2.能根据平移、旋转的基本性质解决实际问题。
3.能作出简单的平面图形平移、旋转后的图形。
4.能够运用平移、旋转、轴对称及其组合进行图案设计。
【知识整理】1. 平移的定义:在平面内将一个图形沿某个方向移动一定的距离,这种图形变换称为平移.平移变换的两个要素:________________、________________.2. 平移变换的性质:(1)平移前、后的图形_____,即:平移只改变图形的_____,不改变图形的_____________;(2)对应线段平行(或共线)且相等;(3)对应点所连的线段平行(或共线)且相等.3. 旋转的定义:在平面内,将一个图形绕一个定点沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形变换叫做旋转.这个定点叫做_________,转动的角称为_________.旋转变换的三个要素:_________,_________,_________.4. 旋转变换的性质:(1)旋转前、后的图形_____;(2)对应点到旋转中心的距离_____,即:旋转中心在对应点所连线段的_____________上;(3)对应点与旋转中心所连线段的夹角等于_________.例题解析例1如图,在平面直角坐标系内有一个△ABC.(1) 在平面直角坐标系内画出△ABC向下平移4个单位得到的△A1B1C1;(2) 在平面直角坐标系内画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3) 分别写出△A1B1C1与△A2B2C2各顶点的坐标.例2 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;例3 如图,两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1,固定△ABC不动,将△DEF进行如下操作:(1) 如图(a),△DEF沿AB向右平移,连接DC、CF、FB,四边形CDBF的形状在不断的变化,问:四边形CDBF的面积是否发生变化,若有变化,请举例说明;若不变化,请求出它的面积.(注:D点在AB内,不包括A、B两点)(2) 如图(b)当D点移动到AB得中点时,请你猜想四边形CDBF的形状,并说明理由.(3) 如图(c)△DEF的D点固定在AB的中点时然后绕D点按顺时针方向旋转△DEF,使DF落在AB上,此时F点恰好与B点重合,连接AE,求AE的值.测试题1.将线段AB=2cm向右平移1cm,得到线段DE,则对应点A与D的距离为_____cm. 2. 将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是______.3.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为______cm2.4. 如图,阴影部分为2m宽的道路,则余下的部分面积为______m2.第3题第4题第5题5. 如图,△ACE,△ABF均为等腰直角三角形,∠BAF=∠EAC=90°,那么△AFC以点A为旋转中心逆时针旋转90°之后与________重合,其中点F与点____对应,点C与点____对应.6. 如图,在直角坐标系中,AO=AB,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上. 则点B′的坐标是_______.第6题第7题第8题7. 如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为___cm.8. 如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为_____.9. 下列图案中,不能由一个图形通过旋转而构成的是( )A. B. C. D.10. 下列各组图形,可经过平移变换由一个图形得到另一个图形的是( )A. B. C. D.11. 在下列现象中,是平移现象的是( )①方向盘的转动②电梯的上下移动③保持一定姿势滑行④钟摆的运动A. ①②B. ②③C. ③④D. ①④12. 在5×5方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是( )A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格13.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度α到A1BC1的位置,使得点A、B、C1在同一条直线上,那么这个角度α等于( )A.120° B.90° C.60° D.30°14.在13题中,若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为( )A. 10πcmB. 103πcmC. 303cmD. 20πcm15.△ABC在平面直角坐标系中的位置如图所示.(1) 将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2) 将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),这时AB 与CD1相交于点O,与D1E1相交于点F.(1) 求∠OFE1的度数;(2) 求线段AD1的长;(3) 若把三角板D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的平移和旋转专题复习》课堂教学设计
初二数学组---耿园园
【设计思路】
一、教材定位
《图形的平移和旋转专题复习》是九年义务教育八年级(下)(北师大版)的第三章,图形的平移和旋转是现实世界运动变化的基本形式之一,它们不仅是探索图形的一些性质的必要手段,也是解决现实世界具体问题,进行数学交流的重要工具。
更是学生从数学角度认识运动变化的世界的一种方式。
二、学情分析
本节课是在学生已经学习了“生活中的轴对称”,初步积累了一定的图形变换的数学活动经验基础上进行的,学生在刚学习了图形的平移和旋转的概念和性质之后,此时对平移和旋转性质的应用还不熟练,针对学生的这些情况,本节课对平移和旋转性质应用进行专题复习,让学生体会平移和旋转的基本性质在应用过程中所用到的数学思想和数学方法。
培养学生的空间想象能力和运动变化的数学思维方式,从数学角度认识运动变化的世界,让数学生活化,趣味化。
三、学习目标
1.知识与技能:回顾平移和旋转的基本知识,形成知识框架;理解并会运用平移
和旋转的定义和基本性质解决图形的变化问题;
2.过程与方法:通过观察,分析,归纳图形的平移和旋转变化,进一步加深学生
对这两种图形变化从感性认识到理性认识。
拓展学生空间想象能力,提高抽象概况能力,增强学生应用数学知识解决问题的能力。
3.情感态度与价值观:通过本节课的学习,积累学习图形变化的相关知识,让学
生了解数学的灵活性,变化性,生动性,激发学生学习数学的兴趣,提高学习数学的热情。
三学习重难点
【重点:】平移和旋转的定义和基本性质的应用。
【难点:】平移和旋转的基本性质的灵活应用。
四、【教与学过程设计】
【课前展示】
2分钟
教学反思
本节课是平移和旋转专题复习,整个过程流畅,思路清晰,学生掌握的较好,基本达到了预设的效果。
不足之处有以下几点:
1.变式训练的处理上我有些着急,应该先让学生说出自己的想法,如果有不足
之处,我再补充。
这样做第一可以检测学生对前面的合作探究内容有没有掌握,第二可以看学生会不会灵活应用,第三,学生如果说的不完善,老师再点播效果会更好。
2.当堂检测有5分钟时间,学生基本都把要求的3道检测题做完了,并且完成
较好,其实只需公布答案即可,不必再去让学生点评做法而导致拖堂。
不需要事无巨细,面面俱到,这样反而重点不是很突出。
3.合作探究第1题我在点拨提问时,说除了△APP′是等腰三角形,图中还有没
有等腰三角形?因为图中的BD没有连接,所以学生没有反应过来△ABD也是等腰三角形。
这个问题可以换成“B的对应点是?连接BD,图中还有等腰三角形吗?。