图形的平移,对称与旋转的知识点复习
四年级下册知识点复习

四年级下册知识点复习(一)第一单元、平移,旋转,轴对称一、平移(1)定义:在平面内,把某个图形沿着某个移动一定的。
这样的图形运动称为平移。
(2)性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且(3)平移作图的关键是确定平移的和例画出下图的三角形向右平移6格,再向下平移3格后的图形。
二、旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为。
转动的称为旋转角(2)旋转的性质:Ⅰ、旋转前后的图形。
Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都。
(3)旋转作用的关键是确定、和。
三、轴对称(1)轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形。
(2)对称轴是而不是线段,轴对称图形的对称轴不一定只有一条(3)常见的轴对称图形有、、、、、。
(4)正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,正n变形有 n 条对称轴。
(5)画图形的另一半:①找对称轴。
②找对应点。
③连成图形。
例下面的的“表情图”中,属于轴对称图形的是()【温故知新】:1.把图形向右平移7格后得到的图形涂上颜色。
2.圆先向上平移3格,再向左平移5格,再向右平移7格后的位置如下图,这个圆原来的位置在哪里?请在图上画一画。
3.(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)小飞机向()平移了()格。
4.(1)画出图1中三角形AOB 绕O点(2)画出图2的锤形图绕O点顺时针旋转90°(3)画出图3绕O点逆时针旋转90°顺时针旋转90度后的图形。
图1 图2 图3 5.填空5.描述下图中,图A如何变换得到图B?图C如何变换得到图D?6.判断。
(1)拉抽屉是旋转现象。
()(2)所有的锐角都比直角小。
图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。
●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。
●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。
●关键点:一般是图形的各顶点或线段的交点。
●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。
●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。
2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。
这个定点称为旋转中心,旋转的角度称为旋转角度。
●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。
●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。
为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。
●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。
3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。
●轴对称图形至少有一条对称轴。
●轴对称图形中每一组对称点到对称轴的距离相等。
●轴对称图形中对称点的连线与对称轴互相垂直。
●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。
图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。
2023-2024小学数学三年级上册期末章节考点复习讲义六单元《平移、旋转和轴对称》(苏教版原卷)

期末知识大串讲苏教版数学三年级上册期末章节考点复习讲义第六单元《平移、旋转和轴对称》知识点01:平移和旋转1.平移:2.旋转:3.平移和旋转都是物体或图形运动的现象,运动中物体的都不变;二者的区别在于:平移是,而旋转是物体,平移只改变,旋转改变的是。
知识点02:轴对称图形1.轴对称图形:把一个图形沿着某一条直线对折,对折后折痕两侧的部分能,这样的图形就是。
是图形的对称轴。
2.轴对称图形的特征:对折后,对称轴两侧能考点01:轴对称1.(2021三上·玄武期末)将一张长方形纸对折后,沿虚线剪开,剪出的图形展开后是()。
A.B.C.2.(2020三上·南通期末)下面各图,不是轴对称图形的是()。
A.B.C.D.3.下列说法正确的是()。
①转椅的升降运动是旋转现象。
②婚礼上贴的“喜”字是利用轴对称原理剪的。
③任何图形都是轴对称图形。
④三种运动都是旋转现象。
A.①和②B.①和③C.②和③D.②和④4.手工课上,毛毛和豆豆做了下面几个手工作品,其中轴对称图形有()个。
A.3 B.4 C.5 D.65.仔细看,认真填。
(1)在上面四个图案中,可以由平移得到的有和。
(2)可以由旋转得到的有和。
(3)是轴对称图形的有和。
6.(2020三上·雨花台期末)下面是轴对称图形的在横线上面画“√”,不是轴对称图形的画“×”。
7.(2020三上·江宁期末)哪个图案是从下面纸上剪下来的?连一连。
(1)(2)(3)8.(2020三上·江阴期末)用4个相同的小正方形可以拼成下面几种图形。
(每个小方格表示边长为1厘米的正方形)(1)观察上面的五个图形,是轴对称图形的有(填序号)(2)请你在上面方格图中,再画一个与图⑤周长相同的长方形,这个长方形的长是()厘米,宽是()厘米。
9.(2021三上·玄武期末)下图是一个用4个边长为1厘米的小正方形拼成的图形。
(1)方格纸中涂色图形的周长是厘米。
2024年中考数学总复习考点梳理第七章第三节图形的对称、平移与旋转

第三节 图形的对称、平移与旋转
返回目录
(2)AA′与BC之间的位置关系为_A_A_′_⊥__B_C_; 【解题依据】此问应用到的折叠(或轴对称)的性质为折__叠___前__后__对_ _应__点__的__连__线__被__折__痕__垂__直__平__分__(对__称__点__的__连__线__被__对__称__轴__垂__直__平__分__)_;
第三节 图形的对称、平移与旋转
教材改编题课前测
返回目录
1.[人教九上P67习题改编]下列图形中,是轴对称图形的是 _②__③__④_,是中心对称图形的是_①__②__④__,即是轴对称图形,又是 中心对称图形的是_②__④__.
第三节 图形的对称、平移与旋转
返回目录
2. [人教八上P56习题改编]如图,在Rt△ABC中,∠BAC=90°,
第三节 图形的对称、平移与旋转
返回目录
3.了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、 圆的轴对称性质;(2022年版课标将“了解”调整为“理解”) 4.认识并欣赏自然界和现实生活中的轴对称图形.
第三节 图形的对称、平移与旋转
返回目录
考情及趋势分析
年份 2023 2019 2018
∠B= 30°,AB=6,E,F分别为AB,AC上的点,连接EF,
且EF∥BC,将△ABC沿EF折叠,点A 的对应点A′恰好落在BC
边上,连接AA′.
(1)∠EA′F =_9_0_°_,∠A′EF =_3_0_°_, ∠AFA′=_1_2_0_°_; 【解题依据】此问应用到的折叠的性质为
第2题图
折__叠__前__后__两___部__分__图__形__对__应__角__相__等_;
/
九年级数学中考知识点归纳复习 第24讲 平移、对称、旋转与位似 视图和投影

在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
视图与投影
二、知识清单梳理
知识点一:三视图内容
关键点拨
1.三视图
主视图:从正面看到的图形.
俯视图:从上面看到的图形.
左视图:从左面看到的图形.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
第七单元图形与变换
第24讲平移、对称、旋转与位似视图和投影
一、知识清单梳理
知ห้องสมุดไป่ตู้点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.
三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
图形的轴对称平移与旋转

姓名: 中考复习提升组22图形的轴对称 平移与旋转☻☻☻知识回顾1.轴对称轴对称 轴对称图形: (1)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形称为轴对称图形,这条直线称为这条直线称为 ,对称轴一定为直线. (2) 轴对称: 如果一个图形沿某一条直线翻折过去,如果它能与另一个图形重合,那么就称这两个图形那么就称这两个图形 性质:(1)对应线段相等,对应角对应角 ;对称点的连线被对称轴对称点的连线被对称轴 . 轴对称图形变换的特征是不改变图形的形状和轴对称图形变换的特征是不改变图形的形状和 ,只改变图形的位置,新旧图形具有对称性. (2)轴对称的两个图形,它们对应线段或延长线相交,交点在交点在2.中心对称中心对称 中心对称图形中心对称图形(1)中心对称:把一个图形绕着某一点旋转把一个图形绕着某一点旋转 ,如果它能与另一个图形重合,那么这两个图形成中心对称,该点叫做点叫做(2)中心对称图形:一个图形绕着某一点旋转一个图形绕着某一点旋转 后能与自身重合,这种图形叫这种图形叫 ,该点叫对称中心该点叫对称中心(3)性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心且被连结对称点的线段都经过对称中心且被 平分. 3.图形的平移: (1)定义:在平面内,将某个图形沿某个方向移动一定的将某个图形沿某个方向移动一定的 ,这样的图形运动称为平移. (2)特征:①平移后①平移后,,对应线段相等且平行对应线段相等且平行,,对应点所连的线段对应点所连的线段 且且②平移后②平移后,,对应角对应角 且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同. .③平移不改变图形的③平移不改变图形的 和大小和大小和大小,, 只改变图形的位置,平移后新旧两个图形全等. 4.图形的旋转: (1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个将一个图形绕一个定点沿某个方向旋转一个 ,这样的图形运动称为旋转,这个定点称为旋转中心,转动的转动的 称为旋转角. (2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相向方向转动了相同角度;注意每一对对应点与旋转中心的连线所成的角度都旋转角,旋转角都旋转角都 ;对应点到旋转中心的距离相等对应点到旋转中心的距离相等☻☻☻限时集训一 选择题选择题选择题1.(2010甘肃)观察下列银行标志甘肃)观察下列银行标志,,从图案看既是轴从图案看既是轴对称图形又是中心对称图形的有对称图形又是中心对称图形的有( )( )( )个个A .1B 1B..2C 2C..3D.42(2010浙江宁波)下列各图是选自历届世博会浙江宁波)下列各图是选自历届世博会会徽中的图案, 其中是中心对称图形的是( ) 3.(2011广东广州市,4,3)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是(的坐标是( )A.(0,1)B.(2,-1)C.(4,1)D.(2,3) 4.(2011江苏扬州,8,3)如图,在Rt △ABC 中,∠ACB=90ºACB=90º,,∠A=30ºA=30º,BC=2,,BC=2,将△ABC 绕点C 按顺按顺 时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图的大小和图中阴影部分的面积分别为(中阴影部分的面积分别为( A. 30,2 B.60,2 C. 60,23 D. 60,3 5. (2011山东菏泽,5,3)如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为的长度为 ( ) A .6 B .3 C . 23 D . 36. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针 方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150° B .120° C.90° D .60°7.(011山东济宁,9,3)如图,△ABC 的周长为30cm,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 上,则三角板上,则三角板 2343682的图象③一段圆弧④平行四边个的余角为的余角为 度.度. 的度数为的度数为 .ABC 绕A 点 则图中阴影部分的面积是______. ABD 某乡镇为了解决抗旱问题,要在某河道要在某河道工程人员设计图纸时,以河道上的大桥以河道上的大桥 ? 2010(本小题满分在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、33,133,0(-3(-433,0)的直线EF 向右下300C D A B【答案】【答案】【答案】解:(1)作点B关于x轴的对称点E,连接AE,则点E为(12,-7),,则设直线AE的函数关系式为y=kx+b,则等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.0B.4C.8D.16
【答案】B
【解析】
【分析】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM= ,进而即可得到结论.
13.如图,将 沿 方向平移1个单位长度后得到 ,若 的周长等于9,则四边形 的周长等于()
A.13B.12C.11D.10
【答案】C
【解析】
【分析】
先利用平移的性质求出AD、CF,进而完成解答.
【详解】
解:将△ABC沿BC方向平移1个单位得到△DEF,
∴AD=CF=1,AC=DF,
又∵△ABC的周长等于9,
故选:B.
【点睛】
此题考查了旋转的性质,勾股定理,找到直角是解题的关键.
2.如图, 是 的内接三角形, , ,把 绕圆心 按逆时针方向旋转 得到 ,点 的对应点为点 ,则点 , 之间的距离是()
A.1B. C. D.2
【答案】A
【解析】
【分析】
连接AD,构造△ADB,由同弧所对应的圆周角相等和旋转的性质,证△ADB和△DBE全等,从而得到AD=BE=BC=1.
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的特点得AD=BE=CF=2,将四边形ABFE的周长分解为AB+BC+DF+AD+CF的形式,其中AB+BC+DF=AB+BC+AC为△ABC的周长.
【详解】
∵△DEF是△ABC向右平移2个单位得到
∴AD=CF=BE=2,AC=DF
四边形ABFD的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
故选:C.
【点睛】
正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66°B.104°C.114°D.124°
【答案】C
【解析】
【分析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC= ∠1,再根据三角形内角和定理可得.
ห้องสมุดไป่ตู้【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC= ∠1=22°
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
【详解】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.
∵正方形ABCD中,边长为 ,
∴AC= × =15,
∵点E,F是对角线AC的三等分点,
∴EC=10,FC=AE=5,
∵点M与点F关于BC对称,
∴CF=CM=5,∠ACB=∠BCM=45°,
∴∠ACM=90°,
∴EM= ,
【详解】
如图,连接AD,AO,DO
∵ 绕圆心 按逆时针方向旋转 得到 ,
∴AB=DE, ,
∴ (同弧所对应的圆周角等于圆心角的一半),
即 ,
又∵DB=BD,∴ (同弧所对应的圆周角相等),
在△ADB和△DBE中
∴△ADB≌△EBD(ASA),
∴AD=EB=BC=1.
故答案为A.
【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.
C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;
D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
16.如图,将 沿射线 方向平移 得到 .若 的周长为 ,则四边形 的周长为()
∴在BC边上,只有一个点P满足PE+PF= ,
同理:在AB,AD,CD边上都存在一个点P,满足PE+PF= ,
∴满足PE+PF= 的点P的个数是4个.
故选B.
【点睛】
本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.
4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
【详解】
由轴对称的性质知,①②③④都正确.
故选D.
12.下列图案中既是轴对称又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
A.(﹣ , ﹣1)B.(﹣ , ﹣1)
C.(﹣ , +1)D.(﹣ , ﹣1)
【答案】D
【解析】
【分析】
作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE= BC= ,BC=2 = AB,得出AB=2,OA= ,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'= =1= AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO= ,求出OD=AO﹣AD= ﹣1,即可得出答案.
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、是轴对称图形,是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
图形的平移,对称与旋转的知识点复习
一、选择题
1.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD.
【详解】
由旋转得到AD=AB=1,∠BAD=90°,
∴BD= = = ,
A.4B.4 C.2D.2
【答案】D
【解析】
【分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
【详解】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
P′Q′=P′H,
由勾股定理得:AD1=5.故选B.
15.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;
B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点 顺时针旋转 到 的位置.
四边形 的面积等于正方形 的面积等于20,
,
,
中,
故选: .
【点睛】
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A、不能通过平移得到,故不符合题意;
B、不能通过平移得到,故不符合题意;
C、不能通过平移得到,故不符合题意;
∴OB'= =1= AB',
∴∠OAB'=30°,
∴∠C'AD=∠AB'O=60°,
在△AC'D和△AB'O中, ,
∴△AC'D≌△B'AO(AAS),
∴AD=OB'=1,C'D=AO= ,
∴OD=AO﹣AD= ﹣1,
∴点C′的坐标为(﹣ , ﹣1);
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.