曲线方位角计算

合集下载

曲线计算公式

曲线计算公式

一、曲线要素计算已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长)1、求ZH 点(或ZY 点)坐标及方位角⎪⎩⎪⎨⎧-=-=-=11sin cos AT JDY ZHY A T JDX ZHX TJDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角⎪⎩⎪⎨⎧+=+=+-=22sin cos AT JDY HZY A T JDX HZX L T JDZH HZZH H3、求解切线长T 、外距E 、曲线长L(1)圆曲线⎪⎩⎪⎨⎧=-==180/)1)2/cos(/1()2/tan(απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan()(020R l l l Rl l R p R E l R L qp R T s s s HsH H ===⎪⎩⎪⎨⎧-+=+⨯-=+⨯+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ⎪⎩⎪⎨⎧+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯-+=⨯++=⨯⨯-==-=-=1111121132125cos sin sin cos /180)2/()6/()40/(Ay i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π四、圆曲线上各桩号点坐标及方位角计算已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1)⎪⎩⎪⎨⎧⨯-+=⨯++=⨯+⨯-=⎪⎩⎪⎨⎧=-==++-=-++=--=1111121231110211231111cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(Ay i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯--=⨯+-=⨯⨯+==-=-=2222222232225cos sin sin cos /180)2/()6/()40/(Ay i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZHHZZH L s s s π六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负)⎪⎩⎪⎨⎧-=-=+=T N Y BDY T N X BDX T T sin cos α七、纵断面高程计算(1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ))(*ZH DZH i H DH -+=(2) 竖曲线上高程计算已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) )2/(2R l k il H DH ZHDZH l ⨯-+=-=注:JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标R 、L S1、L S2:半径、缓和曲线1、缓和曲线2LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。

道路卵形回旋曲线任意点坐标及方位角计算方法

道路卵形回旋曲线任意点坐标及方位角计算方法

道路卵形盘旋曲线任意点坐标及方位角计算方法时间:2021-01-25 10:18:27 来源:本站作者:叶松林我要投稿我要收藏投稿指南【摘要】本文提出了卵形曲线中缓和曲线段上点位坐标计算方案,推导了其计算过程及公式,并附实例。

对始于高等级道路的平面卵形曲线的测设有重要的指导作用。

高等级公路,特别是高速公路的平面线形设计形式很多,但归根结底,它们都由直线、圆和缓和曲线 ( 我国?公路道路设计标准?中规定盘旋线或称菲涅尔螺旋线为缓和曲线线形 ) 等公路平面线形要素组合而成。

各种平面线形设计形式,如根本形、卵形、 S 形、 C 形等等,对高速公路更加适应汽车转弯时的行车轨迹,消除曲率突变,增进线形美观及行车舒适感、安全感都有极其重要的意义,但同时,也使曲线计算及野外测设更为复杂。

本文针对在高速公路设计实际中出现的卵形曲线,推导了缓和曲线段点位坐标计算方法及公式,为现场测设人员提供了有效的计算方案和测设指导。

一、盘旋线的根本特征及坐标计算盘旋线上,任意一点的曲率半径ρ 与该点至曲线起点的曲线长 l 之积为一常数 ( 图 1) 即ρl =A2(1)或式中, A 2 为盘旋曲线常数,表征盘旋曲线曲率变化缓急程度的量,称 A 为盘旋曲线参数。

图 11. 盘旋曲线上任意一点坐标计算由图 1( 曲线右旋 ) ,取盘旋线的起始点 ZH 处的切线方向为 x 轴,法线方向为 y 轴,任意一点的切线方向方位角为缓和曲线角β 。

在缓和曲线上对任意一点 P 取微分dl=ρdβdx=dlcosβdy=dlsinβ考虑式 (1) 对β 或 l 在区间 [0 ,β ]或 [0 , l ]上积分后有以下关系式成立l 2 = 2A 2 β(2)(3)(4)或者(5)(6)对于公路平面线形的根本形,其缓和曲线始于直线终于圆曲线,故缓和曲线的曲率半径ρ 变化于∞ ~ R ( 圆曲半径 ) 。

设缓和曲线段长度为 l s, 那么(7)(8)2. 盘旋线的几何要素见图 1 ,盘旋线的几何要素计算公式如下:任意点 P 处的曲率半径 ( 由式 (1) 和式 (2))(9)P 点的盘旋曲线长(10)P 点的缓和曲线角 ( 切线方位角,由 (9) 式 )(11)上面导出了当参数分别为β 和 l 时的右旋缓和曲线上任一点的坐标和几何要素公式。

坐标计算公式

坐标计算公式

坐标计算公式一、计算公式1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径2、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

3、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

4、左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

二、例题解析例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.90 1Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″ X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086 Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832 求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246 线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574 缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″ X1=86552.086 Y1=926.832 曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2)×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955三、公式解析公式解析一.坐标转换X =A +NCOSα-ESINαY =B +NSINα+ECOSα N=(X-A) COSα±(Y-B)SINα E=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。

曲线坐标计算万能公式

曲线坐标计算万能公式

曲线坐标计算通用公式(复化Simpson 公式)推导一、已知条件1、线元起点坐标:(),A A A x y2、线元起点切线方位角:A α3、线元起点里程:A K4、线元终点里程:B K 5、线元起点曲率半径:A ρ 6、线元终点曲率半径:B ρ二、求解问题求线元上任意点的坐标:(),C x y 。

即推导曲线坐标计算通用公式。

三、图示:如右上图(图中未示y ∆值) 四、坐标计算公式线元上任意点C 的坐标计算公式为:A x x x =+∆————① A y y y =+∆————②由上式可知,关键问题是求出x ∆、y ∆。

五、x ∆计算若AC 是直线,直接采用公式cos x l α∆=可求出x ∆(其中l 为A 、C 两点间直线距离,α为AC 直线方位角),但是,A 、C 两点间是任意曲线相连,不能直接用上述公式计算x ∆,需利用微积分原理计算。

1、曲线AB 上任意一点的曲率ρ计算采用内插法得:()B AA AB Ak k k k ρρρρ-=+--————③其中:k ——曲线AB 上任意一点的里程。

2、曲线AB 上任意一点的切线方位角α计算如右图:C 是曲线AB 上任意一点,AT 、TC 是A 、C 两点的切线,利用圆曲线求弧长公式得:()90A A k k A R π-=()90A k k Rδβπ-==其中:k ——曲线上任意点里程。

R ——曲线上任意点的曲率半径。

(通过公式③求得,1R ρ=)()()1190A A A R R k k ααπ=++-()()90A A A k k αρρπ=++-————④ 使用公式③、④时的符号规定:线元右偏:A ρ、B ρ均为“+”(即线元起终点曲率半径输正值)。

线元左偏:A ρ、B ρ均为“—”(即线元起终点曲率半径输负值)。

3、x ∆计算根据公式③、④可推知,()cos y k α=⎡⎤⎣⎦是里程间隔[],A C k k 上k 的一个连续函数,计算A 、C 两点的坐标增量x ∆,也就是求在里程段[],A C k k 内,x 坐标的改变量。

圆曲线坐标计算公式带例题精编版

圆曲线坐标计算公式带例题精编版

圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径缓和曲线坐标计算公式β= L2/2RL S ×180°/πC= L - L5/90R2L S2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。

道路缓和曲线任意点坐标及方位角的计算方法

道路缓和曲线任意点坐标及方位角的计算方法

求点与 ZH 点的距离, ΑZH - P 表示直线 ZH - P 的坐
标方位角 1
要求得 P 点的坐标, 关键是要正确求得 D ZH - P 和 ΑZH - P 1 依据 (7) 可以求得 D ZH - P 1
对于 ΑZH - P 有 ΑZH - P = ΑZH - r + 360°成立, 其中 ΑZH 为路线走向方向或 ZH 点切线方向的坐标方位
参考文献:
[ 1 ] 何景华 1 公路勘测[M ]1 北京: 人民交通出版社, 19981 [ 2 ] 刘延伯 1 工程测量[M ]1 北京: 冶金工业出版社, 19841
T 2= 20. 13 m
466 824. 034 Η= 11°29′37″
简要计算如下:
中点的里程为 K0+ 313. 755 m , 终点的里程为
K0 + 343. 84 m , 起 点 切 线 的 走 向 方 位 角 ΑZH =
54°14′51″, 对于点 K0+ 313. 755 处, l= 30. 085 m
点 号 起点 (直缓点) 切交点 (JD )
表 1 部分设计数据
Ta b le 1 P a rt de s ign da te
里程桩号 K0+ 283. 67 K0+ 323. 87
xm 3 081 965. 940 3 081 989. 428
ym
切线长和夹角
T 1= 40. 20 m 466 791. 410
A bs tra c t: O n the d ifficu lties in com pu tation and setting of coo rd ination in dem u lcen t cu rre, a new com putation m ethod of the coo rdination of any po in t in dem ulcen t curve of viatical figuration is p ropo sed. B ased on the theo ry of coo rdination com putation, the calculating fo rm ulas is derived. It is useful in the setting of dem ulcen t curve in h igh class h ighw ay’ s adert.

曲线方位角计算

任意曲线方位角计算按路线前进方向有JD1(为曲线之前的交点), ZH, HY, JD2 QZ, YH, HZ, 一般JD1与JD2的坐标已知,可根据方位角计算公式求的过两交点直线的方位角。

也就是ZH到JD2线段的方位角(记作A),那么在曲线段上任意一点的方位角=A + 曲线段对应的圆心角B。

当计算点在第一缓和段上时:B=(计算点的桩号-ZH点桩号) /(2*R) 这里R为圆曲线的半径,算出的结果单位是弧度。

当在圆曲线段上时B = Ls/2R + (计算点的桩号-HY点桩号)/R 上述公式中的R 均为圆曲线半径。

当在第二缓和段上时以此累加。

上述的情况为路线右转,若为左转就改为任意一点的方位角=A - 曲线段对应的圆心角B。

还需要注意的是缓和曲线一定弧长所对应的圆心角计算式为 a = 弧长/ 2倍的R, 而圆曲线上为 a = 弧长/ R第一条缓和曲线部分:X=L- L 5/(40×R2×L 02)Y=L3/(6×R×L 0)这是以ZH点为坐标原点测设到YH点的计算公式圆曲线部分X=R×sina+mY=R×(1-cosa)+pa=( L i- L)×1800/(R×π)+β0m = L 0/2- L 03/(240×R2)P= L 02/(24×R)- L 04/(2688×R3)δ0= L 0×1800/(6×R×π)β0= L 0×1800/(2×R×π)T=(R+P)×tg(a/2)+mL= R×(a-2β0)×π/1800+2L 0切线角的计算β= L2×1800/(2×R×L0 ×π)缓和切线角的弧度计算:β= L2/(2×R×L0)圆曲线切线角的弧度计算:a=( L i- L 0) /R+ L 0/(2×R)上式中:m表示切垂距。

圆 缓和曲线中线上点位切线方位角计算


P
曲线左偏时:k -1 HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
圆曲线线路中线点位切线方位角计算
3、HY~HY段切线方切线方位角分析:
• k4+900点在JD3的曲线YH-HZ段上,由所给已知条件知:
• 本曲线为右偏,其HZ点切线方位角为 HZ切 9703526
(3)求k2+300点切线方位角
• k2+300点在JD3的圆+缓和曲线上,由所给已知条件知:
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解: l k p kZH K 2 300 K 2 206.253 93.747
l 2 180 001127 2Rl0
曲线右偏:k 1
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解:
0
l0 2R
180
30 16 57
曲线右偏: k 1
K P K HY 180 104257
R
0 405954
p切 ZH切 k
7102635 405954 7602629
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(1)求p点切线的切偏角
l2 180 2Rl0
l kHZ kP
P切
P
HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(2)求p点切线方位角 p切
p切 HZ切 k
曲线右偏时:k 1
P切
解:
l kHZ kP K4 946.780 K4 900 46.780

道路曲线计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

圆曲线方位角计算公式

圆曲线方位角计算公式
α = arctan(L / R)。

其中,α表示圆曲线的方位角,L表示圆曲线的长度,R表示圆曲线的半径,arctan表示反正切函数。

这个公式的应用范围非常广泛,可以用于道路、铁路、管道等工程项目中的曲线设计和施工。

通过计算圆曲线的方位角,工程师和设计师可以确定曲线的走向和角度,从而确保工程项目的设计和施工符合要求。

在实际工程中,圆曲线方位角计算公式可以帮助工程师们更准确地规划和设计道路、铁路等线性工程项目,保证曲线的平滑和安全性。

同时,这个公式也可以用于解决工程项目中的实际问题,比如确定车辆或列车在曲线上的行驶方向和速度等。

总之,圆曲线方位角计算公式是工程和建筑领域中非常重要的计算方法,它为工程师们提供了一个强大的工具,帮助他们更好地完成工程项目的设计和施工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明:
按路线前进方向有JD1(为曲线之前的交点), ZH, HY, JD2 QZ, YH, HZ, 一般JD1与JD2的坐标已知,可根据方位角计算公式求的过两交点直线的方位角。

也就是ZH到JD2线段的方位角(记作A),那么在曲线段上任意一点的方位角=A + 曲线段对应的圆心角B。

当计算点在第一缓和段上时:B=(计算点的桩号-ZH点桩号) /(2*R) 这里R为圆曲线的半径,算出的结果单位是弧度。

当在圆曲线段上时B = Ls/2R + (计算点的桩号-HY点桩号)/R 上述公式中的R 均为圆曲线半径。

当在第二缓和段上时以此累加。

上述的情况为路线右转,若为左转就改为任意一点的方位角=A - 曲线段对应的圆心角B。

还需要注意的是缓和曲线一定弧长所对应的圆心角计算式为 a = 弧长/ 2倍的R, 而圆曲线上为 a = 弧长/ R
第一条缓和曲线部分:X=L- L 5/(40×R2×L 02)
Y=L3/(6×R×L 0)
这是以ZH点为坐标原点测设到YH点的计算公式
圆曲线部分X=R×sina+m
Y=R×(1-cosa)+p
a=( L i- L)×1800/(R×π)+β0
m = L 0/2- L 03/(240×R2)
P= L 02/(24×R)- L 04/(2688×R3)
δ0= L 0×1800/(6×R×π)
β0= L 0×1800/(2×R×π)
T=(R+P)×tg(a/2)+m
L= R×(a-2β0)×π/1800+2L 0
切线角的计算β= L2×1800/(2×R×L0 ×π)
缓和切线角的弧度计算:β= L2/(2×R×L0)
圆曲线切线角的弧度计算:a=( L i- L 0) /R+ L 0/(2×R)
上式中:m表示切垂距。

P表示圆曲线移动量。

β0表示缓和曲线的切线角。

δ0为缓和曲线的总偏角。

T表示切线长。

L表示曲线长。

β表示缓和曲线上的切线角。

a表示圆曲线的切线角。

第二条缓和曲线部分:X= L - L 5/(40×R2×L 02)
Y=L3/(6×R×L 0)
第二条缓和曲线部分是以HZ点为坐标原点计算到YH点的计算公式。

坐标转化:X=XHZ-X cosa-Y sina
Y= YHZ- X sina+ Y cosa
XHZ=T×(1+ cosa)
YHZ= T×sina
Li 为曲线点i的曲线长,T为切线长,a为转向角。

相关文档
最新文档