七年级下册数学平行线的判定练习题
平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册

人教版七年级数学下册《平行线的判定与性质》专项强化练习一、选择题1.如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是( )A.∠2=130°B.∠3=50°C.∠4=130°D.∠5=50°2.如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°3.如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°4.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135° B.125° C.115° D.105°5.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°6.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个7.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.38.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°9.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°10.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )A.75°B.45°C.30°D.15°11.如图,l1∥l2,则下列式子成立的是( )A.∠α+∠β+∠γ=180°B.∠α+∠β-∠γ=180°C.∠β+∠γ-∠α=180°D.∠α-∠β+∠γ=180°12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°. 则下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.15.如图,a∥b,∠1=110°,∠3=40°,则∠2=.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).17.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.20.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并证明.21.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠2=∠DCB;(2)试证明DG∥BC;(3)求∠BCA的度数.22.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.23.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.24.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.答案1.C2.C.3.B.4.D.5.B6.A.7.D8.C9.C10.D11.B12.C13.答案为:本题答案不唯一,如∠1=∠B.14.答案为:63°30′15.答案为:70°.16.答案为:①③④17.答案为:15°.18.答案为:α+β﹣γ=90°.19.证明:(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.20.解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).21.(1)证明:∵CD⊥AB于D,FE⊥AB,∴CD∥EF,∴∠2=∠DCB(2)证明:∵∠2=∠DCB,∠1=∠2,∴DG∥BC(3)解:∵DG∥BC,∠3=80°,∴∠BCA=∠3=80°22.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°.∵AB∥CD,∴∠C=∠3=25°.23.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.24.解:(1)当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1.∴∠PAC=∠APE,∠PBD=∠BPE.∴∠APB=∠APE+∠BPE=∠PAC+∠PBD.(2)当点P在C,D两点的外侧运动时,在l2下方时,则∠PAC=∠PBD+∠APB;在l1上方时,则∠PBD=∠PAC+∠APB.25.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。
人教版七年级下册数学平行线的判定与性质综合题集

人教版七年级下册数学平行线的判定与性质综合题集一.平行线的判定(共1小题)1.将一副三角板中的两个直角顶点C叠放在一起(如图),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=112°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究∠BCD等于多少度时,CD ∥AB?请你直接写出答案.二.平行线的性质(共20小题)2.(2021春•阜南县期末)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.3.(2021春•铁锋区期末)背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行,两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.4.(2017秋•雨花区期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.5.(2019春•韶关期末)将一副三角板中的两个直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)猜想∠BCD与∠ACE的数量关系,并说明理由;(2)若∠BCD=3∠ACE,求∠BCD的度数;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时CE∥AB,并简要说明理由.6.(2021春•龙岗区校级期中)如图,已知直线AB∥射线CD,∠CEB=100°,P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP,作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF,交直线AB于点G.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)在(1)的条件下,若∠EGC﹣∠ECG=40°,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使=?若存在,求出∠CPQ的度数;若不存在,请说明理由.7.(2021秋•揭东区期末)已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.8.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.9.(2020秋•罗湖区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.10.(2021春•临邑县期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.11.(2017春•南安市期末)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.(2021春•奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P 作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.13.(2019春•河东区期末)已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.14.(2021春•济南期中)如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.(1)如图1,若∠1与∠2都是锐角,请写出∠C与∠1,∠2之间的数量关系并说明理由.(2)把直角三角形ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN交于点E,BA与PQ交于点F,点G在线段CE上,连接DG,有∠BDF=∠GDF,求的值.(3)如图3,若点D是MN下方一点,BC平分∠PBD,AM平分∠CAD,已知∠PBC=25°,求∠ACB+∠ADB 的度数.15.(2016春•深圳校级期中)平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.16.(2019秋•道里区校级期中)已知:AF平分∠BAE,CF平分∠DCE.(1)如图①,已知AB∥CD,求证:∠AEC=∠C﹣∠A;(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.∠E=(用含有∠F的式子表示);(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.17.(2019春•荔湾区期末)如图,已知AB∥CD,直线FG分别与AB、CD交于点F、点G.(1)如图1,当点E在线段FG上,若∠EAF=40°,∠EDG=30°,则∠AED=°.(2)如图2,当点E在线段FG的延长线上,CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请证明你的结论;(3)如图3,在(2)的条件下,DM平分∠EDG,交AE于点K,射线AN将∠EAB分成∠EAN:∠NAB=1:2,且与DM交于点I,若∠DEA=22°,∠DIA=20°,求∠DKE的度数.18.(2019春•香洲区期末)如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.(1)求证:AB⊥BD;(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)19.(2020春•阳西县期末)已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50°,∠ADC=70°,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.20.(2021春•利州区期末)小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=60°,∠ABC=40°,求∠BED的度数;(3)将图2中的点B移到点A的右侧,得到图3,其他条件不变,若∠FAD=α°,∠ABC=β°,请你求出∠BED的度数(用含α,β的式子表示).21.(2019春•赣州期末)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.三.平行线的性质(共1小题)22.(2021春•鼓楼区校级期中)如图,已知:点A、C、B不在同一条直线,AD∥BE.(1)求证:∠B+∠C﹣∠A=180°.(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,请求出∠DAC:∠ACB:∠CBE的值.四.平行线的判定与性质(共22小题)23.(2021秋•深圳期末)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正确的有()A.1个B.2个C.3个D.4个24.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG =∠AGE,∠C=∠DGC.(1)求证:AB∥CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.25.(2021秋•福田区校级期末)点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG =∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD∥EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B﹣∠DNG=∠EDN,则∠B的度数为.26.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?27.(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.28.(2019•重庆开学)如图1,直线MN与直线AB、CD分别交于点E、F,∠MEB与∠DFN互补.(1)若∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(2)如图2,在(1)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由.29.(2021秋•南岗区校级期末)已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.30.(2021春•庆云县期末)已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB∥CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH∥EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.31.(2021春•鼓楼区期末)珠江某河段两岸安置了两座可旋转探照灯A,B.如图1,2所示,假如河道两岸是平行的,PQ∥MN,且∠BAM=2∠BAN,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视,且灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图3,若两灯同时转动,在灯A射线到达AN之前,若两灯发出的射线AC与BC交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系,并说明理由.32.(2021春•福田区校级月考)某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系.并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=130°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ =80°时,请直接写出∠PFQ的度数.33.(2021春•罗湖区校级期末)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.34.(2021春•饶平县校级期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.35.(2020春•湘桥区期末)(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P作PM∥AB,∴∠1=∠AEP=40°()∵AB∥CD,(已知)∴PM∥CD,()∴∠2+∠PFD=180°.()∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数是.(直接写出答案,不需要写出过程)36.(2020春•香洲区校级期中)如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC 相交于点G,∠BDA+∠CEG=180°.(1)证明AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,则∠BAD和∠CAD相等吗?请说明理由;(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.37.(2020春•海勃湾区期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ 的度数.38.(2020春•广宁县期末)探索:小明在研究数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠C 的数量关系.发现:在图1中,:∠APC=∠A+∠C;如图5小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A()∵PQ∥AB,AB∥CD.∴PQ∥CD()∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C(1)为小明的证明填上推理的依据;(2)应用:①在图2中,∠P与∠A、∠C的数量关系为;②在图3中,若∠A=30°,∠C=70°,则∠P的度数为;(3)拓展:在图4中,探究∠P与∠A,∠C的数量关系,并说明理由.39.(2019春•茂名期中)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变时,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,请确定∠BAE与∠MCD的数量关系,并说明理由;(3)如图3,在(1)的结论下,P为线段AC上的一个定点,点Q为直线CD上的一个动点,当点Q在射线CD上运动时(点C除外)∠BAC与∠CPQ+∠CQP有何数量关系?为什么?40.(2019春•东莞市校级月考)(1)如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE.证明:∠A+∠C=∠E;(2)当点E在如图②的位置时,AB∥CD,证明:∠A+∠E+∠C=360°;(3)如图③,点E、F、G在直线AB与CD之间,AB∥CD,连接AE、EF、FG、CG,若∠EFG=28°,则∠A+∠E+∠G+∠C=°.41.(2017春•广州期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(3)图3中,AB,BC是平面镜,入射光线m经过两次反射后,反射光线n与m平行但方向相反,求∠ABC的度数.42.(2017春•长兴县期末)如图甲所示,已知点E在直线AB上,点F,G在直线CD上,且∠EFG=∠FEG,EF 平分∠AEG.(1)判断直线AB与直线CD是否平行,并说明理由.(2)如图乙所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG =β①若∠HEG=40°,∠QGH=20°,求∠Q的度数.②判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.43.(2015春•越秀区期末)如图1,在四边形ABCD中,∠ABC+∠ADC=180°,BE、DF分别是∠ABC与∠ADC 的平分线,∠ADF与∠AFD互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图2,延长CB、DF相交于点G,过点B作BH⊥FG,垂足为点H,试判断∠FBH与∠GBH的大小关系,并说明理由.44.(2013春•福田区期末)把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系,并说明理由.解:∠AED=∠C∵∠1+∠ADG=180°(平角定义),∠1+∠2=180°(已知)∴∠2=∠ADG()∴EF∥AB()∴∠3=∠ADE()∵∠3=∠B(已知)∴∠B=()∴DE∥BC()∴∠AED=∠C()五.平移的性质(共2小题)45.(2017春•硚口区期末)如图1,将线段AB平移至DC,使点A与点D对应,点B与点C对应,连AD、BC.(1)填空:AB与CD的位置关系为,BC与AD的位置关系为;(2)点E、G都在直线CD上,∠AGE=∠GAE,AF平分∠DAE交直线CD于F,①如图2,若G、E为射线DC上的点,∠FAG=30°,求∠B的度数;②如图3,若G、E为射线CD上的点,∠FAG=α,求∠C的度数.46.(2016秋•吉林期末)如图,点C、M、N在射线DQ上,点B在射线AP上,且AP∥DQ,∠D=∠ABC=80°,∠1=∠2,AN平分∠DAM.(1)试说明AD∥BC的理由;(2)试求∠CAN的度数;(3)平移线段BC.①试问∠AMD:∠ACD的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND=∠ACB,试求此时∠ACB的度数.。
七年级数学下册平行线的判定练习题

七年级数学下册平行线的判定练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列四个结论:①①1=①3;①①B =①5;①①B +①BAD =180º;①①2=①4;①①D +①BCD =180º.能判断AB ①CD 的个数有 ( )A .2个B .3个C .4个D .5个2.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒3.如图,已知直线a ,b 被直线c 所截,下列条件不能判断a ①b 的是( )A .①2=①6B .①2+①3=180°C .①1=①4D .①5+①6=180°4.如图点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A .①1=①2B .①B =①DCEC .①3=①4D .①D +①DAB =180°5.如图所示,在下列四组条件中,能判断//AB CD 的是( )A .12∠=∠B .180BAD ABC ∠+∠=︒ C .34∠=∠D .ABD BDC ∠=∠6.下列给出的条件能够推理出a b ∥的是( )A .12∠=∠B .24∠∠=C .34∠=∠D .14180∠+∠=︒二、填空题7.如图,木工师傅用角尺画平行线的依据是_________________________.8.已知:如图,在三角形ABC 中,CD AB ⊥于点D ,连接DE ,当1290∠+∠=︒时,求证:DE ∥BC . 证明:①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+________90=︒,①1290∠+∠=︒(已知),①________2=∠(依据1:________),①∥DE BC (依据2:________).9.如图,写出能判定AB①CD的一对角的数量关系:___________________.BC ,DO①AB,则①O的半径10.如图,AB是①O的直径,CB切①O于B,连结AC交①O于D,若8cmOA=___________cm.11.如图,用符号语言表达定理“内错角相等,两直线平行”的推理形式:①_____,①a①b.三、解答题12.请完成下面的推理过程:如图,已知①D=108°,①BAD=72°,AC①BC于C,EF①BC于F.求证:①1=①2.证明:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°AB CD()①//①①1= ( )又①AC ①BC 于C ,EF ①BC 于F (已知)①EF // ( )①①2= ( )①①1=①2( )13.如图,四边形ABCD 中,①A =①C =90°,BE 平分①ABC ,DF 平分①ADC ,则BE 与DF 有何位置关系?试说明理由.14.如图,已知AC ①BC 于点C ,①B =70º,①ACD =20º.(1)求证:AB //CD ;(2)在不添加任何辅助线的情况下,请补充一个条件________,使BC //AD .15.如图所示,在四边形ABCD 中,ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,若A α∠=,D β∠=.(1)如图(a )所示,180αβ+>,试用α,β表示F ∠,直接写出结论.(2)如图(b )所示,180αβ+<,请在图中画出F ∠,并试用α,β表示F ∠.(3)一定存在F ∠吗?若有,写出F ∠的值;若不一定,直接写出α,β满足什么条件时,不存在F ∠.16.下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC SBC h =⋅,12DBC S BC h =⋅△. ①ABC DBC S S =.【探究】(1)如图①,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:①ABC S(2)如图①,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM=△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒, ①AE ∥ .①AEM △∽ . ①AE AM DF DM=. 由【探究】(1)可知ABC DBCS S =△△ , ①ABC DBC S AM S DM=△△. (3)如图①,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBCS S △△的值为 .17.如图,在下列括号中填写推理理由①①1=135°(已知),①①3=①135°( )又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b ( )18.已知:如图,点E在线段CD上,EA、EB分别平分①DAB和①ABC,①AEB=90°,设AD=x,BC=y,且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的长.(2)试说线段AD与BC有怎样的位置关系?并证明你的结论.(3)你能求出AB的长吗?若能,请写出推理过程,若不能,说明理由.19.如图,AB=CD,BC=DA,求证:AB①CD,BC①DA.参考答案:1.A【分析】根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.【详解】解:①①13∠=∠,①//AD BC ,无法推出//AB CD ;①①5B ∠=∠,①//AB CD ;①①180B BAD ∠+∠=°,①//AD BC ,无法推出//AB CD ;①①24∠∠=,①//AB CD ;①①180D BCD ∠+∠=︒①//AD BC ,无法推出//AB CD ,综上所述,能判断//AB CD 的是:①①,有2个,故选:A .【点睛】题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.3.D【分析】根据同位角相等,内错角相等,同旁内角互补来判定两直线平行.【详解】解:A ,①2和①6是内错角,内错角相等两直线平行,能判定a ①b ,不符合题意;B ,①2+①3=180°,①2和①3是同旁内角,同旁内角互补两直线平行,能判定a ①b ,不符合题意;C ,①1=①4,由图可知①1与①2是对顶角,①①1=①2=①4,①2和①4互为同位角,能判定a ①b ,不符合D ,①5+①6=180°,①5和①6是邻补角,和为180°,不能判定a ①b ,符合题意;故选:D .【点睛】此题主要考查了平行线的判定,结合平行线判定的条件是解决这道题的关键.4.C【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A 、正确,符合“内错角相等,两条直线平行”的判定定理;B 、正确,符合“同位角相等,两条直线平行”的判定定理;C 、错误,若①3=①4,则AD ①BE ;D 、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C .【点睛】本题考查的是平行线的判定定理,比较简单.5.D【分析】根据平行线的判定定理求解判断即可.【详解】解:A 、①①1=①2,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;B 、①①BAD +①ABC =180°,①AD //BC (同旁内角互补,两直线平行),故此选项不符合题意;C 、①①3=①4,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;D 、①①ABD =①BDC ,①AB //CD (内错角相等,两直线平行),故此选项符合题意;故选:D .【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.6.D【分析】根据平行线的判定逐一判定即可.【详解】解:A.由12∠=∠不能推理出a b ∥,故不符合题意;B.由24∠∠=不能推理出a b ∥,故不符合题意;C.由34∠=∠不能推理出a b ∥,故不符合题意;D. ①①4+①5=180°时能推出a b ∥,又①①1=①5,①由14180∠+∠=︒能推理出a b ∥,故符合题意;【点睛】本题考查了平行线的判定定理,解决此题的关键是清楚平行线的判定定理同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行. 故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键8. EDC ∠ EDC ∠ 同角的余角相等 内错角相等,两直线平行【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+EDC ∠90=︒,①1290∠+∠=︒(已知),①EDC ∠2=∠(同角的余角相等),①//DE BC (内错角相等,两直线平行).故答案为:EDC ∠;EDC ∠;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.9.①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°)【分析】根据平行线的判定定理进行填空.【详解】解:由“内错角相等,两直线平行”可以添加条件①BAC =①ACD .由“同旁内角互补,两直线平行”可以添加条件①B +①BCD =180°,或①D +①BAD =180°.故答案为:①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°).【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力. 10.4【分析】先根据切线的性质得出BC①AB,再根据平行线的判定得出BC OD∥,再根据平行线分线段成比例,得出OD AOBC AB=,根据点O是AB的中点,8BC=cm,求出OD,即可得出结果.【详解】解:①CB切①O于B,①BC①AB,①DO①AB,①BC OD∥,①OD AOBC AB=,①点O是AB的中点,①2AB AO=,①12 OD AOBC AB==,①8BC=cm,①OD=4cm,①OA=OD,①OA=4cm.故答案是:4.【点睛】本题主要考查了切线的性质,平行线的判定,平行线分线段成比例,根据切线的性质,结合已知条件,求出BC OD∥,是解题的关键.11.①4=①1【分析】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【详解】解:①①4=①1,①a①b.故答案为:①4=①1.【点睛】本题主要考查平行线的判定,熟记判定方法是解题的关键.12.见解析【分析】由直线相交及平行的相关定理性质即可得到答案.【详解】解:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°①//AB CD(同旁内角互补,两直线平行)①①1=3∠(两直线平行,内错角相等)又①AC ①BC 于C ,EF ①BC 于F (已知)①EF //AC (垂直于同一直线的两条直线平行)①①2=3∠(两直线平行,同位角相等)①①1=①2(等量代换)【点睛】本题考查直线相交及平行的相关定理性质,熟练掌握相关知识是解题的关键.13.BE ①DF ,理由见解析【分析】根据四边形的内角和定理和①A =①C =90°,得①ABC +①ADC =180°;根据角平分线定义、等角的余角相等易证明和BE 与DF 两条直线有关的一对同位角相等,从而证明两条直线平行.【详解】解:BE ①DF .理由如下:①①A =①C =90°,①①ABC +①ADC =180°①BE 平分①ABC ,DF 平分①ADC ,①①1=①2=12①ABC ,①3=①4=12①ADC ,①①1+①3=12(①ABC +①ADC )=12×180°=90°, 又①①1+①AEB =90°,①①3=①AEB①BE ①DF【点睛】本题考查了四边形的内角和是360°、角平分线定义、等角的余角相等和平行线的判定,考察的知识点较多,只有熟练掌握,才能运用自如.14.(1)证明见解析(2)AC ①AD (答案不唯一)【分析】(1)由题意易求出110BCD BCA ACD ∠=∠+∠=︒,即可利用同旁内角互补,两直线平行证明; (2)由在同一平面内,垂直于同一条直线的两条直线互相平行,即可补充条件为:AC ①AD .(答案不唯一)(1)证明:①AC ①BC ,①90ACB ∠=︒,①110BCD BCA ACD ∠=∠+∠=︒,①180BCD B ∠+∠=︒,①AB CD ;(2)补充条件:AC ①AD ,①AC ①AD ,AC ①BC①BC //AD .故答案为:AC ①AD .【点睛】本题考查垂直的定义,平行线的判定.掌握平行线的判定条件是解题关键.15.(1)()1902F αβ∠=+-︒;(2)图见解析,()1902F αβ∠=︒-+,证明见解析;(3)180αβ+=︒时,不存在F ∠,证明见解析.【分析】(1)先根据四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、邻补角的定义得出1,19022ABC F FBC DC E B C ∠=︒-∠∠∠=,然后根据三角形的外角性质即可得; (2)先根据角平分线的定义画出图形,再参照题(1):由四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、对顶角的性质得出11,9022GBC ABC BCF DCB ∠=∠∠=︒-∠,然后根据三角形的外角性质即可得;(3)由题(1)和(2)可知,当180αβ+>︒和180αβ+<︒时,存在F ∠的值,因此,考虑当180αβ+=︒时,F ∠是否存在.证明如下:先根据四边形的内角和得出180ABC DCB ∠+∠=︒,再根据邻补角的定义得出180DCE DCB ∠+∠=︒,从而得出ABC DCE ∠=∠,然后根据角平分线的定义可得出GBC ECF ∠=∠,最后根据平行线的判定得出//BG CF ,即可得证.【详解】(1)()1902F αβ∠=+-︒,求解过程如下: 在四边形ABCD 中,,A D αβ∠=∠=360360DCB ABC D A αβ∠=︒-∠-=︒∴∠-+-∠ BF 平分ABC ∠,CF 平分DCE ∠1,2111(180)90222FBC DCE DCB DCB ABC FCE ∴∠=∠=︒-∠=︒-∠∠∠= F FC FB E C ∠=∠-∴∠119022DC AB B C =︒∠-∠- 902)1(DCB ABC =︒-∠+∠ 190(362)0αβ=︒-︒--)1(902βα=-+︒; (2)由题意,画ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,则所要画的F ∠如下图所示.求解过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360D ABC CB βα∠=︒-∠-+①BG 平分ABC ∠,CH 平分DCE ∠ ①1111,(180)902222GBC ABC ECH DCE DCB DCB ∠=∠∠=∠=︒-∠=︒-∠ 1902BCF ECH DCB ∴∠=∠=︒-∠ ①GBC ∠是BCF ∆的一个外角①GBC F BCF ∠=∠+∠①F GBC BCF ∠=∠-∠11(90)22ABC DCB =∠-︒-∠ 1()902ABC DCB =∠+∠-︒ 1(360)902αβ=︒---︒ 190()2αβ=︒-+;(3)当180αβ+=︒时,不存在F ∠.证明过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360180ABC DCB αβ∠+∠=︒--=︒180DCE DCB ∠+∠=︒ABC DCE ∴∠=∠①BG 平分ABC ∠,CF 平分DCE ∠ ①11,22GBC ABC ECF DCE ∠=∠∠=∠GBC ECF ∴∠=∠①//BG CF故当180αβ+=︒时,不存在F ∠.【点睛】本题考查了四边形的内角和、三角形的外角性质、角平分线的定义、平行线的判定等知识点,较难的是题(3),综合题(1)和(2)的题设与结论,正确提出假设是解题关键.16.(1)证明见解析(2)证明见解析 (3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅,由此即可得证; (2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~,根据相似三角形的性质可得AE AM DF DM =,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅,12DBC S BC DN =⋅,由此即可得出答案. (1) 证明:12ABC SBC h =⋅,12DBC BC h S '=⋅, ABC DBC Sh S h ∴='. (2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴.AE AM DF DM∴=. 由【探究】(1)可知ABC DBC SAE S DF =, ABC DBC SAM S DM∴=. (3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴, AME DNE ∴~, AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==, 又12ABC S BC AM =⋅,12DBC S BC DN =⋅, 73ABC DBC S AM S DN =∴=, 故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.17.对顶角相等,同旁内角互补,两直线平行【分析】根据图形由对顶角相等,及平行线的判定中同旁内角互补,两直线平行可直接得出理由;【详解】①①1=135°(已知),①①3=①135°(对顶角相等)又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b (同旁内角互补,两直线平行)故答案为:对顶角相等;同旁内角互补,两直线平行【点睛】本题考查了对顶角相等;平行线的判定中同旁内角互补,两直线平行;重点掌握平行线判定定理. 18.(1)2AD =,5BC =;(2)//AD BC ,见解析;(3)能,见解析【分析】(1)根据算术平方根和绝对值的非负性即可得出AD 、BC 的长度;(2)根据题意证明180BAD ABC ∠+∠=︒即可得出结果;(3)延长AE 交直线BC 于F ,先证明①AEB ①①FEB ,然后证明()ADE FCE ASA ∆≅∆,即可得出结果.【详解】解:(1)2(2)|5|0x y -+-=,20x ∴-=,50y -=,解得2x =,5y =,即2AD =,5BC =;(2)//AD BC .理由如下:EA 、EB 分别平分DAB ∠和ABC ∠,12BAE BAD ∴∠=∠,12ABE ABC ∠=∠, 1()2BAE ABE BAD ABC ∴∠+∠=∠+∠, 90AEB ∠=︒,90BAE ABE ∴∠+∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(3)能.理由如下:延长AE 交直线BC 于F ,如图,//AD BC ,DAF F ∴∠=∠,而DAF BAF ∠=∠,BAF F ∴∠=∠,在①AEB 和①FEB 中90BAE F BEA BEF BE BE ⎧∠=∠⎪∠=∠=⎨⎪=⎩,①①AEB ①①FEB (AAS )AB FB ∴=,AE =EF .在①ADE 和①FCE 中DAE F AE FEAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADE FCE ASA ∴∆≅∆,2AD CF ∴==,527AB BF ∴==+=.【点睛】本题考查了算术平方根和绝对值的非负性,角平分线的定义,平行线的判定,全等三角形的判定与性质,熟知相关性质定理是解本题的关键.19.见解析【分析】连接AC ,利用SSS 得到ABC CDA △△≌,利用全等三角形的对应角相等得到两对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:连接AC ,在ABC 和CDA 中,AB CD BC AD AC CA =⎧⎪=⎨⎪=⎩,①()ABC CDA SSS ≌,①BAC DCA ACB CAD ∠=∠∠=∠, ,①//AB DC ,//AD BC .【点睛】此题考查了全等三角形的判定与性质,以及平行线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.。
浙教版七年级数学下册3平行线的判定同步练习

浙教版七年级下 1.3平行线的判定同步练习一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.46.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 ∠2时,a∥b.(用“>”,“<”或“=”填空)12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵,∴.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠=90°(),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=(),即∠+∠B=180°,∴AD∥BC().18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.答案与解析一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.【解析】解:A、∠1=∠2,AB∥CD,符合题意;B、∠1+∠2=180°,AB∥CD,不符合题意;C、∠1=∠2,得不出AB∥CD,不符合题意;D、∠1=∠2,得不出AB∥CD,不符合题意;故选:A.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°【解析】解:要AD∥BC,只需∠A=∠CBE,故选:A.3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°【解析】解:A、当∠1=∠3时,有a∥b,故A不符合题意;B、当∠2+∠3=180°时,有a∥b,故B不符合题意;C、当∠1=∠4时,∵∠3=∠4,∴∠1=∠3,∴a∥b,故C不符合题意;D、当∠1+∠4=180°时,不能判定a∥b,故D符合题意.4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【解析】解:(1)利用同旁内角互补,判定两直线平行,故(1)正确;(2)利用内错角相等,判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等,判定两直线平行,故(3)正确;(4)利用同位角相等,判定两直线平行,故(4)正确.故选:C.5.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.4【解析】解:①对顶角相等是正确的;②内错角相等不一定相等,原来的说法错误;③平面内过一点有且只有一条直线垂直于已知直线是正确的;④平面内过直线外一点有且只有一条直线平行于已知直线,原来的说法错误.故选:B.6.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°【解析】解:当∠1=∠2时,AC∥EF,故选项A不符合题意;当∠4=∠C时,AC∥EF,故选项B不符合题意;当∠1+∠3=180°时,BC∥DE,不能判断AC∥EF,故选项C符合题意;当∠3+∠C=180°时,AC∥EF,故选项D不符合题意;7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确【解析】解:木工师傅用图中的角尺画平行线,他依据的数学道理是同位角相等,两直线平行, 故选:A.8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 【解析】解:A.由∠AEC=∠BFD,不能判定AB∥CD,故本选项不符合题意;B.由∠CEF=∠BFE,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;C.由∠AEF+∠CFE=180°,根据“同旁内角互补,两直线平行”能判定AB∥CD,故本选项符合题意;D.由∠C=∠BFD,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;故选:C.9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°【解析】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,故选:B.10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行【解析】解:A.在同一平面内,过一点有且只有一条直线垂直于已知直线,该选项说法正确,故该选项不符合题意;B.在连接直线外一点与直线上各点的线段中,垂线段最短,该选项说法错误,故该选项符合题意;C.经过直线外一点,有且只有一条直线平行于这条直线,该选项说法正确,故该选项不符合题意;D.同位角相等,两直线平行,该选项说法正确,故该选项不符合题意;故选:B.二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 =∠2时,a∥b.(用“>”,“<”或“=”填空)【解析】解:要使a∥b,只需∠1=∠2.即当∠1=∠2时,a∥b(同位角相等,两直线平行).故答案为=.12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵∠2+∠4=180°,∴a∥b.【解析】解:∵∠2+∠4=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:∠2+∠4=180°;a∥b.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是内错角相等,两直线平行.【解析】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解析】解:∵AD和BC被BE所截,∴当∠EAD=∠B时,AD∥BC,或当∠DAC=∠C时,AD∥BC,或当∠DAB+∠B=180°时,AD∥BC,故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为①③④.【解析】解:①∠B+∠BCD=180°,同旁内角互补,两直线平行,则能判定AB∥CD;②∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所不能判定AB∥CD;③∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;④∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.故能判定AB∥CD的条件为①③④.故答案为:①③④.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有①⑤.(填序号)【解析】解:①∵∠1=25.5°,∠ABC=30°,∴∠2=∠1+∠ABC=55.5°=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行).【解析】解:证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),故答案为:BAC;垂直的定义;180°;等量关系;BAD;同旁内角互补,两直线平行.18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解析】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.【解析】证明:∵∠1=∠2,∠A=∠2,∴∠1=∠A,∴DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.【解析】解:DE∥BF,理由是:∵∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,∴∠1=∠ABF,∵∠1=∠2,∴∠2=∠ABF,∴DE∥BF.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【解析】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.。
5.2.2平行线的判定课时训练2022-2023学年人教版七年级下册数学

平行线的判定 练习题一、选择题1.如图,下列条件不能判定1l //2l 的是( )A 21∠=∠B 32∠=∠C 54∠=∠D ︒=∠+∠180432. 如图,在长方形ABCD 中,E=BG=F=12AD=13AB=2,E 、H 、G 在同一条直线上,则阴影部分的面积等于( )。
A.8 B.12 C.16 D.203.如图所示,下列条件中,不能判定AB ∥CD 的是( ) A.AB ∥EF,CD ∥EF B.∠5=∠A; C.∠1=∠4 D.∠2=∠3二、填空题4.若a,b,c 是三条直线,如果a ∥b,b ∥c,那么___________。
5.在同一平面内,若直线a 、b 、c ,满足b a ⊥,c a ⊥,则b 与c 的位置关系是 。
6.如图 ①,已知长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图案②,再沿BF 折叠成图案③,则③中的∠CFE 的度数是__________。
7.将一副三角板摆放成如图所示的形状,图中1∠= 度.8.如图, 如果∠2=∠6,则______∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.三、解答题9.如图:在四边形ABCD 中,∠1=40°,∠2=40°,AD 与BC 平行吗?为什么?10.如图,已知,,试问EF 是否平行GH ,并说明理由。
11.如图,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=60º,∠E=30°,试说明AB ∥CD.DG AEM ∠=∠21∠=∠12.如图,已知CDAB于D,EFAB于F,∠DGC=105°,∠BCG=75°,求∠1+∠2的度数.13.已知:如图⑿,CE 平分∠ACD,∠1=∠B,求证:AB∥CE14.如图:∠1=︒53,∠2=︒127,∠3=︒53,试说明直线AB与CD,BC与DE的位置关系。
平行线及其判定(基础篇)(专项练习七年级数学下册基础知识专项讲练(人教版)

专题5.11 平行线及其判定(基础篇)(专项练习)一、单选题知识点一、平行公理的应用1.下列说法:①和为180°且有一条公共边的两个角是邻补角;①过一点有且只有一条直线与已知直线垂直;①同位角相等;①经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A .0个B .1个C .2个D .3个 2.下列说法中,错误的有( ).①若a 与c 相交, b 与c 相交,则a 与b 相交;①若//,//a b b c ,那么//a c ;①过一点有且只有一条直线与已知直线平行;①在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个 3.下列说法正确的是( )A .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则//a cB .在同一平面内,a ,b ,c 是直线,且a b ⊥,b c ⊥,则a c⊥C .在同一平面内,a ,b ,c 是直线,且//a b ,b c ⊥,则//a cD .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则a c ⊥知识点二、平行公理推论的应用4.下列说法正确的个数是( ).(1)两条直线不相交就平行;(2)在同一平面内,两条平行的直线有且只有一个交点;(3)过一点有且只有一条直线与已知直线平行;(4)平行于同一直线的两条直线互相平行;(5)两直线的位置关系只有相交、平行与垂直.A .0B .1C .2D .45.下列说法:①同位角相等;①在同一平面内,过一点有且只有一条直线与已知直线垂直;①平行于同一条直线的两条直线一定平行;①连接直线外一点与直线上各点的线段中,垂线段最短.其中正确的是( )A .①①①B .①①①C .①①①D .①①①6.已知直线a ,b ,c 是同一平面内的三条不同直线,下面四个结论:①若//,//,a b b c 则//a c ;①若//,,a b a c ⊥则b c ⊥;①若,,a b b c ⊥⊥则a c ⊥;①若a c ⊥且c 与b 相交,则a 与b 相交,其中,结论正确的是( )A .①①B .①①C .①①①D .①①①知识点三、同位角相等,两直线平行7.如图所示,下列条件中,不能推出AB ①CE 成立的条件是( )A .①A =①ACEB .①B =①ACEC .①B =①ECD D .①B +①BCE =180° 8.如图所示,给出了过直线l 外一点P 作已知直线l 的平行线的方法,其依据是( ).A .同位角相等,两直线平行.B .内错角相等,两直线平行.C .同旁内角互补,两直线平行.D .以上都不对.9.如图,下面哪个条件不能判断EF ①DC 的是( )A .①1=①2B .①4=①C C .①1+①3=180°D .①3+①C =180°知识点四、内错角相等,两直线平行10.在同一平面内,将两个完全相同的三角板按如图摆放(直角边重合),可以画出两条互相平行的直线a ,b .这样操作的依据是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .两直线平行,内错角相等D .内错角相等,两直线平行11.如图,已知12∠=∠,那么下列结论正确的是( ).A .//CD AB B .//AD BC C .34∠=∠D .A C ∠=∠ 12.如图,点E 在BC 的延长线上,下列条件不能判定//AB CD 的是( )A .180D DAB ∠+∠=︒B .B DCE ∠=∠C .42∠=∠D .34∠=∠知识点五、同旁内角互补,两直线平行13.如图,点E 在AC 的延长线上,下列条件中不能判定BD //AE 的是( )A .①1=①2B .①3=①4C .①D =①DCE D .①A +①ABD =180°14.如图,点D ,E 分别是AB ,AC 上的点,连接DE ,CD ,则下列条件不能判定DE ①BC的是( )A .①AED =①ACDB .①ADE =①BC .①EDC =①DCBD .①DEC +①ACB =180°15.如图所示,下列条件( )成立时,//AD BC .A .23∠∠=B .14∠=∠C .1234∠+∠=∠+∠D .180A C ∠+∠=︒ 知识点六、垂直于同一直线的两直线平行16.下列说法正确的个数为( ).①一条直线的垂线只能画一条.①垂直于同一直线的两条直线互相垂直.①平面内,过线段AB 外一点有且只有一条直线与AB 垂直.A .0B .1C .2D .317.已知,三条直线a 、b 、c 在同一平面内,下列命题是假命题的是( )A .若a c ⊥,b c ⊥,则//a bB .若//a c ,//b c ,则//a bC .若//a b ,b c ⊥,则a c ⊥D .若a c ⊥,b c ⊥,则a b ⊥18.下列四个命题其中正确的个数是( )①对顶角相等;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;①邻补角的平分线互相垂直;①在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个二、填空题 知识点一、平行公理的应用19.(1)平行公理是:____________________________________________.(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b c ,若//,//a b b c ,则_________.20.现有下列说法:①过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①若//b c ,//a c ,则//b a ;①若140∠=︒,2∠的两边与1∠的两边分别平行,则240∠=︒或140︒;①若b c ⊥,a c ⊥,则//b a .其中正确的是_______(填写序号).21.如图,在三角形ABC 中,已知AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,有下列结论:①B 与C ∠不是同旁内角;①点A 到直线BC 的距离为2.4;①过点A 仅能作一条直线与BC 垂直;①过直线AC 外一点有且只有一条直线与直线AC 平行.其中正确的结论序号有________.知识点二、平行公理推论的应用22.在同一平面内,三条直线a 、b 、c ,若a ①b ,a ①c ,则_____.23.下列说法正确的是________(填序号).①同位角相等;①对顶角相等;①在同一平面内,不相交也不重合的两条射线一定平行;①过直线外一点有且只有一条直线与这条直线平行;①如果直线,a b c d ⊥⊥,那么//a c ;①垂线段最短;①过一点有且只有一条直线与已知直线垂直.24.a ,b ,c 是直线,且a①b ,b①c ,则________ .知识点三、同位角相等,两直线平行25.如图,请写一个条件________________,使//AC EF .(不添加辅助线)26.如图,点A ,B ,C ,D 在同一条直线上,若满足条件____,则有CE ①DF ,理由是____.(要求:不再添加辅助线,只需填一个答案即可)27.两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.知识点四、内错角相等,两直线平行28.如图所示,过点P 画直线a 的平行线b 的作法的依据是___________.29.在同一平面内,4条直线的位置如图所示,已知65A ∠=︒,请添加一个条件______,使//AD BC (填一个即可).30.如图,要使//AC BD ,可以添加的条件是______(填写一个你认为正确的即可).知识点五、同旁内角互补,两直线平行31.根据图完成下列填空(括号内填写定理或公理)(1)14∠=∠(已知)①__//____(__________________________________) (2)ABC ∠+∠_____180=︒(已知)//AB CD ∴(________________________) (3)∠_____=∠__(已知) //AD BC ∴(______________________________) (4)5∠=∠____(已知) //AB CD ∴(_______________________________) 32.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果______________,那么____________. 这个判定方法2可简述为:____________,____________.几何语言表述为:如图,∠_______=∠________ //AB CD ∴(2)两条直线被第三条直线所截,如果_______________,那么_____________. 这个判定方法3可简述为:___________,_________________.几何语言表述为:∠______ +∠______180=︒ //AB CD ∴33.如图所示,若162,2118∠=︒∠=︒,则________//_______,根据是_____________________.知识点六、垂直于同一直线的两直线平行34.规律探究:同一平面内有直线a 1,a 2,a 3…,a 100,若a 1①a 2,a 2①a 3,a 3①a 4…,按此规律,a 1和a 100的位置是________.35.如图, a ①c ,b ①c ,则直线a 、b 的关系是________36.若直线//,,a b b c c d ⊥⊥,则a 与d 的位置关系是_______.(填垂直或平行)三、解答题37.完成下面的证明:如图,BE 平分ABD ∠,DE 平分BDC ∠,且90αβ∠+∠=︒,求证//AB CD .证明:①BE 平分ABD ∠(已知),①2ABD α∠=∠( ).①DE 平分BDC ∠(已知),①BDC ∠=________( ).①22)2(ABD BDC αβαβ∠+∠=∠+∠=∠+∠( ).①90αβ∠+∠=︒(已知),①∠+∠=ABD BDC ________( ).①//AB CD ( ).38.如图,AB //CD .①1=①2,①3=①4,试说明AD //BE ,请你将下面解答过程填写完整.解:①AB //CD ,①①4= ( )①①3=①4①①3= ( )①①1=①2①①1+①CAF =①2+①CAE即①BAE = .①①3= )①AD //BE ( )39.已知:如图,点D ,E 分别在AB 和AC 上,CD 平分ACB ∠,40DCB ∠=︒,80AED ∠=︒.求证:DE BC ∥.40.如图,四边形ABCD 中,90A C ∠=∠=,BE 平分ABC ∠,DF 平分ADC ∠,试问BE 与DF 平行吗?为什么?参考答案1.B【分析】根据举反例可判断①,根据垂线的定义可判断①,根据举反例可判断①,根据平行线的基本事实可判断①.【详解】解:①如图①AOC=①2=150°,①BOC=①1=30°,满足①1+①2=180°,射线OC是两角的共用边,但①1与①2不是邻补角,故①不正确;①在同一个面内,过一点有且只有一条直线与已知直线垂直,故①不正确;①如图直线a、b被直线c所截,①1与①2是同位角,但①1>①2,故①不正确;①经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故①正确;其中正确的有①一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.2.A【分析】依次判断所给内容的正误,即可得.【详解】解:①若a与c相交,b与c相交,则a与b相交;错误,符合题意,a与b还有可能平行,如图所示:①若a//b,b//c那么a//c;正确,不符合题意;①过一点有且只有一条直线与已知直线平行;错误,符合题意;应为“经过直线外一点,有且只有一条直线与已知直线平行,”①在同一平面内,两条直线的位置关系有平行、相交、垂直三种;错误,符合题意,因为垂直是相交的特殊情况,综上,①①①错误,故选A.【点睛】本题考查了平行线,解题的关键是熟记平行公理及其推论和平面内两条直线的位置关系.3.A【分析】根据平行线的判定判断即可.【详解】解:A、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故正确;B、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;C、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;D、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;故选:A.【点睛】本题主要考查的是平行线的判定,平行公理,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B【分析】(1)(5),根据同一平面内,两直线的位置关系只有相交和平行进行判断即可;(2),根据平行线的定义进行判断即可;(3)(4),根据平行线的公理以及公理的推论进行判断即可.【详解】(1)应该是在同一平面内,两直线不相交就平行,故错误;(2)在同一平面内,两条平行的直线没有交点,故错误;(3)应为过直线外一点有且只有一条直线与已知直线平行,故错误;(4)平行于同一直线的两条直线互相平行,是平行公理的推论,故正确;(5)应为在同一平面内,两直线的位置关系只有相交与平行,故错误,所以只有(4)一项正确,故选:B.【点睛】本题是一道有关两直线位置关系的题目,涉及同一平面内两直线的位置关系以及平行线的知识,掌握这些概念和定理是解题的关键.5.C【分析】利用所学的公理,定理,判断选择即可.【详解】解:①根据平行线的性质:两直线平行,同位角相等;故此选项错误;①根据垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;①由平行的公理知:平行于同一条直线的两条直线一定平行,故本选项正确;①连接直线外一点与直线上各点的所有线段中,垂线段最短,故本选项正确;所以正确的有①①①,故选:C.【点睛】此题主要考查了平行公理以及其推论和垂线的定义等,正确把握相关定义是解题关键. 6.A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若//,//,a b b c 则//a c ;故说法正确;①若//,,a b a c ⊥则b c ⊥,故说法正确;①根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若,,a b b c ⊥⊥则a c ⊥;说法错误;①若a c ⊥且c 与b 相交,则a 与b 不一定相交,故说法错误故正确的有:①①故选:A【点睛】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系. 7.B【分析】根据平行线的判定定理分析即可.【详解】A 、①A 和①ACE 是AB 与CE 被AC 所截形成的内错角,则①A =①ACE 时,可以推出AB ①CE ,不符合题意;B 、①B 和①ACE 不属于AB 与CE 被第三条直线所截形成的任何角,则①B =①ACE 时,无法推出AB ①CE ,符合题意;C 、①B 和①ECD 是AB 与CE 被BD 所截形成的同位角,则①B =①ECD 时,可以推出AB ①CE ,不符合题意;D 、①B 和①BCE AB 与CE 被BD 所截形成的同旁内角,则①B +①BCE =180°时,可以推出AB ①CE ,不符合题意;故选:B .【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.8.A由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A.【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.9.C【分析】根据平行线的判定定理进行逐一判断即可.【详解】选项A:因为①1=①2,所以EF①DC,故本选项能判断EF①DC;选项B:因为①4=①C,所以EF①DC,故本选项能判断EF①DC;选项C:因为①1+①3=180°,所以ED①BC,故本选项能不判断EF①DC;选项D:因为①3+①C=180°,所以EF①DC,故本选项能判断EF①DC,故选:C【点睛】本题考查了平行线的判定定理的应用,考查了数学推理论证能力.10.D【分析】a b.利用三角形板的特征可确定12∠=∠,然后根据内错角相等,两直线平行可判断//【详解】解:如图,由题意得12∠=∠,a b.根据内错角相等,两直线平行可得//【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握内错角相等,两直线平行.11.A【分析】由″内错角相等,两直线平行″即可求解.【详解】解:①①1=①2,①CD①AB.故选:A.【点睛】此题考查了平行线的判定,熟记平行线判定定理是解题的关键.12.D【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】解:A、根据“同旁内角互补,两直线平行”可判定AB①CD,故此选项不合题意;B、根据“同位角相等,两直线平行”可判定AB①CD,故此选项不合题意;C、根据“内错角相等,两直线平行”可判定AB①CD,故此选项不合题意;D、①1与①2属于直线AB和CD的内错角、同位角、同旁内角,无法判定AB①CD,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定,解题的关键是掌握平行线的判定定理.13.A【分析】根据平行线的判定方法逐项判断即得答案.【详解】解:A 、1∠与2∠不是直线BD 与AE 被BC 所截的同位角或内错角,若12∠=∠,不能判定//BD AE ,故本选项符合题意;B 、若34∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;C 、若D DCE ∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;D 、若180A ABD ∠+∠=,则可根据同旁内角互补,两直线平行判定//BD AE ,故本选项不符合题意.故选:A .【点睛】本题考查了平行线的判定,属于基础题型,熟练掌握平行线的判定方法是解题的关键. 14.A【分析】同位角相等,则两直线平行;内错角相等,则两直线平行 ;同旁内角互补,则两直线平行;根据这三点对四个选项逐一判断.【详解】A 、①AED =①ACD ,不能判定DE ①BC ,不符合题意;B 、①ADE =①B ,同位角相等,则两直线平行,能判定DE ①BC ,符合题意;C 、①EDC =①DCB ,内错角相等,则两直线平行,能判定DE ①BC ,符合题意;D 、①DEC +①ACB =180°,同旁内角互补,则两直线平行,能判定DE ①BC ,符合题意. 故选:A .【点睛】本题考查两直线平行的判定,掌握相关角度之间的关系推断平行时本题解题关键. 15.A【分析】根据平行线的判定定理逐一判断,排除错误答案.【详解】解:A 、正确,根据内错角相等,两直线平行;B 、错误,由内错角相等,两直线平行,得出AB //CD ,而不是//AD BC ;C 、错误,①1+①2=①3+①4,即①ABC =①ADC ,无法说明//AD BC ;D、错误,①A+①C=180°,但这两个角不是同旁内角,所以无法说明//AD BC.故选:A.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.16.B【分析】根据平行线的性质与垂线的定义进行逐一判断即可.【详解】解:①一条直线的垂线能画无数条,此说法错误;①垂直于同一直线的两条直线互相平行,此说法错误;①平面内,过线段AB外一点有且只有一条直线与AB垂直,此说法正确;故选B.【点睛】本题主要考查了平行线的性质和垂线的定义,解题的关键在于能够熟练掌握相关知识进行求解.17.D【分析】根据垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行,逐条分析每个命题的真假即可.【详解】解:A、若a①c,b①c,则a①b,是真命题;B、若a①c,b①c,则a①b,是真命题;C、若a①b,b①c,则a①c,是真命题;D、若a①c,b①c,则a①b,原命题是假命题;故选:D.【点睛】本题主要考查同一平面内两条直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.18.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交,正确;①邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;①在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D .【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.19.过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c . 故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c . 【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.20.①①【分析】根据平行线的判定与性质,平行公理及推论进行逐一判断即可.【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,故①错误;过直线外一点有且只有一条直线与已知直线平行,故①错误;若b ①c ,a ①c ,则b ①a ,故①正确;若①1=40°,①2的两边与①1的两边分别平行,则①2=40°或140°,故①正确;若在同一平面内,b ①c ,a ①c ,则b ①a ,故①错误.所以其中正确的是①①.故答案为:①①.【点睛】本题考查了平行线的判定与性质,平行公理及推论,解决本题的关键是掌握平行线的判定与性质.21.①①①【分析】根据同旁内角的定义,对①进行判断;根据三角形的面积公式,对①进行判断;根据垂线的性质对①进行判断;根据平行线的性质,对①进行判断【详解】解:B 与C ∠是直线AB 和AC 被直线BC 所截的同旁内角,故①错误;①AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,①三角形ABC 的面积=12AB ⨯AC==1⨯AD ①3⨯4=5⨯AD ,①AD=2.4①点A 到直线BC 的距离=AD=2.4,故①正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,①过点A 仅能作一条直线与BC 垂直,故①正确①在同一平面内,过直线外一点有且只有一条直线与已知直线平行,①过直线AC 外一点有且只有一条直线与直线AC 平行,故①正确故答案为:①①①【点睛】本题考查了点到直线的距离、同旁内角、平行线的性质、垂线的性质,解决本题的关键是熟练掌握相关的知识.22.b ①c .【分析】根据平行线的判定得出即可.【详解】①同一平面内三条直线a 、b 、c ,a ①b ,a ①c ,①b ①c ,故答案为:b ①c .【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.23.①①①【分析】根据同位角、对顶角、平行线的性质、垂线的性质即可依次判断.【详解】①两直线平行,同位角相等,故错误;①对顶角相等,正确;①在同一平面内,不相交也不重合的两条直线一定平行,故错误;①过直线外一点有且只有一条直线与这条直线平行,正确;①如果直线,a b c d ⊥⊥,那么a,c 的位置关系不确定,故错误;①垂线段最短,正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,故错误.故答案为:①①①.【点睛】此题主要考查同位角、对顶角、平行线的性质、垂线的性质,解题的关键是熟知各自的性质及特点.24.a①c【分析】根据平行公理推论,即可求解.【详解】①a ,b ,c 是直线,且a①b ,b①c①a①c故答案为:a①c【点睛】本题考查了平行公理及推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.∠=∠(答案不唯一)25.BEF EAC【分析】根据平行线的判定,即可求解.【详解】∠=∠,解:①BEF EAC①//AC EF(同位角相等,两直线平行),也可以写:AFE CAD∠=∠.∠=∠(答案不唯一).故答案为:BEF EAC【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.26.①3=①F同位角相等,两直线平行【分析】根据平行线的判定定理可得.【详解】解:若①3=①F,则CE①DF,理由是:同位角相等,两直线平行,故答案为:①3=①F,同位角相等,两直线平行.(答案不唯一)【点睛】本题考查了平行线的判定定理,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.27.同位角相等(答案不唯一)同位角相等(答案不唯一)【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【点睛】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键. 28.内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,12∠=∠12∠=∠,a //b ∴(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.29.65ABF ∠=︒【分析】根据平行线的判定条件求解即可.【详解】解:①AD ①BC①①A =①ABF =65°故答案为:①ABF =65°.【点睛】本题主要考查了平行线的判定,解题的关键在于能够熟练掌握平行线的判定条件. 30.C CBD ∠=∠(答案不唯一,只要正确即可得分)【分析】根据平行线的判定方法即可解答.【详解】解:①C CBD ∠=∠①//AC BD (内错角相等,两直线平行).故答案为:C CBD ∠=∠(答案不唯一,只要正确即可得分).【点睛】本题主要考查了平行线的判定,熟练掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.31.AB CD 内错角相等,两直线平行 BCD 同旁内角互补,两直线平行 3 2 内错角相等,两直线平行 ABC 同位角相等,两直线平行【分析】(1)根据内错角相等,两直线平行得出即可;(2)根据同旁内角互补,两直线平行得出即可;(3)根据内错角相等,两直线平行得出即可;(4)根据同位角相等,两直线平行得出即可.【详解】解:(1)14∠=∠(已知),//AB CD ∴(内错角相等,两直线平行),(2)ABC ∠+∠BCD 180=︒(已知),//AB CD ∴(同旁内角互补,两直线平行),(3)∠3=∠2(已知),//AD BC ∴(内错角相等,两直线平行)(4)5∠=∠ABC (已知),//AB CD ∴(同位角相等,两直线平行),故答案为:AB;CD;内错角相等,两直线平行;BCD;同旁内角互补,两直线平行;3;2;内错角相等,两直线平行;ABC;同位角相等,两直线平行.【点睛】本题考查了平行线的判定,能正确运用定理进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,①内错角相等,两直线平行,①同旁内角互补,两直线平行.32.内错角相等两直线平行内错角相等两直线平行 2 8 同旁内角互补两直线平行同旁内角互补两直线平行 2 5【分析】(1)根据“内错角相等,两直线平行”回答即可;(2)根据“同旁内角互补,两直线平行”回答即可.【详解】解:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行.这个判定方法2可简述为:内错角相等,两直线平行.几何语言表述为:如图,①①2=①8,①AB//CD;(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.这个判定方法3可简述为:同旁内角互补,两直线平行.几何语言表述为:①①2+①5=180°,①AB//CD.故答案为:内错角相等;两直线平行;内错角相等;两直线平行;2;8;同旁内角互补;两直线平行;同旁内角互补;两直线平行;2;5.【点睛】本题考查了平行线的判定,掌握“内错角相等,两直线平行”以及“同旁内角互补,两直线平行”是解题的关键.33.AD BC同旁内角互补,两直线平行【分析】根据平行线的判定(同旁内角互补,两直线平行)回答即可.【详解】∠=︒∠=︒,解:①162,2118∠+∠=︒,①12180AD BC(同旁内角互补,两直线平行),①//故答案为:AD;BC;同旁内角互补,两直线平行.【点睛】本题考查了平行线的判定:同旁内角互补,两直线平行,熟练掌握平行线的判定定理是解决本题的关键.34.a1①a100;【分析】从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1①a4,a1①a5;a1①a2,a1①a3;且a1与a n的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1①a100.【详解】解:在同一平面内有直线两直线的位置,关系是相交或平行,如图所示:①a1①a2,a2①a3,①a1①a3,又①a3①a4,①a1①a4,又①a4①a s,①a1①a5,又①a5①a6,①a1①a6,又①a6①a7,①a1①a7,…。
5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.2.2 平行线的判定1.(2023秋·山西晋中·八年级统考期末)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.两直线平行,内错角相等C.同位角相等,两直线平行D.两直线平行,同位角相等【答案】A【分析】如图,利用三角形板的特征可确定,然后根据内错角相等,两直线平行可判断.【详解】解:如图,由题意得,根据内错角相等,两直线平行可得.故选:A.【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.2.(2022秋·河南新乡·七年级校考期末)如图,下列推理中,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【答案】B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由内错角相等,两直线平行可知如果,那么,不能得到,故此选项不符合题意;B、由内错角相等,两直线平行可知如果,那么,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.3.(2022春·辽宁沈阳·七年级校考期中)如图,现有条件:①;②;③;④.能判断的条件有()A.①②B.②③C.①③D.②④【答案】C【分析】根据平行线的判定定理即可求解.【详解】①∵∴②∵∴③∵∴④∵∴∴能得到的条件是①③.故选C.【点睛】此题主要考查了平行线的判定,解题的关键是合理利用平行线的判定,确定同位角、内错角、同旁内角,平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.(2022春·四川成都·七年级校考阶段练习)如图,点在的延长线上,在下列四个条件中,不能判断的是()A.B.C.D.【答案】C【分析】直接利用平行线的判定方法分析选择符号题意的选项即可.【详解】解:A、,,故此选项不合题意;B、,,故此选项不合题意;C、,,故此选项符合题意;D、,,故此选项不合题意.故选:C.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(2022秋·山东枣庄·八年级校考期末)如图,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据平行线的判定定理,逐项判断即可求解.【详解】解:若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,则,故本选项符合题意;D,若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.6.(2023春·江苏·七年级专题练习)如图,点,,分别在的边,,上,连接,,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行判断即可.【详解】解:A.若,则(同旁内角互补,两直线平行);B.若,则(内错角相等,两直线平行);C.若,则(同位角相等,两直线平行);D.,则(同位角相等,两直线平行);故选:C.【点睛】本题主要考查了平行线的判定,掌握:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解决问题的关键.7.(2023春·七年级课时练习)如图,下列条件中不能判定的是( )A.B.C.D.【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A. ,内错角相等两直线平行,能判定;B. ,同位角相等两直线平行,能判定;C. ,,可知,内错角相等两直线平行,能判定;D. 是同旁内角相等,但不一定互补,所以不能判定.故选:D.【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知,,求证:与平行.证明:①:;②:,;③:;④:;⑤:.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①【答案】B【分析】先证明,结合,证明,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵(已知),(邻补角的定义),∴(同角的补角相等).∵(已知),∴(等量代换),∴(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.【点睛】本题考查的是补角的性质,平行线的判定,证明是解本题的关键.9.(2021春·浙江宁波·七年级校考期中)如图把三角板的直角顶点放在直线上,若,则当______度时,.【答案】【分析】由直角三角板的性质可知,当时,,得出即可.【详解】当当时,,理由如下:∵,∴,当时,,∴故答案为:【点睛】本题主要考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解题的关键.10.(2021春·江苏南京·七年级南京钟英中学校考期中)如图,直线、被直线所截,,当______时,.【答案】115【分析】若,则,由可得的度数,从而求得的度数.【详解】解:如图,若要,则,∵,∴,∴.故答案为:115.【点睛】本题考查平行线的判定方法,熟记平行线判定方法是解题的关键.11.(2021春·浙江绍兴·七年级校考期中)如图,,,若使,则可将直线b绕点A 逆时针旋转___________度.【答案】42【分析】先根据邻补角进行计算得到,根据平行线的判定当b与a的夹角为时,,由此得到直线b绕点A逆时针旋转.【详解】解:如图:∵,∴,∵,∴当时,,∴直线b绕点A逆时针旋转.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.12.(2022春·江苏宿迁·七年级校考阶段练习)如图,条件______填写所有正确的序号一定能判定.①;②;③;④;【答案】①③④【分析】根据平行线的判定解答即可.【详解】解:∵,∴;①一定能判定,符合题意.∵,∴;③一定能判定,不合题意.∵,∴;③一定能判定,符合题意.∵,∴;④一定能判定,符合题意.故答案为:【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.13.(2022春·山东泰安·七年级统考期中)如图,点在的延长线上,下列条件:①;②;③;④.其中能判定的是________.(将所有正确的序号都填入)【答案】①②③【分析】根据平行线的判定条件逐一判断即可.【详解】解:由∠C=∠5,可以判断(同位角相等,两直线平行),故①正确;由∠C+∠BDC=180°,可以判断(同旁内角互补,两直线平行),故②正确;由,可以判断(内错角,两直线平行),故③正确;由可以判断(内错角,两直线平行),不能判定,故④不正确;故答案为:①②③.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.14.(2022春·山东枣庄·七年级统考期中)平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB,并用三角尺的一条边贴住直线AB;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD.这样,就得到.请写出其中的道理:______.【答案】同位角相等,两直线平行【分析】根据作图过程可得∠1=∠2,根据平行线的判定可得答案.【详解】解:如下图所示,∵∠1=∠2,∴(同位角相等,两直线平行),故答案为:同位角相等,两直线平行【点睛】本题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.15.(2022秋·山西临汾·七年级统考期末)阅读下面的解答过程,并填空.如图,,平分,平分,.求证:.证明:∵平分,平分,(已知)∴__________,_________.(角平分线的定义)又∵,(已知)∴∠____________=∠____________.(等量代换)又∵,(已知)∴∠____________=∠____________.(等量代换)∴.(____________)【答案】;;;;;;同位角相等,两直线平行【分析】根据角平分线的定义,等量代换,同位角相等两直线平行,联系证明过程,可推理出答案.【详解】证明:∵平分,平分,(已知)∴,.(角平分线的定义)又∵,(已知)∴.(等量代换)又∵,(已知)∴.(等量代换)∴.(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,角平分线的定义,解决本题的关键是熟悉相关的几何定理,联系证明过程进行推导.16.(2022春·福建厦门·七年级统考期末)如图,,,.与平行吗?为什么?解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(____________)∴.(____________)【答案】,,同角的余角相等,同位角相等,两直线平行;【分析】先证明,,结合同角的余角相等可得,从而可得答案.【详解】解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(同角的余角相等)∴.(同位角相等,两直线平行)【点睛】本题考查的是垂直的定义,余角的性质,平行线的判定,熟练的证明是解本题的关键.17.(2023春·全国·七年级专题练习)已知:如图,于点C,于点D,.求证:.【答案】见详解【分析】根据垂直的定义得到,等量代换可得,再根据平行线的判定定理即可得到结论.【详解】解:∵,,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.18.(2022秋·全国·八年级专题练习)如图,直线a,b直线c所截.(1)当∠1=∠3时,直线a,b平行吗?请说明理由.(2)当∠2+∠3=180°时,直线a,b平行吗?请说明理由.【答案】(1),理由见解析(2),理由见解析【分析】(1)根据等角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;(2)根据同角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;【详解】(1)解:如图,当∠1=∠3时,a b,理由如下:∵∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,∴∠2=∠4,∴a b;(2)当∠2+∠3=180°时,a b,理由如下:∵∠2+∠3=180°,∠3+∠4=180°,∴∠2=∠4,∴a b;【点睛】本题考查了平行线的判定,解决本题的关键是熟练运用平行线的判定定理.1.(2023春·七年级单元测试)如图,下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【分析】根据平行线的判定条件逐一判断即可得到答案.【详解】解:A、,不能判断,选项错误;B、,可以判断,不能判断,选项错误;C、,可以判断,不能判断,选项错误;D、,可以判断,选项正确,故选D.【点睛】本题考查了平行线的判定,解题关键是掌握平行线的判定条件:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行.2.(2023春·全国·七年级专题练习)如图,点在的延长线上,下列条件不能判定的是()A.B.C.D.【答案】C【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A.根据内错角相等,两直线平行可判定,故此选项不合题意;B.根据同位角相等,两直线平行可判定,故此选项不合题意;C.根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D.根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(2023春·七年级课时练习)如图,,下列结论正确的是( )①若,则;②若,则;③若,则;④若,则.A.①②B.②④C.②③④D.②【答案】B【分析】根据平行线的判定定理,即可一一判定.【详解】解:由,不能判定,故①不符合题意;,,,,故②符合题意;由,,不能判定,故③不符合题意;,,,,故④符合题意;故选:B.【点睛】本题考查了平行线的判定定理,熟练掌握和运用平行线的判定定理是解决本题的关键.4.(2022春·河北邯郸·七年级校考期中)将一副三角板按如图所示方式放置.结论Ⅰ:若∠1=45°,则有;结论Ⅱ:若∠1=30°,则有;下列判断正确的是()A.I和Ⅱ都对B.I和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【分析】根据三角板中角的和差关系,当结论Ⅰ时得到∠B+∠BAE=180°,根据平行线的判定即可得到结论;当结论Ⅱ时,无法得出结论,结合选项逐个判断即可.【详解】解:如图所示:结论Ⅰ:∵∠1=45°,∴∠2=90°−∠1=45°,∴∠BAE=90°+45°=135°,∴∠B+∠BAE=45°+135°=180°,∴BC AE,故结论Ⅰ正确;结论Ⅱ:∵∠1=30°,∴∠2=90°−∠1=60°,∴∠BAE=90°+60°=150°,∴∠E+∠BAE=60°+150°=210°,∴无法得到DE AB,故结论Ⅱ错误,故选:D.【点睛】本题考查平行线的判定,等腰直角三角形等知识点,能灵活运用定理进行推理是解题的关键.5.(2022春·新疆乌鲁木齐·七年级乌鲁木齐市第九中学校考期中)如图,下列判断中错误的是()A.因为∠1=∠2,所以B.因为∠5=∠BAE,所以C.因为∠3=∠4,所以D.因为∠5=∠BDC,所以【答案】B【分析】根据平行线的判定定理求解判断即可.【详解】因为∠1=∠2,所以AE∥BD,故A正确,不符合题意;因为∠5=∠BAE,所以AB∥CD,故B错误,符合题意;因为∠3=∠4,所以AB∥CD,故C正确,不符合题意;因为∠5=∠BDC,所以AE∥BD,故D正确,不符合题意;故选:B.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.6.(2022春·江苏扬州·七年级校联考期中)如图,下列条件中:①;②;③;④;能判定的条件个数有()A.1B.2C.3D.4【答案】B【分析】利用平行线的判定定理对条件依次验证即可知正确条件个数.【详解】解:当①;利用同位角互补,两直线平行可知①能判定;当②;可以判定,故②不能判定;③;可以判定,故②不能判定;④;利用内错角相等,两直线平行可知①能判定;故选:B【点睛】本题考查平行线的判定定理,解题的关键是熟练掌握平行线的判定定理.7.(2022·全国·七年级假期作业)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠3=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据平行线的判定定理“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”逐项排查即可.【详解】解:①∠1=∠5可根据同位角相等,两直线平行得到a∥b;②∠4=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠5=180°可根据同旁内角互补,两直线平行得到a∥b;④∠2、∠3是邻补角,则∠3+∠2=180°不能得到a∥b;故选:C.【点睛】此题主要考查了平行线的判定,平行线的判定定理有同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.(2023春·七年级课时练习)如图(1),在中,,边绕点按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2)),当()时,.A.42°B.138°C.42°或138°D.42°或128°【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当∠ACB'=42°时,∵,∴∠ACB'=∠A.∴CB'∥AB.如图(2),当∠ACB'=138°时,∵∠A=42°,∴∴CB'∥AB.综上可得,当或时,CB'∥AB.故选:C【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据CB'在旋转过程中的不同位置,进行分类讨论是解题的关键.9.(2023春·七年级课时练习)如图,不添加辅助线,请写出一个能判定AB CD的条件__【答案】∠1=∠4##∠B=∠5##∠B+∠BCD=180°【分析】根据平行线的判定定理即可解答.【详解】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点睛】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.(2023春·七年级课时练习)如图,a、b、c三根木棒钉在一起,,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当秒时,当时,当时,当时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当秒时,,解得:t=2;当时,,解得:t=14;当时,木棒a停止运动,当时,,解得:t=-10;(不合题意,舍去)当时,或,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.11.(2023春·七年级课时练习)在同一平面内有2022条直线,如果,,,……那么与的位置关系是_____________.【答案】垂直【分析】根据垂直的定义和平行线的性质可得依次是垂直,垂直,平行,平行,4个一循环,依此可得,的位置关系.【详解】解:∵在同平面内有2022条直线,若,,,……∴与依次是垂直,垂直,平行,平行,…,∵…1,∴与的位置关系是垂直.故答案为:垂直.【点睛】本题考查垂线、平行线的规律问题,解题的关键是找出规律.12.(2023春·七年级课时练习)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上,对于给出的五个条件:①∠1=25.5°,∠2=55°;②∠1+∠2=90°;③∠2=2∠1;④∠ACB=∠1+∠3;⑤∠ABC=∠2-∠1.能判断直线m n的有__.(填序号)【答案】①④⑤【分析】根据平行线的判定方法和题目中各个小题中的条件,逐一判断是否可以得到m∥n,从而可以解答本题.【详解】解:∵∠1=25.5°,∠2=55°,∠ABC=30°,∴∠ABC+∠1=55.5°=55°=∠2,∴m n,故①符合题意;∵∠1+∠2=90°,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故②不符合题意;∵∠2=2∠1,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故③不符合题意;过点C作CE m,∴∠3=∠4,∵∠ACB=∠1+∠3,∠ACB=∠4+∠5,∴∠1=∠5,∴EC n,∴m n,故④符合题意;∵∠ABC=∠2-∠1,∴∠2=∠ABC+∠1,∴m n,故⑤符合题意;故答案为:①④⑤.【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2021春·全国·七年级专题练习)如图,点是延长线上一点,在下列条件中:①;②;③且平分;④,能判定的有__.(填序号)【答案】③④【分析】根据平行线的判定方法分别判定得出答案.【详解】①中,,(内错角相等,两直线平行),不合题意;②中,,(同位角相等,两直线平行),不合题意;③中,且平分,,,故此选项符合题意;④中,,(同旁内角互补,两直线平行),故此选项符合题意;答案:③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.(2021春·湖南岳阳·七年级统考期末)如图,将一副三角板按如图所示放置,,,,且,则下列结论中:①;②若平分,则有;③将三角形绕点旋转,使得点落在线段上,则此时;④若,则.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB=∠DAE=90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD平分∠CAB,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C=∠B=45°,∴∠3=∠B,∴BC∥AE,故②正确;③将三角形ADE绕点A旋转,使得点D落在线段AC上,则∠4=∠ADE-∠ACB=60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°,又∠E=30°,设DE与AB交于点F,则∠AFE=90°,∵∠B=45°,∴∠4=45°,∴∠C=∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.15.(2021春·山东济南·七年级校考期中)如图,直线,相交于点,平分,平分,,垂足为,那么,请说明理由.【答案】见解析【分析】根据角平分线的定义得到,,根据垂直的定义得到,根据平行线的判定定理即可得到结论.【详解】证明:∵平分,∴,∵平分,∴,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的定义,平行线的判定,熟练掌握平行线的判定是解题的关键.16.(2023春·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.(1)求的度数;(2)试说明的理由.【答案】(1)的度数为(2)见解析【分析】(1)根据角平分线的定义推出,再根据对顶角性质求解即可;(2)结合等量代换得出,根据“内错角相等,两直线平行”即可得解.【详解】(1)解:∵,分别平分和,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴;(2)解:,,∴,∴.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义,余角的性质,熟记平行线的判定与性质是解题的关键.17.(2023春·七年级课时练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关求证:.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∴______FC平分∠BFG∴______∴∠EBF=______∴(【答案】对顶角相等;∠∴∠FC平分∠BFG∴∠∴∠EBF=∠∴(内错角相等,两直线平行)故答案为:对顶角相等;∠统考中考真题)如图,直线,且直线定直线的是(A.B...【答案】C、当时,;故、当时,;故B不符合题意;、当时,;故C、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.2.(2022·吉林·统考中考真题)如图,如果,那么,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.3.(2022·浙江台州·统考中考真题)如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A.B.C.D.【答案】C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.4.(2020·浙江金华·统考中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.5.(2020·湖南郴州·统考中考真题)如图,直线被直线所截,下列条件能判定的是()A.B.C.D.【答案】D【分析】直接利用平行线的判定方法进而分析得出答案.【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;D、当∠1=∠2时,a∥b,故此选项符合题意;故选:D【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.6.(2020·浙江衢州·统考中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.7.(2021·甘肃兰州·统考中考真题)将一副三角板如图摆放,则______∥______,理由是______.【答案】内错角相等,两直线平行【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.8.(2021·广西桂林·统考中考真题)如图,直线a,b被直线c所截,当∠1 ___∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=.【分析】由图形可知∠1 与∠2是同位角,利用直线平行判定定理可以确定∠1 =∠2,可判断a//b.【详解】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.9.(2020·湖北咸宁·中考真题)如图,请填写一个条件,使结论成立:∵__________,∴.【答案】∠1=∠4(答案不唯一)【分析】根据平行线的判定添加条件即可.【详解】解:如图,若∠1=∠4,则a∥b,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答.。
七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试题
一.填空题
1、如图1,CD 平分∠ACB ,DE ∥BC ,∠AED =800
,那么∠EDC 的度数为__________。
2、如图2,AB ∥CD ,FE 平分∠GFD ,GF 与AB 交于H ,∠GHA =400
,那么∠BEF 的度数是___________。
E D C
B
A 图1
H
G F
E D
C
B
A 图2
F
E
D
C
B
A 图3
3、如图3,AD ∥BC ,∠DAC =600
,∠ACF =250
,∠EFC =1450
,则直线EF 与BC 的位置关系是___________。
4、如图5,已知A B ∥EF ∥CD ,且∠B +∠BED +∠D =1960,∠B -∠D =220
,则∠BEF =_________。
5、如图6,∠1=820,∠2=980,∠3=800
,则∠4=_________。
F E
D
C
B
A
图5
d
c b
a
4
3
2
1图6
F
E
D
C
B A
图8
6、如图8,若AB ∥DC ,AD ∥BC ,则图中与∠A 相等的角有________ 个。
二.选择题。
γ
βαE D C
B
A
图10
4321
A
B
C 图11
1、如图10,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( )
A 、0180=∠+∠+∠γβα
B 、0
180=∠+∠-∠γβα
C 、0
180=∠-∠+∠γβα D 、0270=∠+∠+∠γβα
2、如图11,下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是
内错角;④∠1与∠3是同位角。
其中正确的个数是( )
A 、4个
B 、3个
C 、2个
D 、1个 4、下列说法错误的是( )
A 、两条直线平行,内错角相等
B 、两条直线相交所成的角是对顶角
C 、两条直线平行,一组同旁内角的平分线到相垂直
D 、邻补角的平分线互相垂直
5、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐
弯的度数是( )
A 、第一次右拐50°,第二次左拐130°
B 、第一次左拐50°,第二次右拐50°
C 、第一次左拐50°,第二次左拐130°
D 、第一次右拐50°,第二次右拐50° 三、完成下面的证明推理过程,并在括号里填上根据。
1、已知,如图13-1,∠1=∠2,∠A =∠F 。
求证:∠C =∠D 。
证明:∵∠1=∠2(已知) ∠1=∠3(对顶角相等)
∴∠2=∠3 ( ) ∴BD ∥CE ( )
∴∠FEM =∠D ,∠4=∠C ( ) 又∵∠A =∠F (已知)
∴AC ∥DF ( ) ∴∠C =∠FEM ( ) 又∵∠FEM =∠D (已证) ∴∠C =∠D (等量代换)
2、已知,如图13-2,∠1=∠2,CF ⊥AB ,DE ⊥AB ,求证:FG ∥BC 。
证明:∵CF ⊥AB ,DE ⊥AB (已知)
∴∠BED =900,∠BFC =900( )
∴∠BED =∠BFC (等量代换)
∴ED ∥FC ( )
∴∠1=∠BCF ( ) 又∵∠1=∠2(已知)
∴∠2=∠BCF ( ) ∴FG ∥BC ( ) 四、计算与证明。
1、如图,已知:∠3=125°,∠4=55°,∠1=118°,
求:∠2的度数。
2、已知,如图14,AC ∥DF ,∠1=∠A 。
求证:AB ∥DEA 。
3、已知,如图15,∠ACB =600,∠ABC =500, BO 、CO 分别平分∠ABC 、∠ACB ,EF 是经
过点O 且平行于BC 的直线,求∠BOC 的度数。
N M A B C
D
E F 4321
图13-1图13-2
21G
F E
D C B A a
d b 1 2 3 4 c
A B C D E F 1
图14
F O
E
C
B
A 图15。