5.2 抽样误差
抽样误差分析

抽样误差分析抽样误差是指在进行统计调查时,由于样本的选择不完全随机或样本量不足等原因,导致样本的统计结果与总体真实情况之间存在差异的现象。
抽样误差是统计学中常见的问题,它对于研究结果的准确性和可靠性有着重要影响。
因此,对抽样误差进行分析和评估是非常必要的。
一、抽样误差的原因1. 非随机抽样:非随机抽样是指在抽取样本时,没有按照完全随机的原则进行选择。
例如,采用方便抽样、自愿抽样等方法,容易导致样本的偏倚,从而引入抽样误差。
2. 样本量不足:样本量的大小对于统计结果的准确性有着重要影响。
当样本量过小时,样本中的个体或观察值可能无法充分代表总体,从而引入抽样误差。
3. 抽样框问题:抽样框是指进行抽样的总体的完整列表或描述。
当抽样框不准确或不完整时,可能导致样本的选择不够随机,从而引入抽样误差。
二、抽样误差的影响抽样误差对统计结果的影响主要体现在两个方面:估计结果的偏差和不确定性。
1. 估计结果的偏差:抽样误差会导致样本的统计结果与总体真实情况存在差异。
当抽样误差偏向某一方向时,估计结果的偏差可能会导致对总体参数的估计存在系统性的错误。
2. 不确定性:抽样误差会引入统计结果的不确定性。
由于样本的选择是随机的,因此每次抽样都可能得到不同的样本结果。
通过对多次抽样结果的分析,可以评估统计结果的不确定性范围,即置信区间。
三、抽样误差的评估方法对于抽样误差的评估,可以采用以下方法:1. 重复抽样:通过多次独立的抽样实验,得到多组样本,并对这些样本进行统计分析。
通过比较不同样本结果之间的差异,可以评估抽样误差的大小。
2. 自助法:自助法是一种特殊的重复抽样方法,它通过有放回地从原始样本中随机抽取样本,形成新的样本集合。
通过对多次自助样本结果的分析,可以评估抽样误差的大小。
3. 交叉验证:交叉验证是一种将样本分为训练集和测试集的方法。
通过在训练集上建立模型,并在测试集上进行验证,可以评估模型的预测准确性和抽样误差的大小。
抽样误差——精选推荐

抽样误差、抽样平均误差与抽样极限误差一、基本概念抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。
因此,又称为随机误差,它不包括登记误差,也不包括系统性误差。
影响抽样误差的因素有:1、总体各单位标志值的差异程度;2、样本的单位数;3、抽样的方法;4、抽样调查的组织形式。
抽样误差又分为两种:1、抽样平均误差。
抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差。
即它反映了抽样指标与总体指标的平均离差程度。
抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。
平均误差大,说明样本指标对总体指标的代表性低;反之,则高。
(记为μx 或μp )2、抽样极限误差。
抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围(记为∆)。
二、计算公式(一)抽样平均误差1、样本平均数的平均误差以μx 表示样本平均数的平均误差,σ表示总体的标准差。
根据定义:即n x σμ=,(若为不重复抽样,则总体方差σ要用进行修正)它说明在重复抽样的条件下,抽样平均误差与总体标准差成正比,与样本容量的平方根成反比。
例1:有5个工人的日产量分别为(单位:件):6,8,10,12,14,用重复抽样的方法,从中随机抽取2个工人的日产量,用以代表这5个工人的总体水平。
则抽样平均误差为多少?解:根据题意可得:(件)总体标准差(件)抽样平均误差(件)注意:在计算抽样平均误差时,通常得不到总体标准差的数值,一般可以用样本标准差来代替总体标准差。
2、抽样成数的平均误差总体成数P 可以表现为总体是非标志的平均数。
即E(X)=P ,它的标准差。
根据样本平均误差和总体标准差的关系,可以得到样本成数的平均误差的计算公式。
(不重复抽样时要修正)注意:当总体成数未知时,可以用样本成数来代替。
统计学中的抽样误差分布

统计学中的抽样误差分布在统计学中,抽样误差是指样本统计量与总体参数之间的差异。
当我们从总体中抽取一个样本,并用样本统计量来估计总体参数时,由于抽取的样本并不是总体的全部,因此存在抽样误差。
抽样误差的分布是统计学中一个重要的概念,它描述了抽样误差的概率分布情况。
本文将介绍统计学中的抽样误差分布。
一、抽样误差的产生原因抽样误差的产生主要有以下几个原因:1. 随机抽样:在统计学中,我们通常采用随机抽样的方法来获取样本。
由于样本是从总体中随机选择的,因此样本与总体之间的差异是不可避免的。
2. 样本大小:样本大小对抽样误差有影响。
样本越大,抽样误差越小;样本越小,抽样误差越大。
3. 总体分布的形状:总体分布的形状也会对抽样误差的分布产生影响。
当总体呈正态分布时,抽样误差往往服从正态分布。
二、抽样误差的分布在统计学中,常见的抽样误差分布有以下几种:1. 正态分布:当总体分布是正态分布,并且样本大小足够大时,根据中心极限定理,样本均值的抽样误差大致服从正态分布。
这也是许多统计推断方法的基础。
2. t分布:在实际应用中,当总体分布未知且样本大小较小的情况下,我们通常使用t分布来描述样本均值的抽样误差。
3. 二项分布:在二项分布中,我们关注的是成功与失败的次数。
当样本来自二项分布总体时,样本比例的抽样误差可以用二项分布来描述。
4. 指数分布:在某些情况下,我们关注的是事件发生的时间间隔。
当事件按照指数分布发生时,我们可以使用指数分布来描述事件发生时间的抽样误差。
三、抽样误差的影响抽样误差的分布对统计推断和决策具有重要影响:1. 置信区间:在统计推断中,我们常常需要给出一个参数的置信区间。
抽样误差的分布决定了置信区间的宽度,即置信水平的精度。
2. 假设检验:在假设检验中,我们常常需要计算p值来判断统计显著性。
抽样误差的分布决定了p值的计算方式。
3. 决策风险:在决策分析中,我们常常需要权衡风险和效益。
抽样误差的分布决定了决策的可靠性和风险程度。
统计学中的抽样误差和非抽样误差

统计学中的抽样误差和非抽样误差统计学是研究如何收集、整理、分析和解释数据的学科。
在统计学中,抽样是一种常见的数据收集方法。
在进行抽样时,我们常常会遇到抽样误差和非抽样误差。
本文将详细介绍这两种误差的概念、影响以及如何减少它们的方法。
一、抽样误差抽样误差是由于从总体中选择一个样本而引起的误差。
当我们使用一个相对较小的样本来代表整个总体时,会产生抽样误差。
抽样误差可能是由于选择的样本不具有代表性,或者从样本中得到的信息不完整而引起的。
抽样误差是统计研究中常见的问题,它会对结果的准确性产生影响。
抽样误差的大小取决于多个因素,包括样本容量、抽样方法和总体变异性等。
较小的样本容量会增加抽样误差的可能性,因为小样本可能无法准确地反映总体的特征。
不同的抽样方法也会对抽样误差产生不同的影响。
如果抽样方法不具有随机性或没有明确定义的抽样框架,那么可能会引入更多的抽样误差。
此外,总体的变异性越大,抽样误差也会相应增加。
减少抽样误差的方法是增加样本容量和改进抽样方法。
通过增加样本容量,我们可以更好地捕捉总体的特征,从而减少抽样误差。
而改进抽样方法可以通过采用随机抽样方法、明确的抽样框架以及适当的样本分层等,来提高样本的代表性,从而减少抽样误差的可能性。
二、非抽样误差非抽样误差是指在数据收集、整理、分析和解释过程中引入的各种其他误差。
相比抽样误差,非抽样误差更难以控制,因为它通常是由于研究设计、数据质量、调查方法和数据处理等方面的问题引起的。
非抽样误差可以包括如下几个方面的问题:1. 问卷设计:不合理的问题设计、问题表述不清、问题顺序不当等都会引入非抽样误差。
2. 非回答误差:指调查对象拒绝参与或者没有回答所有问题而引入的误差。
3. 测量误差:包括测量工具的不准确性、调查员的主观判断等因素导致的误差。
4. 数据处理误差:在数据录入、清洗、整理和分析等过程中出现的错误和失误。
非抽样误差的控制需要从研究设计和数据处理等方面入手。
抽样误差名词解释

抽样误差名词解释
抽样误差是指在进行抽样调查时,由于样本的选取可能会产生与整体数量或特征的差异,从而导致调查结果与总体实际情况存在一定的偏差。
抽样误差是统计学中一个重要的概念,也是衡量调查结果可信度的一个重要指标。
抽样误差包含了两个方面的因素:随机抽取带来的抽样误差和非随机抽取带来的抽样误差。
随机抽取带来的抽样误差是指通过随机抽样方法从总体中选取样本可能导致样本和总体之间的差异。
随机抽样的目的是保持样本的代表性,即在特定的性质或变量上,样本能够代表总体的整体特征。
然而,由于样本数量有限,可能会导致样本与总体之间的差异,即抽样误差。
随机抽取带来的抽样误差大小与样本的大小以及总体的大小有关,样本越大,总体越小,抽样误差越小。
非随机抽取带来的抽样误差是指在样本选取过程中,存在某些非随机因素的干扰,导致样本与总体之间的差异。
非随机抽样可能导致样本在某些特征上与总体存在偏向,从而影响调查结果的可信度。
非随机抽样带来的抽样误差可以通过调整样本的代表性来减小,例如使用权重或倾斜分析等方法。
抽样误差的大小取决于多个因素,包括样本的大小、总体的大小、抽样方法的选择、操作过程中的误差等。
为了减小抽样误差,可以采取一系列的方法和技术,如增加样本的大小、采用分层抽样、使用多阶段抽样等。
总之,抽样误差是指在抽样调查中由于样本选取带来的样本与总体之间的差异,是判断调查结果可信度的重要指标。
通过选择合适的抽样方法、增加样本数量以及进行合理的调整和分析,可以减小抽样误差,从而提高统计结果的准确性和可靠性。
抽样误差的名词解释

抽样误差的名词解释抽样误差是指在统计抽样过程中,由于对总体的部分样本进行统计推断而产生的误差。
抽样误差是统计学中常见的一种误差,它可能会导致推断结果的偏差。
抽样误差产生的原因有以下几点:1. 抽样方法的选择:不同的抽样方法可能会对样本进行不同程度的偏倚,导致抽样误差的产生。
如果抽样方法无法完全代表总体,那么抽样误差就会出现。
2. 抽样量的大小:抽样量是指从总体中抽取的样本数量。
当抽样量较小时,样本的代表性可能较差,从而产生较大的抽样误差。
增加抽样量可以减小抽样误差。
3. 抽样框的选择:抽样框是指用于抽样的总体名单或者样本来源。
如果抽样框不完全包含总体的全部成员,或者抽样框中的成员不能很好地代表总体的特征,那么抽样误差就会出现。
4. 非随机抽样:如果抽样过程中存在非随机性,如主观选择样本、方便抽样等,那么抽样误差会增大。
这是因为非随机抽样可能会导致样本与总体的特征不一致。
抽样误差的存在会影响统计推断的准确性和可靠性。
为了减小抽样误差,可以采取以下措施:1. 采用随机抽样方法:随机抽样可以使样本能够更好地代表总体,减小抽样误差。
常用的随机抽样方法包括简单随机抽样、分层抽样、整群抽样等。
2. 增加抽样量:较大的抽样量可以提高样本的代表性,减小抽样误差。
通过增加抽样量,可以更好地反映总体的特征。
3. 优化抽样框:选择合适的抽样框是减小抽样误差的关键。
抽样框应该能够充分覆盖总体,并且能够代表总体的各个特征。
4. 使用合适的统计方法:在进行统计推断时,使用合适的统计方法可以减小抽样误差。
合理选择适当的统计模型和假设检验方法,可以提高推断结果的可靠性。
总之,抽样误差是统计推断中不可避免的一种误差。
通过选择合适的抽样方法、优化抽样框、增加抽样量和使用合适的统计方法,可以减小抽样误差,提高统计推断的准确性。
统计学中的抽样误差与非抽样误差

统计学中的抽样误差与非抽样误差【统计学中的抽样误差与非抽样误差】统计学作为一门重要的科学方法,广泛应用于各个领域。
在进行数据分析和研究过程中,抽样误差和非抽样误差是其中关键的概念。
本文将从定义、影响因素、测量方法以及减少误差的策略等方面,深入探讨统计学中的抽样误差与非抽样误差。
1. 抽样误差的定义和影响因素抽样误差指的是从总体中选取样本所导致的估计误差。
在真实总体很大的情况下,由于实际调查的限制,我们很难直接获得全体数据,因此需要采用抽样方法。
抽样误差的大小直接关系到样本数据的代表性和准确性,主要受以下因素影响:(1) 样本容量:样本容量越大,抽样误差越小。
(2) 抽样方法:合理的抽样方法可降低抽样误差。
(3) 抽样框的准确性:抽样框是指包含总体的框架,若抽样框不准确,则会增加抽样误差。
2. 非抽样误差的定义和影响因素非抽样误差指的是除抽样误差以外的其他误差来源,主要包括调查设计、数据采集过程中的操作和测量等误差。
非抽样误差的大小直接影响着最终统计结果的准确性,以下是一些常见的非抽样误差来源:(1) 调查设计偏差:调查设计的不完善或缺陷会引入误差。
(2) 非回应误差:调查对象拒绝参与或无法联系到的情况。
(3) 数据处理误差:包括数据录入、清洗和分析过程中的误差。
3. 抽样误差和非抽样误差的测量方法对于抽样误差,一种常用的测量方法是计算标准误差。
标准误差是样本观测值与总体参数估计值之间的差异度量,可以用来评估样本数据的准确性和稳定性。
同时,还可以利用置信区间来估计总体参数的范围和可信度。
对于非抽样误差,常用的测量方法是检查数据质量和进行误差分析。
数据质量的检查包括对数据的完整性、准确性和一致性等方面进行评估,并采取纠正措施。
误差分析可以通过对调查过程的审查和再次检测等方式,发现和纠正非抽样误差。
4. 减少抽样误差和非抽样误差的策略在实际研究和调查中,减少抽样误差和非抽样误差是提高数据分析效果和可信度的关键。
抽样误差

抽样误差抽样误差(Sampling error)[编辑]什么是抽样误差在抽样检查中,由于用样本指标代替全及指标所产生的误差可分为两种:一种是由于主观因素破坏了随机原则而产生的误差,称为系统性误差;另一种是由于抽样的随机性引起的偶然的代表性误差。
抽样误差仅仅是指后一种由于抽样的随机性而带来的偶然的代表性误差,而不是指前一种因不遵循随机性原则而造成的系统性误差。
总的说来,抽样误差是指样本指标与全及总体指标之间的绝对误差。
在进行抽样检查时不可避免会产生抽样误差,因为从总体中随机抽取的样本,其结构不可能和总体完全一致。
例如样本平均数与总体平均数之差,样本成数与总体成数之差| p− P | 。
虽然抽样误差不可避免,但可以运用大数定律的数学公式加以精确地计算,确定它具体的数量界限,并可通过抽样设计加以控制。
抽样误差也是衡量抽样检查准确程度的指标。
抽样误差越大,表明抽样总体对全及总体的代表性越小,抽样检查的结果越不可靠。
反之,抽样误差越小,说明抽样总体对全及总体的代表性越大,抽样检查的结果越准确可靠。
在统计学中把抽样误差分为抽样平均误差和抽样极限误差,下面就这两种误差分别进行阐释。
为使推理过程简化,这里不对属性总体进行分析,而仅对变量总体进行分析计算。
[编辑]抽样误差的计算1、表现形式:平均数指标抽样误差;成数(比重)抽样误差。
2、平均数指标的抽样误差1)重复抽样的条件下:2)不重复抽样的条件下:3、成数指标的抽样误差1)重复抽样的条件下:2)不重复抽样的条件下:[编辑]影响抽样误差的因素1.总体各单位标志值的差异程度。
差异程度愈大则抽样误差愈大,差异程度愈小则则抽样误差愈小。
2.样本单位数。
在其他条件相同的情况下,样本的单位数愈多,则抽样误差愈小。
3.抽样方法。
抽样方法不同,抽样误差也不同。
一般情况下重复抽样误差比不重复抽样误差要大一些。
4.抽样调查的组织形式。
不同的抽样组织形式就有不同的抽样误差。
[编辑]抽样误差的控制措施抽样误差则是不可避免的,但可以减少,其措施有:1、增加样本个案数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、解
2、解:
3、解: 已知N=10000,n=400,
p=368/400=92%,求 μ p 重复抽样:
不重复抽样:
【4】某校随机抽选400名学生,发现戴眼镜的学生有 80人。根据样本资料推断全部学生中戴眼镜的学生所 占比重时,抽样误差为多大?
x
2
nn
0.9 0.045 400
抽样平均误差μ
(一)平均数的抽样平 均误差x
1.重复抽样条件下
x
x2
n
sx2 n
2.不重复抽样条件下
x
sx2 (1 n )
n
N
抽样平均误差μ
(二)成数的抽样平均 误差 p
1.重复抽样条件下
p
p2
n
sp2 n
p(1 P) n
2.不重复抽样条件下
4、解:样本p=n1/n=80/400=20%
5、重复抽样时:
x
2
nn
0.9 0.045 400
6、不重复抽样时: 重复抽样时:
思维导图
实践任务
对济宁职业技术学院在校大学生每月消费支出情 况,选择合适的组织形式进行抽样调查,并计算 总体的抽样平均误差。
统计基础与应用
谢谢
aggregative index
【5】已知:样本单位数400户,样本平均满意度3.68 ,样本满意度的标准差0.9,我们采取的是重复抽样的 方式,计算抽样平均误差。
【6】某灯泡厂对10000个产品进行使用寿命检验,随 机抽取2%样本进行测试,按规定,灯泡使用寿命在 1000小时以上者为合格品,测得样本数据如下:灯泡 平均使用时间 x=1057小时,灯泡使用时间标准差为 s=53.63小时,合格品率为p=91.5%,试根据资料计算 平均寿命和合格品率抽样误差。
1
n N
三、抽样平均误差的计算
2. 成数的抽样平均误差
(1)在重复抽样条件下:
p
P1 P
n
(2)在不重复抽样条件下: p P(1 n NhomakorabeaP)
1
n N
例题5--1
四、抽样极限误差
抽样极限误差是调查者根据抽样推断结果的精确度 及可靠性要求确定的样本指标和总体指标之间误差的 最大允许范围,也称为允许误差或容许误差。
p
p(1 P) (1 n )
n
N
课堂练习:
【1】随机抽查某大学150个男生的身高,得其平均 身高为170.8公分。根据过去的材料,知道大学生 身高的总体标准差为24公分,试求抽样平均误差。
【2】、某厂生产某种灯泡5000只,随机抽取500只 作寿命测试。测试结果表明,平均寿命为6200小时 ,样本标准差为450小时,求抽样平均误差。
统计基础与应用
5.2 抽样误差
aggregative index
教学目标
知识目标
项目五 抽样推断 任务5.2 抽样误差
能力目标
素质目标
掌握抽样平均误 差、抽样极限误 差的计算方法及 分析
能够运用抽样平 均误差、极限误 差对抽样总体进 行计算及分析
培养严谨的工 作态度、团队 合作精神
案例
某市自来水城镇居民用户共有114万户,采用不重复抽样的 方式,随机抽取了400户进行满意度的调查,获得的相关资 料如下:城镇居民用户对自来水公司产品的平均满意度为 3.68,满意度的标准差为0.9。接下来我们要用这400个城 镇居民用户的资料来推断A市114万城镇居民用户对产品的 满意度,会不会存在误差?如果存在,误差会有多大?
案例思考: 你能判断出被调查客户的意见与所有 客户的意见误差有多大?
一、什么是抽样误差
抽样误差是指由于随机抽样的偶然原因使样本各 单位的结构不足以代表总体各单位的结构,而引 起样本指标与全及指标之间的绝对离差。
什么是抽样平均误差
抽样平均误差是反映抽样误差一般水平的指标, 通常用抽样平均数或抽样成数的标准差作为衡量 其抽样误差一般水平的尺度,就是所有可能出现 的样本指标与全及指标之间离差的标准差。
案例思考: 你能判断出被调查客户的意见与所有 客户的意见误差有多大?
案例分析
现在我们已知:样本单位数400户,样本平均满意度3.68,样本满意度的标准 差0.9,我们采取的是不重复抽样的方式,由于在这个抽样调查项目中,相对于 总体来说,样本相对很小,所以我们可以将这些数据直接代入重复抽样平均误 差的计算公式:
四、抽样极限误差
1. 平均数的抽样极限误差 x x X 2. 成数的抽样极限误差 p p P
在实际工作中我们可以将其变换为如下完全等值的不等式:
x x ≤ X ≤ x x p p ≤ P ≤ p p
案例
某市自来水城镇居民用户共有114万户,采用不重复抽样的 方式,随机抽取了400户进行满意度的调查,获得的相关资 料如下:城镇居民用户对自来水公司产品的平均满意度为 3.68,满意度的标准差为0.9。接下来我们要用这400个城 镇居民用户的资料来推断A市114万城镇居民用户对产品的 满意度,会不会存在误差?如果存在,误差会有多大?
二、影响抽样平均误差的因素
(1)全及总体标志值的变动程度 (2)抽样单位数目的多少 (3)抽样方法 (4)抽样的组织形式
三、抽样平均误差的计算
1. 平均数的抽样平均误差
(1)在重复抽样条件下:
x
2
nn
(2)在不重复抽样条件下: x
2N n
n N 1
在总体单位数N大的情况下: x
2
n