1-1集合的基本概念和运算-板块1[1].题库学生版

合集下载

集合的概念及运算总复习-2022年学习资料

集合的概念及运算总复习-2022年学习资料

四、有限廉合的子廉个数公式-1.设有限集合A中有n个元素,则A的子-集个数有:2个,其中真子集的个-数为2 .1个,非空子集个数为2m.1个-非空真子集个数为2n.2个-2.对任意两个有限集合A、B有-cardA B=cardA+cardB-cardAnB
初狱牛刀-1若-则a2002+b2003=1-2已知集合M={-1,1,2}-集合N=yy=x2,x∈M} 则M∩N是B-A{1,2,4}-B{1}-C{1,4-D-Φ
集合的概念及运算-要点·疑点·考点-·课前热身-▣能力·思维·方法-·延伸·拓展-▣误解分析
要点·疑点·考点-集合的基本概念及表示方法-1.集合与元素-一般地,某些指定的对象集在一-起就成为一个集合 也简称集,通常-用大写字母A、B、C„表示.集合中的-每一对象叫做集合的一个元素,通常-用小写字母a、b、 、„表示
设全集U={3,9,a2+2a-1},-P=3,a+7},CP={7}-则a的值为-A.2B.-4C.2或 4D.-2或4-【解析】7∈U且7庄P-.a2+2a-1=7.a=2或-4-经检验,应取a=2-选A-当a 一4时,a+7=3与集合中元素-的互异性矛盾〉
集合之间的运算性质-1.交集的运算性质-A∩B=B∩A,A∩B-车A∩B匹A∩A-=A,A∩Φ =Φ ,ABA B=A-2.并集的运算性质-AUB=BUA,AUB2A,AUB-B,-AUA=A,AUΦ =A,A二B分AU =B-3.补集的运算的性质-CuCA=A,CuΦ =U,A∩CuA=Φ ,-AUCUA=U-CuA∩B=CAU B-CAUB=CuA∩CB
2.集合的分类-集合按元素多少可分为:-有限集(元素个数是有限个),-无限集(元素个数是无限个),-空集( 含任何元素)。-也可按元素的属性分-如:数集(元素是数)-点集(元素是点)等。

集合的基本概念和性质知识点及练习

集合的基本概念和性质知识点及练习

集合的基本概念和性质【基本知识点】一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。

2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。

(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。

(3)无序性:集合中的元素在描述时没有固定的先后顺序。

3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。

4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。

二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。

如小于等于8的偶数构成的集合。

(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。

注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。

(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。

集合主要知识点总结

集合主要知识点总结

集合主要知识点总结一、集合的基本概念1.1 集合的定义集合是由若干个元素组成的整体,这些元素可以是任意的事物或对象。

集合用大括号{}表示,其中的元素用逗号分隔。

例如,集合A = {1, 2, 3, 4, 5},表示集合A由1,2,3,4,5这五个元素组成。

1.2 集合的性质- 集合中的元素是无序的,即集合中的元素没有先后顺序。

- 集合中的元素是互不相同的,即集合中的元素不重复。

- 集合可以是有限集合,也可以是无限集合。

二、集合的运算2.1 并集定义:设A和B是两个集合,它们的并集记为A∪B,表示A和B中所有的元素组成的集合。

记法:A∪B = {x | x∈A或x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。

2.2 交集定义:设A和B是两个集合,它们的交集记为A∩B,表示A和B中公共的元素组成的集合。

记法:A∩B = {x | x∈A且x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。

2.3 补集定义:设A是一个集合,它的补集记为A',表示全集中除A之外的所有元素组成的集合。

记法:A' = {x | x∈全集且x∉A}例如,A = {1, 2, 3},全集为{1, 2, 3, 4, 5},则A' = {4, 5}。

2.4 差集定义:设A和B是两个集合,它们的差集记为A-B,表示A中去掉与B中相同的元素后的集合。

记法:A-B = {x | x∈A且x∉B}例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。

三、集合的关系3.1 子集定义:设A和B是两个集合,如果A中的所有元素都属于B,那么A是B的子集。

记法:A⊆B例如,A = {1, 2, 3},B = {1, 2, 3, 4, 5},则A是B的子集。

3.2 相等集合定义:设A和B是两个集合,如果A是B的子集,且B是A的子集,那么A等于B。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

总结集合知识点

总结集合知识点

总结集合知识点一、集合的基本概念1. 集合的定义集合就是由一组互不相同的元素组成的。

集合可以用大写字母表示,而其中的元素用小写字母表示。

例如:集合A={a,b,c,d,e},其中a,b,c,d,e就是A的元素,而{}表示的就是空集。

2. 元素和子集在集合A中,如果a∈A,那么a就是集合A的一个元素;如果B是集合A的一个子集,则A≠B。

如果集合A含有的元素全部属于集合B中,我们就说A是B的子集,此时A⊆B。

而如果A≠B并且A⊆B,则A就是B的真子集,记作A⊂B。

3. 有限集与无限集如果集合中元素的个数是有限个数,就称它是一个有限集;而如果集合中的元素是无限个数,则称它是一个无限集。

二、集合的运算1. 并集集合A和集合B的并集,就是包含集合A和B中所有元素的集合,用符号表示就是A∪B={x|x∈A或者x∈B},读作“A并B”。

2. 交集集合A和集合B的交集,就是集合A和B中共有的元素的集合,用符号表示就是A∩B={x|x∈A并且x∈B},读作“A交B”。

3. 差集集合A和集合B的差集,就是在A中而不在B中的元素的集合,用符号表示就是A-B={x|x∈A且x∉B},读作“A差B”。

4. 补集如果U是一个给定的集合,并且A是U的一个子集,那么A的补集就是在U中而不在A中的元素的集合,用符号表示就是A'={x|x∈U且x∉A},读作“A的补集”。

以上就是关于集合的基本概念以及常用的集合运算,接下来我们将对集合的一些常用定理和概念进行总结。

三、集合的定理和概念1. 并集、交集和补集的运算律对于任意给定的集合A、B和C,我们有以下性质成立:- 交换律:A∪B=B∪A,A∩B=B∩A。

- 结合律:A∪(B∪C)=(A∪B)∪C,A∩(B∩C)=(A∩B)∩C。

- 分配律:A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。

- 德摩根律:(A∪B)'=A'∩B',(A∩B)'=A'∪B'。

集合的基本概念和运算

集合的基本概念和运算

集合的基本概念和运算集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象构成的整体。

集合的概念在数学中有着广泛的应用,并且在解决实际问题时也发挥着重要的作用。

本文将介绍集合的基本概念以及集合的运算。

一、集合的基本概念集合是由一些确定的对象组成的整体,这些对象称为集合的元素。

用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。

如果一个元素a属于一个集合A,我们可以写作a∈A。

相反地,如果一个元素b不属于一个集合B,我们可以写作b∉B。

集合的元素可以是任何类型的对象,比如数字、字母、符号或者其他集合。

例如,自然数的集合可以表示为N={0,1,2,3,...},其中0、1、2、3等都是集合N的元素。

二、集合的表示方法集合有多种表示方法,其中最常见的是列举法和描述法。

1. 列举法:通过列举集合的元素来表示一个集合。

例如,集合A={1,2,3}表示由整数1、2、3组成的集合A。

2. 描述法:通过描述集合元素的特征来表示一个集合。

例如,集合B={x|x是大于0且小于10的整数}表示在0和10之间的整数构成的集合B。

值得注意的是,集合中的元素是没有顺序的,且集合中的元素是互不相同的。

这意味着{1,2,3}和{3,2,1}表示的是相同的集合。

三、集合的运算集合的运算有并集、交集、差集和补集等。

1. 并集:如果A和B是两个集合,它们的并集表示为A∪B,包含了属于集合A或者属于集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的并集为A∪B={1,2,3,4,5}。

2. 交集:如果A和B是两个集合,它们的交集表示为A∩B,包含了同时属于集合A和集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的交集为A∩B={3}。

3. 差集:如果A和B是两个集合,它们的差集表示为A-B,包含了属于集合A但不属于集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的差集为A-B={1,2}。

1.1集合的概念与运算.pptx

1.1集合的概念与运算.pptx

间 的
子 集
集合 A 中任意一个元素均为集合 B 中的元素

本 为集合 B 中的元素,且集合 B 中至少有一个元素不是集合 A 中的元素
示关系 文字语言
空集 空集是任何集合的子集,是任何非空集合的真子集
符号语 言 A=B A⊆ B
A⫋ B
第1讲 集合的概念与运算
A∪B=B∪A A∪A=A A∪⌀=⌀∪A=A 如果 A⊆ B,则 A∪B=B
A∪∁UA=U A∩∁UA=⌀ ∁U(∁UA)=A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
1.已知集合 A={x∈N|- 3≤x≤ 3},则必有( )
A.-1∈A
B.0∈A
第1讲 集合的概念与运算
考纲解读 主干梳理
考点层析
考向1
考向2
考向2
考向4 易错辨析点拨
考向 1 集合的基本概念
【例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数 是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为
B=( )
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
解析:由已知,可得 A={x|x≥3 或 x≤-1},则 A∩B={x|-2≤x≤-1}=[-2,-1].故选
A.
答案:A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
3.设集合 A={x|1≤x≤2},B={x|x≥a},若 A⊆ B,则 a 的取值范围是( )

集合的基本概念与运算

集合的基本概念与运算

集合的基本概念与运算集合是数学中的一个基本概念,可以理解为具有共同特征的事物的总体。

集合中的元素是指构成集合的个体或对象。

在集合中,元素的顺序并不重要,也不会重复出现。

本文将介绍集合的基本概念、集合运算的种类以及相关的性质。

一、集合的基本概念集合通常用大写字母表示,例如A、B、C等。

集合中的元素用小写字母表示,例如a、b、c等。

如果一个元素x属于集合A,我们用x∈A表示;如果一个元素y不属于集合A,我们用y∉A表示。

一个集合中的元素可以是任何事物,可以是数,可以是字母,也可以是其他集合。

集合的大小可以通过计算集合中元素的个数来确定。

如果集合A中有n个元素,我们用|A|表示集合A的大小,即|A|=n。

二、集合的表示方法1. 列举法:将集合中的元素逐个列举出来并用花括号{}括起来。

例如,集合A={1, 2, 3, 4}表示集合A包含了元素1、2、3、4。

2. 描述法:用一个条件来描述集合中的元素。

例如,集合B={x | x 是整数,0≤x≤10}表示集合B包含了满足0≤x≤10的所有整数。

三、集合的运算集合的运算包括并集、交集、差集和补集四种。

1. 并集:记为A∪B,表示包含了属于A或属于B的元素的集合。

即A∪B={x | x∈A或x∈B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。

2. 交集:记为A∩B,表示包含了既属于A又属于B的元素的集合。

即A∩B={x | x∈A且x∈B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A∩B={3}。

3. 差集:记为A-B,表示包含了属于A但不属于B的元素的集合。

即A-B={x | x∈A且x∉B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。

4. 补集:对于给定的全集U,集合A的补集记为A',表示包含了属于U但不属于A的元素的集合。

即A'={x | x∈U且x∉A}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容
基本要求 集合的含义
会使用符号“∈”或“∉”表示元素与集合之间的关系; 集合的表示 能选择自然语言、图形语言、集合语言描述不同的具体问题; 理解集合的特征性质,会用集合的特征性质描述一些集合,如常
用数集,方程或不等式的解集等
集合间的基本关系 理解集合之间包含与相等的含义,及子集的概念.在具体情景中,
了解空集和全集的含义;
理解两个集合的交集和并集的含义,会求两个简单集合的交集与
并集.理解在给定集合中一个子集的补集的含义,会求给定子集
的补集
集合的基本运算
掌握有关的术语和符号,会用它们表达集合之间的关系和运算.能使用维恩图表达集合之间的关系和运算.
(一)知识内容 举例:⑴ 120-的所有合数 ⑵ 北京在户人口
⑶ 学而思学员 ⑷ 所有的正方形
例题精讲
高考要求
知识框架 集合的基本概念和运算
这些小例中有哪些共同特征?
1.集合的相关定义
⑴ 集合的含义:一般地把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员).
⑵ 元素用小写字母,,,a b c L 表示;集合用大写字母,,,A B C L 表示.
⑶ 不含任何元素的集合叫做空集,记作∅.
2.元素与集合间关系:属于∈;不属于∉.
3.集合表示法
⑴ 列举法:把集合的所有元素都列举出来或列出几个元素作为代表,其它元素用省略号表示,并写在大括号“{ }”内的表示集合的方法.
例如:{1,2,3,4,5},{1,2,3,4,5,}L
⑵描述法:用集合所含元素的共同特征表示集合的方法称为描述法,形如{x |描述特点}
例如:大于3的所有整数表示为:{Z |3}x x ∈>
方程2250x x --=的所有实数根表示为:{R x ∈|2250x x --=}
(二)典例分析:
【例1】用“∈”或“∉”填空:
⑴ 若2{|340}A x x x =--=,则1-___A ;4-___A ;
⑵ 0___∅;
⑶ 0___{0}.
【例2】用符号“∈”或“∉”填空
⑴0______N , 5______N 16N
⑵1______,π_______,e ______2
-R Q Q Q ð(e 是个无理数) 2323-+{}
|6,,x x a b a b =+∈∈Q Q
【例3】用列举法表示下列集合
⑴ 方程2260x x +-=的根;
⑵ 不大于8且大于3的所有整数;
⑶ 函数32y x =+与1y x
=的交点组成的集合.
板块一:集合的概念与表示
【例4】已知集合8|6A x x ⎧⎫=∈∈⎨⎬-⎭⎩N N ,试用列举法表示集合A .
【例5】下列命题正确的有( )
⑴很小的实数可以构成集合; ⑵集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合; ⑶3611,,,,0.5242
-这些数组成的集合有5个元素; ⑷集合(){},|0,,x y xy x y ∈R ≤是指第二和第四象限内的点集.
A .0个
B .1个
C .2个
D .3个
【例6】用列举法表示集合:10,1M m m m ⎧⎫=∈∈=⎨⎬+⎩⎭
Z Z 【例7】直角坐标平面除去两点(1,1)A 、(2,2)B -可用集合表示为( )
A .{}(,)|1,1,2,2x y x y x y ≠≠≠≠
B .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩或22x y ⎫≠⎧⎪⎨⎬≠⎪⎩⎭
C .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩且22x y ⎫≠⎧⎪⎨⎬≠-⎪⎩⎭
D .{}
2222(,)|[(1)(1)][(2)(2)]0x y x y x y -+--++≠ 【例8】下面有四个命题:
⑴集合N 中最小的数是1;
⑵若a -不属于N ,则a 属于N ; ⑶若,a b ∈∈N N ,则a b +的最小值为2; ⑷212x x +=的解可表示为{}1,1; 其中正确命题的个数为( )
A .0个
B .1个
C .2个
D .3个
【例9】方程组221
9x y x y +=⎧⎨-=⎩的解集是( )
A .()5,4
B .()5,4-
C .(){}5,4-
D .(){}5,4-.
【例10】已知2()(R ,R)f x x ax b a b =++∈∈,{|(),R}A x x f x x ==∈,
{|[()],R}B x x f f x x ==∈.当{1,3}A =-时,用列举法表示集合B .。

相关文档
最新文档