2019-2020年深圳市坪山区高一上册期末数学试题(有答案)

合集下载

2019-2020学年高一数学上学期期末考试试题(含解析)_11

2019-2020学年高一数学上学期期末考试试题(含解析)_11

2019-2020学年高一数学上学期期末考试试题(含解析)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.本次考试不得使用计算器.请考生将所有题目都做在答题卷上.第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,则( )A. B. C. D.【答案】D【解析】【分析】根据补集的概念和运算,求得.【详解】根据补集的概念和运算可知.故选:D【点睛】本小题主要考查补集的概念和运算,解题过程中要细心,容易错选B,属于基础题.2.下列函数在其定义域上具有奇偶性,且在上单调递增的是( )A. B. C. D.【答案】B【解析】【分析】根据函数的奇偶性、单调性确定正确选项.【详解】对于A选项,为非奇非偶函数,不符合题意.对于B选项,为奇函数,且在上递增,符合题意.对于C选项,是奇函数,且在上递减,不符合题意.对于D选项,是奇函数,且在上递减,在上递增,不符合题意.故选:B【点睛】本小题主要考查函数的奇偶性和单调性,属于基础题.3.在中,点M、N分别在边BC、CA上,若,,则( )A. B. C. D.【答案】A【解析】【分析】根据向量加法、减法以及数乘运算,求得的表达式.【详解】依题意.故选:A【点睛】本小题主要考查利用基底表示向量,考查向量加法、减法以及数乘运算,属于基础题.4.函数的零点所在的区间是( )A. B. C. D.【答案】B【解析】【分析】利用零点存在性定理,判断出函数零点所在区间.【详解】依题意,当时,,根据零点存在性定理可知,零点所在区间是.故选:B【点睛】本小题主要考查零点存在性定理,属于基础题.5.如图,在圆C中弦AB的长度为6,则( )A. 6B. 12C. 18D. 无法确定【答案】C【解析】【分析】取线段的中点,得.利用向量数量积的运算,结合解直角三角形,求得【详解】取线段的中点,得.所以,所以.故选:C【点睛】本小题主要考查向量数量积运算,考查圆的几何性质,属于基础题.6.不等式的解集为( )A. ,B. ,C. ,D. ,【答案】A【解析】【分析】解正切型三角不等式求得不等式的解集.【详解】依题意,所以,故原不等式的解集为..故选:A【点睛】本小题主要考查正切型三角不等式的解法,属于基础题.7.函数大致图象是( )A. B. C.D.【答案】D【解析】【分析】利用函数的奇偶性和定义域,确定正确选项.【详解】依题意函数的定义域为,且,所以函数为上的奇函数,由此排除A,B,C三个选项.故选:D【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性和定义域,属于基础题.8.已知角A是的内角,若,则下列式子正确的是( )A. B.C. D.【答案】C【解析】【分析】结合与,求得,由此判断出正确选项.【详解】由于,则,所以为锐角,由,即,解得.所以,,,.C选项正确.故选:C【点睛】本小题主要考查同角三角函数的基本关系式,属于基础题.9.设函数,则下列结论错误的是( )A. 设,则有B. 对任意,都有C. 对任意,都有D. 对任意,都有【答案】C【解析】【分析】A选项利用函数的单调性进行判断.B选项利用函数的周期性进行判断.CD选项通过计算证明等式是否正确.【详解】A,由解得,所以在上单调递减,所以,则有,故A选项正确.B,函数最小正周期为,所以对任意,都有,故B选项正确.C,当时,,所以C选项错误.D,,,所以对任意,都有,所以D选项正确.故选:C【点睛】本小题主要考查三角函数的单调性、周期性,考查三角恒等变换,属于中档题.10.已知,函数,若存在,使得成立,则实数a的取值范围为( )A. B. C. D.【答案】B【解析】【分析】化简不等式,分离常数,根据的取值范围,求得的取值范围.【详解】原命题等价于存在,使得成立,即存在,使得成立,即,因此.故选:B【点睛】本小题主要考查不等式成立的存在性问题的求解,属于基础题.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【答案】 (1). 2 (2). 1【解析】分析】根据弧度制的定义以及扇形面积公式,求得圆心角的弧度数以及扇形的面积.【详解】根据弧度制的定义可知该扇形圆心角的弧度数为,由扇形的面积公式得.故答案为:(1). 2 (2). 1【点睛】本小题主要考查弧度制的定义和扇形面积公式,属于基础题.12.已知函数(其中,)的部分图象如图所示,则________,________.【答案】 (1). (2).【解析】【分析】首先根据图像求得函数的周期,进而求得的值,再由点求得的值.【详解】根据图像可知,,所以,即,解得.所以,则,,由于,所以.故答案为:(1). (2).【点睛】本小题主要考查根据三角函数图像求参数,属于基础题.13.若,则________,________.【答案】 (1). (2).【解析】【分析】将对数式化为指数式,求得的值,进而求得的值以及的值.【详解】由得,所以,.故答案为:(1). (2).【点睛】本小题主要考查对数式化为指数式,考查指数运算和对数运算,属于基础题.14.设函数,则的单调递增区间为________,的值域为________.【答案】 (1). (2). .【解析】【分析】画出的图像,根据图像求得的单调递增区间和值域.【详解】画出的图像如下图所示,由图可知,的单调递增区间为,的值域为.故答案为:(1). (2).【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.15.在平面直角坐标系xOy中,角与角均以x轴非负半轴为始边,它们的终边关于直线对称.若的终边经过点,则________.【答案】【解析】【分析】由终边上一点的坐标,求得,根据对称性求得终边上一点的坐标,由此求得,进而求得.【详解】由于的终边经过点,所以.点关于直线对称点为,所以,所以.故答案为:【点睛】本小题主要考查根据角的终边上点的坐标求三角函数值,考查点关于对称点的坐标的特点,属于基础题.16.已知为第四象限角,化简,________.【答案】【解析】【分析】利用诱导公式和同角三角函数的基本关系式化简所求表达式.【详解】依题意为第四象限角,所以.故答案为:【点睛】本小题主要考查同角三角函数的基本关系式,考查诱导公式,考查化归与转化的数学思想方法,属于基础题.17.非零平面向量,,满足,且,则最小值________.【答案】【解析】【分析】首先求得与的夹角,然后结合图像,解直角三角形求得的最小值.【详解】,,设与的夹角为,因此即与的夹角为(如图),的终点在射线BA上,因此的最小值为.故答案为:【点睛】本小题主要考查向量夹角公式,考查向量数量积的运算,考查数形结合的思想方法,属于中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知集合,函数,记的定义域为B.(Ⅰ)当时,求,;(Ⅱ)若,求实数m的取值范围.【答案】(Ⅰ),; (Ⅱ)【解析】【分析】(I)利用对数真数大于零以及一元二次不等式的解法,求得集合,由此求得,.(II)根据列不等式组,解不等式组求得实数的取值范围.【详解】(Ⅰ)当时,得,由,得,于是,;(Ⅱ)若,则,得【点睛】本小题主要考查对数型复合函数定义域的求法,考查集合交集、并集的概念和运算,考查根据交集的结果求参数,属于基础题.19.已知,,是同一平面内的三个向量,且.(Ⅰ)若,且,求的坐标;(Ⅱ)若,且与垂直,求向量与夹角的余弦值.【答案】(Ⅰ),或; (Ⅱ).【解析】【分析】(I)利用设出的坐标,根据列方程,由此求得的坐标.(II)根据与垂直,则,化简后求得,利用向量夹角公式,计算出向量与夹角的余弦值.【详解】(Ⅰ)设,,即,故,或;(Ⅱ),即,代入整理得,向量与的夹角的余弦值为.【点睛】本小题主要考查根据向量平行和模求参数,考查向量垂直的表示,考查向量夹角公式,属于基础题.20.已知函数,满足.(Ⅰ)求的值及函数的单调递增区间;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的取值范围.【答案】(Ⅰ),.单调递增区间为,(Ⅱ)【解析】【分析】(I)利用,结合,求得的值,再由三角函数单调区间的求法,求得函数的单调递增区间.(II)根据图象变换的知识求得的解析式,再根据三角函数取值范围的求法,求得在上的取值范围.【详解】(Ⅰ)因为,,所以,因此,又,,因为,所以,即,因此函数的单调递增区间为,(Ⅱ)由(Ⅰ)得,因此,又,所以.【点睛】本小题主要考查三角函数单调区间,考查三角函数图象变换,考查三角函数值域的求法,考查化归与转化的数学思想方法,属于中档题.21.在直角梯形ABCD中,,,,,P是线段AD上(包括端点)的一个动点.(Ⅰ)当时,(i)求的值;(ⅱ)若,求的值;(Ⅱ)求的最小值.【答案】(Ⅰ)(i)2 (ⅱ)(Ⅱ)最小值为5【解析】【分析】建立平面直角坐标系.(I)当时,(i)利用向量数量积的坐标运算,求得.(ii)设得出点坐标,利用向量数量积的坐标运算,结合,求得,也即求得的值.(II)设、,而,根据向量坐标的线性运算以及模的坐标运算,求得的表达式,由此求得的最小值.【详解】以A为原点,AB所在直线为x轴,建立平面直角坐标系.(Ⅰ)当时,(i),,因此;(ⅱ)设,即点P坐标为,则,,当时,,即;(Ⅱ)设、,又则,,当时取到等号,因此的最小值为5【点睛】本小题主要考查平面向量线性运算,考查平面向量模的运算,解决方法是坐标法,考查数形结合的数学思想方法,属于中档题.22.设函数,其中.(Ⅰ)当时,求函数的零点;(Ⅱ)若对任意,恒有,求实数a的取值范围.【答案】(Ⅰ),(Ⅱ)【解析】【分析】(I)当时,将表示为分段函数的形式,结合一元二次方程的解法,求得的零点.(II)方法一:当时,求得表达式,结合二次函数对称轴和单调性以及列不等式,解不等式求得的值.当时,分成和两种情况进行分类讨论,结合函数的单调区间和最值列不等式(组),由此求得的取值范围.方法二:利用在区间端点的函数值不小于列不等式组,解不等式组求得的取值范围,再结合二次函数的性质,证明对所求得的的取值范围,恒有.【详解】(Ⅰ)当时,,(i)当时,令,即,解得;(ⅱ)当时,令,即,此方程,无实数解.由(i)(ⅱ),得的零点为,(Ⅱ)方法1.(i)当时,对于,得,显然函数在上递减,要使恒成立,只需,即,得,又,所以符合题意.(ⅱ)当时,由,知函数在上递增,在上递减.以下对a再进行分类当,即时,函数在上递增,在上递减.此时,只需即解得,即又,所以符合题意.当,即时,函数在上递增.要使恒成立,只需,即,得,又所以符合题意.由(i)(ⅱ),得实数a的取值范围是.方法2.因为对任意,恒有,所以,即,解得.下面证明,当时,对任意,恒有,(i)当时,递增,故成立;(ⅱ)当时,,,,故成立.由此,对任意,恒有,【点睛】本小题主要考查分段函数的零点、单调性、最值,考查二次函数的性质,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.2019-2020学年高一数学上学期期末考试试题(含解析)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.本次考试不得使用计算器.请考生将所有题目都做在答题卷上.第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,则( )A. B. C. D.【答案】D【解析】【分析】根据补集的概念和运算,求得.【详解】根据补集的概念和运算可知.故选:D【点睛】本小题主要考查补集的概念和运算,解题过程中要细心,容易错选B,属于基础题.2.下列函数在其定义域上具有奇偶性,且在上单调递增的是( )A. B. C. D.【答案】B【解析】【分析】根据函数的奇偶性、单调性确定正确选项.【详解】对于A选项,为非奇非偶函数,不符合题意.对于B选项,为奇函数,且在上递增,符合题意.对于C选项,是奇函数,且在上递减,不符合题意.对于D选项,是奇函数,且在上递减,在上递增,不符合题意.故选:B【点睛】本小题主要考查函数的奇偶性和单调性,属于基础题.3.在中,点M、N分别在边BC、CA上,若,,则( )A. B. C. D.【答案】A【解析】【分析】根据向量加法、减法以及数乘运算,求得的表达式.【详解】依题意.故选:A【点睛】本小题主要考查利用基底表示向量,考查向量加法、减法以及数乘运算,属于基础题.4.函数的零点所在的区间是( )A. B. C. D.【答案】B【解析】【分析】利用零点存在性定理,判断出函数零点所在区间.【详解】依题意,当时,,根据零点存在性定理可知,零点所在区间是.故选:B【点睛】本小题主要考查零点存在性定理,属于基础题.5.如图,在圆C中弦AB的长度为6,则( )A. 6B. 12C. 18D. 无法确定【答案】C【解析】【分析】取线段的中点,得.利用向量数量积的运算,结合解直角三角形,求得【详解】取线段的中点,得.所以,所以.故选:C【点睛】本小题主要考查向量数量积运算,考查圆的几何性质,属于基础题.6.不等式的解集为( )A. ,B. ,C. ,D. ,【分析】解正切型三角不等式求得不等式的解集.【详解】依题意,所以,故原不等式的解集为..故选:A【点睛】本小题主要考查正切型三角不等式的解法,属于基础题.7.函数大致图象是( )A. B. C.D.【答案】D【解析】【分析】利用函数的奇偶性和定义域,确定正确选项.【详解】依题意函数的定义域为,且,所以函数为上的奇函数,由此排除A,B,C三个选项.故选:D【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性和定义域,属于基础题.8.已知角A是的内角,若,则下列式子正确的是( )A. B.C. D.【分析】结合与,求得,由此判断出正确选项.【详解】由于,则,所以为锐角,由,即,解得.所以,,,.C选项正确.故选:C【点睛】本小题主要考查同角三角函数的基本关系式,属于基础题.9.设函数,则下列结论错误的是( )A. 设,则有B. 对任意,都有C. 对任意,都有D. 对任意,都有【答案】C【解析】【分析】A选项利用函数的单调性进行判断.B选项利用函数的周期性进行判断.CD选项通过计算证明等式是否正确.【详解】A,由解得,所以在上单调递减,所以,则有,故A选项正确.B,函数最小正周期为,所以对任意,都有,故B选项正确.C,当时,,所以C选项错误.D,,,所以对任意,都有,所以D选项正确.故选:C【点睛】本小题主要考查三角函数的单调性、周期性,考查三角恒等变换,属于中档题.10.已知,函数,若存在,使得成立,则实数a的取值范围为( )A. B. C. D.【答案】B【解析】【分析】化简不等式,分离常数,根据的取值范围,求得的取值范围.【详解】原命题等价于存在,使得成立,即存在,使得成立,即,因此.故选:B【点睛】本小题主要考查不等式成立的存在性问题的求解,属于基础题.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【答案】 (1). 2 (2). 1【解析】分析】根据弧度制的定义以及扇形面积公式,求得圆心角的弧度数以及扇形的面积.【详解】根据弧度制的定义可知该扇形圆心角的弧度数为,由扇形的面积公式得.故答案为:(1). 2 (2). 1【点睛】本小题主要考查弧度制的定义和扇形面积公式,属于基础题.12.已知函数(其中,)的部分图象如图所示,则________,________.【答案】 (1). (2).【解析】【分析】首先根据图像求得函数的周期,进而求得的值,再由点求得的值.【详解】根据图像可知,,所以,即,解得.所以,则,,由于,所以.故答案为:(1). (2).【点睛】本小题主要考查根据三角函数图像求参数,属于基础题.13.若,则________,________.【答案】 (1). (2).【解析】【分析】将对数式化为指数式,求得的值,进而求得的值以及的值.【详解】由得,所以,.故答案为:(1). (2).【点睛】本小题主要考查对数式化为指数式,考查指数运算和对数运算,属于基础题.14.设函数,则的单调递增区间为________,的值域为________.【答案】 (1). (2). .【解析】【分析】画出的图像,根据图像求得的单调递增区间和值域.【详解】画出的图像如下图所示,由图可知,的单调递增区间为,的值域为.故答案为:(1). (2).【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.15.在平面直角坐标系xOy中,角与角均以x轴非负半轴为始边,它们的终边关于直线对称.若的终边经过点,则________.【答案】【解析】【分析】由终边上一点的坐标,求得,根据对称性求得终边上一点的坐标,由此求得,进而求得.【详解】由于的终边经过点,所以.点关于直线对称点为,所以,所以.故答案为:【点睛】本小题主要考查根据角的终边上点的坐标求三角函数值,考查点关于对称点的坐标的特点,属于基础题.16.已知为第四象限角,化简,________.【答案】【解析】【分析】利用诱导公式和同角三角函数的基本关系式化简所求表达式.【详解】依题意为第四象限角,所以.故答案为:【点睛】本小题主要考查同角三角函数的基本关系式,考查诱导公式,考查化归与转化的数学思想方法,属于基础题.17.非零平面向量,,满足,且,则最小值________.【答案】【解析】【分析】首先求得与的夹角,然后结合图像,解直角三角形求得的最小值.【详解】,,设与的夹角为,因此即与的夹角为(如图),的终点在射线BA上,因此的最小值为.故答案为:【点睛】本小题主要考查向量夹角公式,考查向量数量积的运算,考查数形结合的思想方法,属于中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知集合,函数,记的定义域为B. (Ⅰ)当时,求,;(Ⅱ)若,求实数m的取值范围.【答案】(Ⅰ),; (Ⅱ)【解析】【分析】(I)利用对数真数大于零以及一元二次不等式的解法,求得集合,由此求得,.(II)根据列不等式组,解不等式组求得实数的取值范围.【详解】(Ⅰ)当时,得,由,得,于是,;(Ⅱ)若,则,得【点睛】本小题主要考查对数型复合函数定义域的求法,考查集合交集、并集的概念和运算,考查根据交集的结果求参数,属于基础题.19.已知,,是同一平面内的三个向量,且.(Ⅰ)若,且,求的坐标;(Ⅱ)若,且与垂直,求向量与夹角的余弦值.【答案】(Ⅰ),或; (Ⅱ).【解析】【分析】(I)利用设出的坐标,根据列方程,由此求得的坐标.(II)根据与垂直,则,化简后求得,利用向量夹角公式,计算出向量与夹角的余弦值.【详解】(Ⅰ)设,,即,故,或;(Ⅱ),即,代入整理得,向量与的夹角的余弦值为.【点睛】本小题主要考查根据向量平行和模求参数,考查向量垂直的表示,考查向量夹角公式,属于基础题.20.已知函数,满足.(Ⅰ)求的值及函数的单调递增区间;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的取值范围.【答案】(Ⅰ),.单调递增区间为,(Ⅱ)【解析】【分析】(I)利用,结合,求得的值,再由三角函数单调区间的求法,求得函数的单调递增区间.(II)根据图象变换的知识求得的解析式,再根据三角函数取值范围的求法,求得在上的取值范围.【详解】(Ⅰ)因为,,所以,因此,又,,因为,所以,即,因此函数的单调递增区间为,(Ⅱ)由(Ⅰ)得,因此,又,所以.【点睛】本小题主要考查三角函数单调区间,考查三角函数图象变换,考查三角函数值域的求法,考查化归与转化的数学思想方法,属于中档题.21.在直角梯形ABCD中,,,,,P是线段AD上(包括端点)的一个动点.(Ⅰ)当时,(i)求的值;(ⅱ)若,求的值;(Ⅱ)求的最小值.【答案】(Ⅰ)(i)2 (ⅱ)(Ⅱ)最小值为5【解析】【分析】建立平面直角坐标系.(I)当时,(i)利用向量数量积的坐标运算,求得.(ii)设得出点坐标,利用向量数量积的坐标运算,结合,求得,也即求得的值.(II)设、,而,根据向量坐标的线性运算以及模的坐标运算,求得的表达式,由此求得的最小值.【详解】以A为原点,AB所在直线为x轴,建立平面直角坐标系.(Ⅰ)当时,(i),,因此;(ⅱ)设,即点P坐标为,则,,当时,,即;(Ⅱ)设、,又则,,当时取到等号,因此的最小值为5【点睛】本小题主要考查平面向量线性运算,考查平面向量模的运算,解决方法是坐标法,考查数形结合的数学思想方法,属于中档题.22.设函数,其中.(Ⅰ)当时,求函数的零点;(Ⅱ)若对任意,恒有,求实数a的取值范围.【答案】(Ⅰ),(Ⅱ)【解析】【分析】(I)当时,将表示为分段函数的形式,结合一元二次方程的解法,求得的零点.(II)方法一:当时,求得表达式,结合二次函数对称轴和单调性以及列不等式,解不等式求得的值.当时,分成和两种情况进行分类讨论,结合函数的单调区间和最值列不等式(组),由此求得的取值范围.方法二:利用在区间端点的函数值不小于列不等式组,解不等式组求得的取值范围,再结合二次函数的性质,证明对所求得的的取值范围,恒有.【详解】(Ⅰ)当时,,(i)当时,令,即,解得;(ⅱ)当时,令,即,此方程,无实数解.由(i)(ⅱ),得的零点为,(Ⅱ)方法1.(i)当时,对于,得,显然函数在上递减,要使恒成立,只需,即,得,又,所以符合题意.(ⅱ)当时,由,知函数在上递增,在上递减.以下对a再进行分类当,即时,函数在上递增,在上递减.此时,只需即解得,即又,所以符合题意.当,即时,函数在上递增.要使恒成立,只需,即,得,又所以符合题意.由(i)(ⅱ),得实数a的取值范围是.方法2.因为对任意,恒有,所以,即,解得.下面证明,当时,对任意,恒有,(i)当时,递增,故成立;(ⅱ)当时,,,,故成立.由此,对任意,恒有,【点睛】本小题主要考查分段函数的零点、单调性、最值,考查二次函数的性质,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.。

2019-2020年高一第一学期期末考试数学试卷 含答案

2019-2020年高一第一学期期末考试数学试卷 含答案

2019-2020年高一第一学期期末考试数学试卷 含答案一、 选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果{}1,2,3,4,5U =,{}3,2,1=M ,{}5,3,2=N ,那么()U C M N 等于( ).A.φB.{}3,1 C.{}4 D.{}5 3.下列四个图形中,不是..以x 为自变量的函数的图象是( ) 4.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1)C.3x -3y +6-3=0D.3x -y +2-3=05.设0.89a =,0.4527b =, 1.51()3c -=,则,,a b c 大小关系为( ) A .a b c >> B .a b c << C .a c b >> D .b c a >>6.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .50πB .25πC .125πD .都不对7.已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为( )A . 12-B .12C .2-D . 28. 已知n m ,表示两条不同直线,α表示平面.下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α9. 直线3x +4y +2=0与圆x 2+y 2-2x =0的位置关系是 ( )Ay x OByxO Cy xODyxOA .相离B .相切C .相交D .无法判断 10. 正方体1111D C B A ABCB -中,二面角D AB D --1的大小是( ) A. 300B. 450C. 600D. 90011.给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .3个 B .2个 C .1个D .0个12.已知0x 是函数1()21x f x x=+-的一个零点.若1020(1,),(,)x x x x ∈∈+∞ ,则( ) A .12()0,()0f x f x << B .12()0,()0f x f x >> C .12()0,()0f x f x >< D .12()0,()0f x f x <>二、 填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.两平行直线0962043=-+=-+y x y x 与的距离是 。

2019-2020年高一上学期期末考试试卷 数学 含答案

2019-2020年高一上学期期末考试试卷 数学 含答案

秘密★启用前2019-2020年高一上学期期末考试试卷 数学 含答案一.选择题.(每小题5分,共60分)1.已知扇形的半径为,弧长为,则该扇形的圆心角为( )A .2B . 4C . 8D . 16 2.设全集,集合,,则等于( )A .B .C .D .3.( )A. B. C. D. 4.幂函数为偶函数,且在上单调递增,则实数( )A . 1B .2C . 4D . 5 5.已知,且,则( )A .2B .C .D . 6.函数满足,那么=( )A .B .C .D . 7.已知函数,则下列说法正确的是( )A .函数为奇函数B .函数有最大值C .函数在区间上单调递增D .函数在区间上单调递增8.函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,为了得到的图象,则只需将的图象 ( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位 9.已知函数,则不等式(2sin )3,[,]22f x x ππ>∈-的解集为( ) A . B .C .D .10.若关于的函数22222sin ()(0)tx x t x xf x t x t+++=>+的最大值为,最小值为,且,则实数的值为( )A .1 B.2 C.3 D .4 11.(原创)已知关于方程,则该方程的所有根的和为( )A.0B.2C.4D.612.(原创)已知是定义在上的奇函数,对任意满足,且当时,2()cos 1f x x x x π=-+-,则函数在区间上的零点个数是( )A .7B .9C .11D .13 二.填空题.(每小题5分,共20分)13.已知角的始边落在轴的非负半轴上,且终边过点,且,则 . 14.求值:___________. (其中为自然对数的底) 15.求值: .16.已知二次函数满足条件:①;②时,,若对任意的,都有恒成立,则实数的取值范围为 .三.解答题.(共6小题,共70分) 17.(本小题满分10分)已知, (1)求的值; (2)求2sin()cos()sin()cos()22παπαππαα-++--+的值.18.(本小题满分12分)已知函数的定义域为,关于的不等式的解集为,其中, (1)求;(2)若,求实数的取值范围.19.(本小题满分12分)在中,为锐角,角所对应的边分别为,且. (1)求的值;(2)求函数()cos 225sin sin f x x A x =+的最大值.20.(本小题满分12分)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->. (1)若的最小正周期为,求在区间上的值域; (2)若函数在上单调递减.求的取值范围.21.(原创)(本小题满分12分)已知,定义在上的连续不断的函数满足,当时,且. (1)解关于不等式:; (2)若对任意的,存在,使得221122()(1)()(4)(2)4()72ag x g x g a f x f x +-+-≥-+成立,求实数的范围.22.(原创)(本小题满分12分)已知函数,, (1),若关于的方程42233log [(1)]log ()log (4)24f x a x x --=---有两个不同解,求实数的范围;(2)若关于的方程:有三个不同解,且对任意的,恒成立,求实数的范围.何 勇 关毓维xx 重庆一中高xx 级高一上期期末考试数 学 答 案xx.1一、选择题ACDBDC CDCBDB 二、填空题13. 14. 15. 16. 三、解答题 17.解:(1);(2)2sin()cos()2sin cos 2tan 12cos sin 1tan 7sin()cos()22παπααααππααααα-++--===++--+.18.解:(1)2222log 0,log 2log 4,(0,4]x x A -≥≤==; (2)由于所以,2232()0()()0x a a x a x a x a -++<⇔--<,若,,符合题意;若,,则; 若,,则,综上,.19.解:(Ⅰ)、为锐角,,2310cos 1sin 10B b ∴=-=又,,225cos 1sin 5A A =-=, 253105102cos()cos cos sin sin 5105102A B A B A B ∴+=-=⨯-⨯= ; (2)2()cos 225sin sin cos 22sin 2sin 2sin 1f x x A x x x x x =+=+=-++,所以函数的最大值为.20.解:(Ⅰ)2222()(sin cos )2cos 2sin cos sin 212cos 22f x x x x x x x x ωωωωωωω=++-=++++-sin 2cos 22sin(2)4x x x πωωω=+=+,的最小正周期为,,所以1,()2sin(2)4f x x πω==+,时,,,所以函数值域为;(2)时,令3222,242k x k k Z ππππωπ+≤+≤+∈,的单减区间为 ,由题意5(,)[,]288k k ππππππωωωω⊆++,可得8258k k πππωωπππωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,解得152,480k k k Z ωω⎧+≤≤+∈⎪⎨⎪>⎩,只有当时,.21.解:(1)2255(2)()0(222)(22)022x x x x f x f x ---≤⇔++-+≤⇔51(22)0(2)(22)022x x x x -+-≤⇔--≤,解得;(2)22(2)4()7(222)4(22)5xx x x y f x f x --=-+=++-++,问题转化为对任意的,有2211()(1)()(4)12ag x g x g a +-+-≥恒成立,即2()(2)()41g x a g x a +-+-≥恒成立,下证函数在上单增:取任意的,22121111()()()()()0x xg x g x g x g x g x x -=-=-<,所以函数在上单增, 由于,,所以时函数可取到之间的所有值,2()2()32(()1)()1()1g x g x a g x g x g x ++≤=++++恒成立,所以,当时取等.22.解:(1)原方程可化为,且,即,即,且方程要有解,, ①若,则此时,方程为,,方程的解为,仅有符合; ②若,此时,,即,方程的解为均符合题意,综上;(2)原方程等价于,则为的两个不同根,所以,解得,并且令, 又对任意的,恒成立,即[()()]x f x g x mx m +-<-,取,有,即,综上 由维达定理121220,30x x m x x =->+=>,所以,则对任意,212()(32)()()0h x x x x m x x x x x =-+-=--<,且,所以当时,原不等式恒成立,综上.秘密★启用前2019-2020年高一上学期期末考试试卷 物理 含答案45° 甲乙物 理 试 题 卷 xx.1第一部分 (选择题,共70分)一、选择题(1-9小题为单项选择题,每小题5分.10-14小题为多项选择题,每小题5分,选对未选全得3分,错选得0分) 1.下列物理量的单位属于导出单位的是( )A .质量B .时间C .位移D .力 2.下列关于力的说法中,正确的是( )A .自由下落的石块速度越来越大,是因为所受的的重力越来越大B .甲用力把乙推倒而自己不倒,说明甲对乙的作用力大于乙对甲的反作用力C .只有发生弹性形变的物体才产生弹力D .摩擦力的大小与正压力成正比3.学校秋季运动会上,飞辉同学以背越式成功跳过了1.90m ,如图所所示,则下列说法正确的是( ) A .飞辉起跳时地面对她的支持力等于她的重力 B .起跳以后在上升过程中处于超重状态 C .起跳以后在下降过程中处于失重状态 D .起跳以后在下降过程中重力消失了4.如图所示,甲、乙两人分别站在赤道和纬度为45°的地面上,则 ( )A .甲的线速度大B .乙的线速度大C .甲的角速度大D .乙的角速度大5.质量为0.5kg 的物体做变速直线运动,以水平向右为正方向,它的速度一时间图象如图所示,则该物体( )A .在前2s 内和2s ~6s 内的加速度相同B .在前2s 内向右运动,2s ~6s 内向左运动C .在4s ~6s 内和6s ~8s 内的速度变化量相同D .在8s 末离出发点的距离最远6.如图所示,质量相等的三个物块A 、B 、C ,A 与天花板之间、与B 之间用轻绳相连,与之间用轻弹簧相连,当系统静止时,C 恰好与水平地面接触,此时弹簧伸长量为。

2019-2020学年高一数学上学期期末考试试题(含解析)_54

2019-2020学年高一数学上学期期末考试试题(含解析)_54

2019-2020学年高一数学上学期期末考试试题(含解析)一、选择题(每小题只有一个选项是正确的,每小题3分,共36分)1.已知全集,集合,,则集()A. B. C. D.【答案】C【解析】【分析】求出可得.【详解】,故.故选:C.【点睛】本题考查集合的补和交,依据定义计算即可,此类问题属于基础题.2. 设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A. {x|0≤x≤2}B. {x|1≤x≤2}C. {x|0≤x≤4}D. {x|1≤x≤4}【答案】A试题分析:找出A和B解集中的公共部分,即可确定出两集合的交集.解:∵A={x|﹣1≤x≤2},B={x|0≤x≤4},∴A∩B={x|0≤x≤2}.故选A考点:交集及其运算.3.,则x=()A. 2B. -2C.D. 0【答案】C【解析】【分析】,解得【详解】,解得.故选:C【点睛】本题考查绝对值方程的解法,属于简单题.4.()A. B. C. D.【答案】D【解析】按照完全平方公式展开即可.【详解】.故选:D【点睛】本题主要考查完全平方的展开式,属于简单题.5.下列函数是奇函数的()A. B. C. D.【答案】C【解析】【分析】先判断函数的定义域是否关于原点对称,再用定义验证.【详解】对于A,函数的定义域为,该定义域不关于原点对称,故不是奇函数.对于B,函数的定义域为,令,则,故不是奇函数.对于C,令,其定义域为,,故为奇函数.对于D,令,其定义域为,且,故不是奇函数.故选:C.【点睛】函数奇偶性的判断,一般先看函数的定义域是否关于原点对称,其次看函数解析式是否满足奇偶性的定义,注意可利用定义域先化简函数解析式(便于观察),说明一个函数不是奇函数或不是偶函数,只要找一个与定义不相符合的反例即可.6.()A. B. C. D.【答案】A【解析】【分析】利用平方差公式展开即可.【详解】.故选:A【点睛】本题主要考查平方差公式,属于简单题.7.的反函数是().A. B. C.D.【答案】A【解析】【分析】令,用表示后可得反函数.【详解】令,则,故.故选:A.【点睛】本题考查反函数的计算,一般地,令,再用表示后可得函数的反函数(注意把互换),注意当一个函数是单调函数时,它有反函数,本题为基础题.8.().A. 0B. 3C. 2D. 1【答案】B【解析】【分析】利用对数的运算性质可得计算结果.【详解】,故选:B.【点睛】对数的运算性质可以分类如下几类:(1);;(2);;(3).9.已知(表示不超过的最大整数),则().A. 0.7B. -0.3C. -11.3D. -10.3【答案】A【解析】【分析】计算后可得的值.【详解】,故,故选:A.【点睛】本题考查函数值的计算,注意根据定义计算,本题属于基础题.10.命题“对任意,都有”否定为()A. 对任意,使得B. 不存在,使得C. 存在,都有D. 存在,都有【答案】D【解析】【分析】根据全称命题的否定的结构形式可得所求命题的否定.【详解】命题“对任意,都有”的否定为“存在,都有”.故选:D.【点睛】全称命题的一般形式是:,,其否定为.存在性命题的一般形式是,,其否定为.11.已知f(x)=ax,g(x)=logax(a>0,且a≠1),若f (3)•g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A. B.C. D.【答案】C【解析】【分析】由指数函数和对数函数的单调性知,f(x)=ax,g(x)=logax (a>0,且a≠1),在(0,+∞)上单调性相同,再由关系式f (3)•g(3)<0即可选出答案.【详解】由指数函数和对数函数的单调性知,f(x)=ax,g(x)=logax(a>0,且a≠1),在(0,+∞)上单调性相同,可排除B、D,再由关系式f(3)•g(3)<0可排除A.故选:C.【点睛】本题考查指数函数和对数函数的单调性,考查识图能力.12.设,则()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题二、填空题(每小题3分,共12分)13.方程组的解集为______________.【答案】【解析】【分析】求出二元一次方程组的解,然后用列举法表示解集.【详解】解方程组得:所以方程的解集为:.故答案为:.【点睛】本题考查集合的表示法,注意方程组的解集是单元素的集合,不能把解集错写成.14.已知幂函数的图象过点,则______.【答案】3【解析】【分析】由幂函数知,再代入求即可.【详解】因为幂函数,故,即过,故故故答案为3【点睛】本题主要考查幂函数的定义域运算,属于基础题型. 15.已知在定义域上为减函数,且,则的取值范围是________.【答案】【解析】【分析】根据函数的单调性可得,该不等式的解为的取值范围.【详解】因为在定义域上为减函数,故,即.故答案为:.【点睛】本题考查函数不等式,解决此类问题的基本方法是利用函数的单调性把函数值的大小关系转化为自变量的大小关系,本题为基础题..16.________.【答案】【解析】【分析】先配方,再开方,注意的正负.【详解】因为,故,故原式.【点睛】本题考查对数值的大小比较,注意利用对数的运算性质把常数化成对数式,再利用对数函数的单调性来比较大小,本题属于基础题.三、解答题(写出相关步骤和结论,共52分)17.(1)计算-2,0,0,1,1的①平均数;②方差.(2).【答案】(1)0,;(2).【解析】分析】(1)利用公式可求平均数和方程.(2)利用指数幂的运算性质可求代数式的运算结果.【详解】(1)①-2,0,0,1,1平均数为,②方差为.(2)原式.【点睛】本题考查样本均值、样本方差以及指数幂的计算,本题属于基础题.18.(1)已知,用表示.(2)已知实数满足,试判断与的大小.【答案】(1);(2).【解析】【分析】(1)先把指数式化成对数式,再根据对数的运算性质计算即可.(2)利用对数函数的单调性可得和.【详解】(1)因为,故,又.(2)因为为上的增函数,故当时,有.因为为上的减函数,故.【点睛】本题考查对数的运算性质与指数式的大小比较,后者应根据指数函数的单调性来判断,本题属于基础题.19.求下列函数的定义域:(1);(2).【答案】(1);(2).【解析】【分析】(1)不等式的解集为函数的定义域.(2)不等式的解集为函数的定义域.【详解】(1)由题设有,故即,故函数的定义域为.(2)由题设有即即,故函数的定义域为.【点睛】函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.20.已知函数.(1)若,求.(2)在直角坐标系中作出函数图象,并写出单调区间.【答案】(1)0,或2;(2)单调减区间:,单调增区间:和,图见解析.【解析】【分析】(1)就和分类讨论后可得值.(2)利用常见函数的图像可作的图像,由图像可得函数的单调区间.【详解】(1)当时,等价于,故或.当时,等价于,故.综上,所求的值为0,或2.(2)的图像的如图所示:故单调减区间:,单调增区间:和.【点睛】分段函数的处理方法有两种:(1)分段处理,因为在不同的范围上有不同的解析式,故可考虑在不同范围上对应的方程、不等式等;(2)数形结合,即画出分段的函数的图像,从而考虑与分段函数相关的单调性问题、不等式问题、方程的解等问题.21.(1)判断函数(,且)的奇偶性,并给出证明.(2)已知,求的最大值,以及取得最大值时的值.【答案】(1)奇函数,理由见解析;(2),此时.【解析】【分析】(1)先判断函数的定义域关于原点对称,再根据定义可判断函数为奇函数.(2)利用基本不等式可求函数的最大值以及何时取最大值.【详解】(1)证明:定义域为,它关于原点对称.,函数是奇函数.(2),,由基本不等式可以得到,,当且仅当时等号成立,故,此时.【点睛】函数奇偶性判断,一般先看函数的定义域是否关于原点对称,其次看函数解析式是否满足奇偶性的定义,注意可利用定义域先化简函数解析式(便于观察),说明一个函数不是奇函数或不是偶函数,只要找一个与定义不相符合的反例即可.求函数的最值,可利用函数的单调性,也可以利用基本不等式,后者需遵循“一正二定三相等”.2019-2020学年高一数学上学期期末考试试题(含解析)一、选择题(每小题只有一个选项是正确的,每小题3分,共36分)1.已知全集,集合,,则集()A. B. C. D.【答案】C【解析】求出可得.【详解】,故.故选:C.【点睛】本题考查集合的补和交,依据定义计算即可,此类问题属于基础题.2. 设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A. {x|0≤x≤2}B. {x|1≤x≤2}C. {x|0≤x≤4}D. {x|1≤x≤4}【答案】A【解析】试题分析:找出A和B解集中的公共部分,即可确定出两集合的交集.解:∵A={x|﹣1≤x≤2},B={x|0≤x≤4},∴A∩B={x|0≤x≤2}.故选A考点:交集及其运算.3.,则x=()A. 2B. -2C.D. 0【答案】C【解析】【分析】,解得【详解】,解得.故选:C【点睛】本题考查绝对值方程的解法,属于简单题.4.()A. B. C. D.【答案】D【解析】按照完全平方公式展开即可.【详解】.故选:D【点睛】本题主要考查完全平方的展开式,属于简单题.5.下列函数是奇函数的()A. B. C. D.【答案】C【解析】【分析】先判断函数的定义域是否关于原点对称,再用定义验证.【详解】对于A,函数的定义域为,该定义域不关于原点对称,故不是奇函数.对于B,函数的定义域为,令,则,故不是奇函数.对于C,令,其定义域为,,故为奇函数.对于D,令,其定义域为,且,故不是奇函数.故选:C.【点睛】函数奇偶性的判断,一般先看函数的定义域是否关于原点对称,其次看函数解析式是否满足奇偶性的定义,注意可利用定义域先化简函数解析式(便于观察),说明一个函数不是奇函数或不是偶函数,只要找一个与定义不相符合的反例即可.6.()A. B. C. D.【答案】A【解析】【分析】利用平方差公式展开即可.【详解】.故选:A【点睛】本题主要考查平方差公式,属于简单题.7.的反函数是().A. B. C. D.【答案】A【解析】【分析】令,用表示后可得反函数.【详解】令,则,故.故选:A.【点睛】本题考查反函数的计算,一般地,令,再用表示后可得函数的反函数(注意把互换),注意当一个函数是单调函数时,它有反函数,本题为基础题.8.().A. 0B. 3C. 2D. 1【答案】B【解析】【分析】利用对数的运算性质可得计算结果.【详解】,故选:B.【点睛】对数的运算性质可以分类如下几类:(1);;(2);;(3).9.已知(表示不超过的最大整数),则().A. 0.7B. -0.3C. -11.3D. -10.3【答案】A【解析】【分析】计算后可得的值.【详解】,故,故选:A.【点睛】本题考查函数值的计算,注意根据定义计算,本题属于基础题.10.命题“对任意,都有”否定为()A. 对任意,使得B. 不存在,使得C. 存在,都有D. 存在,都有【答案】D【解析】【分析】根据全称命题的否定的结构形式可得所求命题的否定.【详解】命题“对任意,都有”的否定为“存在,都有”.故选:D.【点睛】全称命题的一般形式是:,,其否定为.存在性命题的一般形式是,,其否定为.11.已知f(x)=ax,g(x)=logax(a>0,且a≠1),若f(3)•g(3)<0,那么f(x)与g (x)在同一坐标系内的图象可能是()A. B.C. D.【答案】C【解析】【分析】由指数函数和对数函数的单调性知,f(x)=ax,g(x)=logax(a>0,且a≠1),在(0,+∞)上单调性相同,再由关系式f(3)•g(3)<0即可选出答案.【详解】由指数函数和对数函数的单调性知,f(x)=ax,g(x)=logax(a>0,且a≠1),在(0,+∞)上单调性相同,可排除B、D,再由关系式f(3)•g(3)<0可排除A.故选:C.【点睛】本题考查指数函数和对数函数的单调性,考查识图能力.12.设,则()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题二、填空题(每小题3分,共12分)13.方程组的解集为______________.【答案】【解析】【分析】求出二元一次方程组的解,然后用列举法表示解集.【详解】解方程组得:所以方程的解集为:.故答案为:.【点睛】本题考查集合的表示法,注意方程组的解集是单元素的集合,不能把解集错写成.14.已知幂函数的图象过点,则______.【答案】3【解析】【分析】由幂函数知,再代入求即可.【详解】因为幂函数,故,即过,故故故答案为3【点睛】本题主要考查幂函数的定义域运算,属于基础题型.15.已知在定义域上为减函数,且,则的取值范围是________.【答案】【解析】【分析】根据函数的单调性可得,该不等式的解为的取值范围.【详解】因为在定义域上为减函数,故,即.故答案为:.【点睛】本题考查函数不等式,解决此类问题的基本方法是利用函数的单调性把函数值的大小关系转化为自变量的大小关系,本题为基础题..16.________.【答案】【解析】【分析】先配方,再开方,注意的正负.【详解】因为,故,故原式.【点睛】本题考查对数值的大小比较,注意利用对数的运算性质把常数化成对数式,再利用对数函数的单调性来比较大小,本题属于基础题.三、解答题(写出相关步骤和结论,共52分)17.(1)计算-2,0,0,1,1的①平均数;②方差.(2).【答案】(1)0,;(2).【解析】分析】(1)利用公式可求平均数和方程.(2)利用指数幂的运算性质可求代数式的运算结果.【详解】(1)①-2,0,0,1,1平均数为,②方差为.(2)原式.【点睛】本题考查样本均值、样本方差以及指数幂的计算,本题属于基础题.18.(1)已知,用表示.(2)已知实数满足,试判断与的大小.【答案】(1);(2).【解析】【分析】(1)先把指数式化成对数式,再根据对数的运算性质计算即可.(2)利用对数函数的单调性可得和.【详解】(1)因为,故,又.(2)因为为上的增函数,故当时,有.因为为上的减函数,故.【点睛】本题考查对数的运算性质与指数式的大小比较,后者应根据指数函数的单调性来判断,本题属于基础题.19.求下列函数的定义域:(1);(2).【答案】(1);(2).【解析】【分析】(1)不等式的解集为函数的定义域.(2)不等式的解集为函数的定义域.【详解】(1)由题设有,故即,故函数的定义域为.(2)由题设有即即,故函数的定义域为.【点睛】函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.20.已知函数.(1)若,求.(2)在直角坐标系中作出函数图象,并写出单调区间.【答案】(1)0,或2;(2)单调减区间:,单调增区间:和,图见解析.【解析】【分析】(1)就和分类讨论后可得值.(2)利用常见函数的图像可作的图像,由图像可得函数的单调区间.【详解】(1)当时,等价于,故或.当时,等价于,故.综上,所求的值为0,或2.(2)的图像的如图所示:故单调减区间:,单调增区间:和.【点睛】分段函数的处理方法有两种:(1)分段处理,因为在不同的范围上有不同的解析式,故可考虑在不同范围上对应的方程、不等式等;(2)数形结合,即画出分段的函数的图像,从而考虑与分段函数相关的单调性问题、不等式问题、方程的解等问题.21.(1)判断函数(,且)的奇偶性,并给出证明.(2)已知,求的最大值,以及取得最大值时的值.【答案】(1)奇函数,理由见解析;(2),此时.【解析】【分析】(1)先判断函数的定义域关于原点对称,再根据定义可判断函数为奇函数.(2)利用基本不等式可求函数的最大值以及何时取最大值.【详解】(1)证明:定义域为,它关于原点对称.,函数是奇函数.(2),,由基本不等式可以得到,,当且仅当时等号成立,故,此时.【点睛】函数奇偶性判断,一般先看函数的定义域是否关于原点对称,其次看函数解析式是否满足奇偶性的定义,注意可利用定义域先化简函数解析式(便于观察),说明一个函数不是奇函数或不是偶函数,只要找一个与定义不相符合的反例即可.求函数的最值,可利用函数的单调性,也可以利用基本不等式,后者需遵循“一正二定三相等”.。

2019-2020年深圳市坪山区高一上册期末数学试卷(有答案)

2019-2020年深圳市坪山区高一上册期末数学试卷(有答案)

广东省深圳市坪山区高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}2.(5分)已知函数f()是奇函数,且当>0时,f()=2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.23.(5分)函数f()=的定义域为()A.[﹣1,0)∪(0,1]B.[﹣1,1]C.[﹣1,0)∪(0,1)D.[﹣1,1)4.(5分)一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下进行问卷调查,这运用的抽样方法是()A.分层抽样B.抽签法C.随机数表法D.系统抽样法5.(5分)幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,则m的值为()A.1或3 B.1 C.3 D.26.(5分)为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.9 C.8 D.67.(5分)甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是,,则下列说法正确的是()A.,甲比乙成绩稳定B.,乙比甲成绩稳定8.(5分)若函数y=2﹣3﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4] B. C. D.9.(5分)函数f()与g()=()互为反函数,则函数f(4﹣2)的单调增区间是()A.(﹣∞,0]B.[0,+∞)C.(﹣2,0]D.[0,2)10.(5分)若函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上既是奇函数,又是减函数,则g()=log a(+)的图象是()A. B.C.D.11.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.312.(5分)定义在R上的偶函数f()满足:对任意的1,2∈(﹣∞,0)(1≠2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log5)<f(0.32)<f(20.3)D.f(0.32)<f(log5)<f(20.3)二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a+a=5(a>0,∈R),则a+a﹣=.14.(5分)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是岁.15.(5分)设集合A=[﹣1,+∞),B=[t,+∞),对应法则f:→y=2,若能够建立从A到B的函数f:A→B,则实数t的取值范围是.16.(5分)已知函数,若函数g()=f()﹣m有3个零点,则实数m的取值范围是.三、解答题(共6小题,满分70分)17.(10分)已知集合A={|3≤3≤27},B={|log2>1}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={|1<<a},若C⊆A,求实数a的取值集合.18.(12分)化简或求值:(1)()﹣()0.5+(0.008)×(2)计算.19.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出(1)设一次订购量为件,服装的实际出厂单价为P元,写出函数P=f()的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)20.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.21.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于的线性回归方程=+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:==,)22.(12分)已知函数f()=.(1)判断f()的奇偶性;(2)判断f()在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.广东省深圳市坪山区高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}【解答】解:全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则∁U A={0,4},所以(∁U A)∪B={0,2,4}.故选:C.2.(5分)已知函数f()是奇函数,且当>0时,f()=2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【解答】解:∵f()是定义在R上的奇函数,∴f(﹣)=﹣f(),f(﹣1)=﹣f(1),又当>0时,f()=2+,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选:A.3.(5分)函数f()=的定义域为()A.[﹣1,0)∪(0,1]B.[﹣1,1]C.[﹣1,0)∪(0,1)D.[﹣1,1)【解答】解:由,解得﹣1≤≤1且≠0.∴函数f()=的定义域为[﹣1,0)∪(0,1].故选:A.4.(5分)一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课A.分层抽样B.抽签法C.随机数表法D.系统抽样法【解答】解:当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.故选D.5.(5分)幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,则m的值为()A.1或3 B.1 C.3 D.2【解答】解:幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,∴,解得,所以m的值为1.故选:B.6.(5分)为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.9 C.8 D.6【解答】解:根据题意,设阴影部分的面积为S,则正方形的面积为36,向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,则向正方形内随机投掷一点,其落到阴影部分的概率P==;而P=,则=,解可得,S=9;7.(5分)甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是,,则下列说法正确的是()A.,甲比乙成绩稳定B.,乙比甲成绩稳定C.,甲比乙成绩稳定D.,乙比甲成绩稳定【解答】解:由茎叶图知:=(72+77+78+86+92)=81,=(78+88+88+91+90)=87,∴,由茎叶图知甲的数据较分散,乙的数据较集中,∴乙比甲成绩稳定.故选:B.8.(5分)若函数y=2﹣3﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4] B. C. D.【解答】解:∵f()=2﹣3﹣4=(﹣)2﹣,∴f()=﹣,又f(0)=﹣4,故由二次函数图象可知:m的值最小为;最大为3.m的取值范围是:[,3],9.(5分)函数f()与g()=()互为反函数,则函数f(4﹣2)的单调增区间是()A.(﹣∞,0]B.[0,+∞)C.(﹣2,0]D.[0,2)【解答】解:∵f()与g()=()互为反函数,∴f()==﹣log 2.(>0).则函数f(4﹣2)=﹣,由4﹣2>0,解得﹣2<<2.∴函数的单调增区间是[0,2).故选:D.10.(5分)若函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上既是奇函数,又是减函数,则g()=log a(+)的图象是()A. B.C.D.【解答】解:∵函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上是奇函数,∴f(0)=0又∵f()=a﹣a﹣为减函数,所以1>a>0,所以g()=log a(+2)定义域为>﹣2,且递减,故选:A11.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.3【解答】解:模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.12.(5分)定义在R上的偶函数f()满足:对任意的1,2∈(﹣∞,0)(1≠2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)【解答】解:∵对任意1,2∈(﹣∞,0),且1≠2,都有<0,又∵f()是R上的偶函数,∴f()在(0,+∞)上是增函数,∵0.32<20.3<log25∴f(0.32)<f(20.3)<f(log25).故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a+a=5(a>0,∈R),则a+a﹣=23.【解答】解:由已知a+a=5得(a+a)2=25,展开得a+a﹣+2=25,所以a+a﹣=25﹣2=23;故答案为:2314.(5分)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是33.6岁.【解答】解:根据频率和为1,得;年龄在25~30之间的频率是1﹣(0.01+0.07+0.06+0.02)×5=0.2;∵0.01×5+0.2=0.25<0.5,0.25+0.07×5=0.6>0.5,令0.25+0.07=0.5,解得≈3.6;∴估计该市出租车司机年龄的中位数大约是30+3.6=33.6.15.(5分)设集合A=[﹣1,+∞),B=[t,+∞),对应法则f:→y=2,若能够建立从A到B的函数f:A→B,则实数t的取值范围是(﹣∞,0] .【解答】解:∵集合A=[﹣1,+∞),f:→y=2,为A到B的映射∴y≥0∵B=[t,+∞),∴t≤0.故答案为:(﹣∞,0].16.(5分)已知函数,若函数g()=f()﹣m有3个零点,则实数m的取值范围是(0,1).【解答】解:令g()=f()﹣m=0,得m=f()作出y=f()与y=m的图象,要使函数g()=f()﹣m有3个零点,则y=f()与y=m的图象有3个不同的交点,所以0<m<1,故答案为:(0,1).三、解答题(共6小题,满分70分)17.(10分)已知集合A={|3≤3≤27},B={|log2>1}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={|1<<a},若C⊆A,求实数a的取值集合.【解答】解:(1)A={|3≤3≤27}={|1≤≤3}…(1分)B={|log2>1}={|>2}…(1分)A∩B={|2<≤3}…(1分)(C R B)∪A={|≤2}∪{|1≤≤3}={|≤3}…(2分)(2)当a≤1时,C=φ,此时C⊆A…(1分)当a>1时,C⊆A,则1<a≤3…(1分)综上所述,a的取值范围是(﹣∞,3]…(1分)18.(12分)化简或求值:(1)()﹣()0.5+(0.008)×(2)计算.【解答】解:(1)()﹣()0.5+(0.008)×==;(2)=====.19.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为件,服装的实际出厂单价为P元,写出函数P=f()的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)【解答】解:(1)当0<≤100时,P=60,当100<≤500时,P=60﹣0.02(﹣100)=62﹣,所以P=f()=(∈N);(2)设销售商的一次订购量为件时,工厂获得的利润为L元,则L=(P﹣40)=,此函数在[0,500]上是增函数,故当=500时,函数取到最大值,因此,当销售商一次订购了500件服装时,该厂获利的利润是6000元20.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【解答】解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1,4和2,1和3,1和4,2和3,2和4,3,共6个.从袋中取出的球的编号之和不大于4的事件共有1,3和2,1两个.因此所求事件的概率P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为:(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=.故满足条件n <m +2的事件的概率为1﹣P 1=1﹣=.21.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y 关于的线性回归方程=+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:==,)【解答】解:(1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P (A )=1﹣0.4=0.6.故选取的组数据恰好是不相邻天数据的概率是0.6;(2)由数据,求得=(11+13+12)=12,=(25+30+26)=27,由公式求得===,=﹣3.所以关于的线性回归方程为y=﹣3.(3)当=10时,y=﹣3=22,|22﹣23|<2,同样,当=8时,y=﹣3=17,|17﹣16|<2.所以,该研究所得到的线性回归方程是可靠的.22.(12分)已知函数f()=.(1)判断f()的奇偶性;(2)判断f()在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.【解答】解:(1)函数的定义域为(﹣∞,+∞),则f(﹣)===﹣=﹣f(),则f()为奇函数.(2)f()===1﹣,则f()在R上的单调性递增,证明:设1<2,则f(1)﹣f(2)=1﹣﹣(1﹣)=(﹣)=,∵1<2,∴<,∴﹣<0,即f(1)﹣f(2)<0,即f(1)<f(2),即函数为增函数.(3)若存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立,则f(2﹣t2)≥﹣f(﹣t)=f(t﹣).即2﹣t2≥t﹣.即2+≥t2+t恒成立,设y=2+=(+)2﹣,∵∈[1,2],∴y∈[2,6],即t2+t≤2,即t2+t﹣2≤0.解得﹣2≤t≤1,即存在实数t,当﹣2≤t≤1时使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立.。

2019-2020学年高一上学期期末考试数学试题(附解析版)

2019-2020学年高一上学期期末考试数学试题(附解析版)

2019-2020学年高一上学期期末考试数学试题(附解析版)一、选择题(本大题共12小题,共60.0分)1.若集合,,则A. B. C. D.【答案】D【解析】解:集合,,.故选:D.先分别求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.函数的定义域为A. B.C. D. ,【答案】C【解析】解:要使函数有意义则解得且函数的定义域为故选:C.根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.3.运行如图所示的程序,若输出y的值为2,则可输入实数x值的个数为A. 0B. 1C. 2D. 3【答案】B【解析】解:模拟程序运行,可得程序的功能是求的值,故时,,解得:舍去;时,,解得:舍,或,综上,可得可输入x的个数为1.故选:B.模拟程序运行,可得程序的功能是求的值,分类讨论即可得可输入x的个数.本题的考点是函数零点几何意义和用导函数来画出函数的图象,考查了数学结合思想和计算能力,属于基础题.4.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A. B. C. D.【答案】B【解析】解:设20个数分别为,,,,求出的平均数为,实际平均数,求出的平均数与实际平均数的差:.故选:B.求出的平均数与实际平均数的差:,由此能求出结果.本题考查求出的平均数与实际平均数的差的求法,考查平均数的性质等基础知识,考查运算求解能力,是基础题.5.已知函数,那么的值为A. 9B.C.D.【答案】B【解析】解:,,而,..故选:B.首先判断自变量是属于哪个区间,再代入相应的解析式,进而求出答案.正确理解分段函数在定义域的不同区间的解析式不同是解题的关键.6.某单位有职工160人,其中业务员104人,管理人员32人,其余为后勤服务人员,现用分层抽样方法从中抽取一容量为20的样本,则抽取后勤服务人员A. 3人B. 4人C. 7人D. 12人【答案】A【解析】解:根据分层抽样原理知,应抽取后勤服务人员的人数为:.故选:A.根据分层抽样原理求出应抽取的后勤服务人数.本题考查了分层抽样原理应用问题,是基础题.7.已知函数,若对任意实数,且都有成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】解:根据题意,满足对任意实数,且都有成立,则函数为减函数,又由,则有,解可得,即a的取值范围为;故选:A.根据题意,分析可得函数为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.本题考查函数的单调性的判定以及应用,涉及分段函数的应用,关键是掌握函数单调性的定义.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a可能的取值是A. B. C. 2 D. 4【答案】D【解析】解:函数为偶函数,图象关于原点对称,排除,又指数型函数的函数值都为正值,排除,故函数的图象只能是,当时,函数为减函数,则,得,故只有4满足故选:D.根据函数奇偶性和单调性的性质先确定对应的图象,然后结合指数函数的图象特点确定底数的大小即可.本题主要考查函数图象的识别和判断,根据函数奇偶性和函数值的符号确定对应的图象是解决本题的关键.9.一直以来,由于长江污染加剧以及滥捕滥捞,长江刀鱼产量逐年下降为了了解刀鱼数量,进行有效保护,某科研机构从长江中捕捉a条刀鱼,标记后放回,过了一段时间,再从同地点捕捉b条,发现其中有c条带有标记,据此估计长江中刀鱼的数量为A. B. C. D.【答案】D【解析】解:设长江中刀鱼的数量为x条,根据随机抽样的等可能性,得:,解得.故选:D.设长江中刀鱼的数量为x条,根据随机抽样的等可能性,列出方程能求出结果.本题考查长江中刀鱼的数量的估计,考查随机抽样的性质等基础知识,考查运算求解能力,是基础题.10.已知偶函数在区间上是单调递增函数,若,则实数m的取值范围是A. B.C. D.【答案】C【解析】解:偶函数在区间上是单调递增函数,则在上为减函数,若,则,即,求得,故选:C.由题意利用函数的奇偶性和单调性可得,由此求得实数m的取值范围.本题主要考查函数的奇偶性和单调性,属于基础题.11.如图程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入A. 和B. 和C. 和D. 和【答案】D【解析】解:因为要求时输出,且框图中在“否”时输出,所以“”内不能输入“”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.通过要求时输出且框图中在“否”时输出确定“”内不能输入“”,进而通过偶数的特征确定.本题考查程序框图,属于基础题,意在让大部分考生得分.12.已知函数,,若方程有且只有三个不同的实数根,则实数a的取值范围为A. B. C. D.【答案】C【解析】解:当时,方程可化为,解得:或,又,所以当时,此时方程有一个实数根,当时,方程可化为,由题意有此方程必有两不等实数根,设,由二次方程区间根问题有:,解得:或,综合可得:实数a的取值范围为:,故选:C.含参、含绝对值的二次函数的解的个数问题先通过讨论:当时,当时去绝对值符号,再结合区间根问题求解二次方程的根的个数即可.本题考查了含参、含绝对值的二次函数的解的个数问题及区间根问题,属中档题.二、填空题(本大题共4小题,共20.0分)13.已知函数,那么______.【答案】3【解析】解:由得,,即,故答案为:3由,求出,直接代入即可.本题主要考查函数值的计算,根据函数解析式直接转化是解决本题的关键.14.《少年中国说》是清朝末年梁启超所作的散文,写于戊戌变法失败后的1900年,文中极力歌颂少年的朝气蓬勃,其中“少年智则国智,少年富则国富;少年强则国强,少年独立则国独立”等优秀文句激励一代又一代国人强身健体、积极竞技年,甲、乙、丙、丁四人参加运动会射击项目选拔赛,四人的平均成绩和方差如表:则参加运动会的最佳人选应为______.【答案】丙【解析】解:从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定,故最佳人选应该是丙.故答案为:丙.从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定.本题考查最佳人选的判断,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.15.某汽车4S店销售甲品牌A型汽车,在2019年元旦期间,进行了降价促销活动,根据以往数据统计,该型汽车的价格与月销售量之间有如下关系:已知A型汽车的销售量y与价格x符合线性回归方程:,若A型汽车价格降到19万元,预测它的销售量大约是______辆【答案】42【解析】解:由图表可得,,.代入线性回归方程,得.,当时,.预测它的销售量大约是42辆.故答案为:42.由已知求得,代入线性回归方程求得b,得到线性回归方程,取求得y值得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.16.已知函数有唯一零点,则______.【答案】【解析】解:与的图象均关于直线对称,的图象关于直线对称,的唯一零点必为,,,.故答案为:.判断函数与的图象的对称性,结合函数的对称性进行判断即可.本题主要考查函数零点个数的判断,根据条件判断函数的对称性是解决本题的关键.三、解答题(本大题共6小题,共70.0分)17.已知集合,.Ⅰ当时,求;Ⅱ若,求实数k的取值范围.【答案】解:Ⅰ当时,,则,分Ⅱ,则分当时,,解得;分当时,由得,即,解得分综上,分【解析】Ⅰ直接根据并集的定义即可求出由,得,由此能求出实数k的取值范围.本题考查集合的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.计算下列各式的值:;.【答案】解:原式;原式.【解析】进行分数指数幂的运算即可;进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的运算性质.19.已知是奇函数.求a的值并判断的单调性,无需证明;若对任意,不等式恒成立,求实数k 的取值范围.【答案】解:是奇函数,定义域为R,,解得,验证:,,即为奇函数,,在R上为增函数,对任意,不等式恒成立,,在R上为增函数,,,即对任意,恒成立,令,,,,对于,当时取最大值,最大值为3,,,故实数k的取值范围为.【解析】由奇函数的性质可得,在判断函数的单调性;利用的奇偶性和单调性,将不等式转化为:在上恒成立,然后转化为最值,最后构造函数求出最大值即可.本题考查了奇偶函数定义、函数的单调性、恒成立问题转化为最值、二次函数求最值属中档题.20.张先生和妻子李女士二人准备将家庭财产100万元全部投资兴办甲、乙两家微型企业,计划给每家微型企业投资50万元,张先生和妻子李女士分别担任甲、乙微型企业的法人根据该地区以往的大数据统计,在10000家微型企业中,若干年后,盈利的有5000家,盈利的有2x家,持平的有2x家,亏损的有x家.求x的值,并用样本估计总体的原理计算:若干年后甲微型企业至少盈利的可能性用百分数示;张先生加强了对企业的管理,预计若干年后甲企业一定会盈利,李女士由于操持家务,预计若干年后盈利情况与该地区以往的大数据统计吻合求若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半.【答案】解:,,用样本估计总体计算得:若干年后甲微型企业至少盈利的可能性为:.由题意得若干年后,两人家庭财产的总数量为:万元.由于婚姻期间家庭财产为共同财产,若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半为:万元.【解析】由,求出,用样本估计总体,能求出若干年后甲微型企业至少盈利的可能性.由题意求出若干年后,两人家庭财产的总数量,由此能求出若干年后李女士拥有的家庭财产数量的期望值.本题考查实数值、至少盈利的可能性、期望值的求法,考查用样本特征估计总体特征等基础知识,考查运算求解能力,是基础题.21.当今的学校教育非常关注学生身体健康成长,某地安顺小学的教育行政主管部门为了了解小学生的体能情况,抽取该校二年级的部分学生进行两分钟跳绳次数测试,测试成绩分成,,,四个部分,并画出频率分布直方图如图所示,图中从左到右前三个小组的频率分别为,,,且第一小组从左向右数的人数为5人.求第四小组的频率;求参加两分钟跳绳测试的学生人数;若两分钟跳绳次数不低于100次的学生体能为达标,试估计该校二年级学生体能的达标率用百分数表示【答案】解:第四小组的频率为:.设参加两分钟跳绳测试的学生有x人,则,解得,参加两分钟跳绳测试的学生人数为50人.由题意及频率分布直方图知:样本数据参加两分钟跳绳次数测试体体能达标率为:,估计该校二年级学生体能的达标率为.【解析】由频率分布直方图能求出第四小组的频率.设参加两分钟跳绳测试的学生有x人,则,由此能求出参加两分钟跳绳测试的学生人数.由题意及频率分布直方图知样本数据参加两分钟跳绳次数测试体体能达标率为,由此能估计该校二年级学生体能的达标率.本题考查频率、频数、达标率的求法,考查频率分布直图的性质等基础知识,考查运算求解能力,是基础题.22.已知函数,其最小值为.求的表达式;当时,是否存在,使关于t的不等式有且仅有一个正整数解,若存在,求实数k的取值范围;若不存在,请说明理由.【答案】解:函数的对称轴为,当时,区间为增区间,可得;当,可得;当时,区间为减区间,可得.则;当时,即,可得,令,,可得在递减,在递增,在的图象如右图:,,由图可得,即,关于t的不等式有且仅有一个正整数解2,所以k的范围是【解析】求得的对称轴,讨论对称轴和区间的关系,结合单调性可得最小值;由题意可得,令,求得单调性,画出图象,可得整数解2,即可得到所求范围.本题考查二次函数的最值求法,注意运用对称轴和区间的关系,考查不等式有解的条件,注意运用参数分离和对勾函数的单调性,考查运算能力和推理能力,属于中档题.。

2019-2020学年高一数学上学期期末考试试题(含解析)_6

2019-2020学年高一数学上学期期末考试试题(含解析)_6

2019-2020学年高一数学上学期期末考试试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页,满分150分,考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,只将答题卡交回.注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标题涂黑.第Ⅰ卷共12小题.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】根据集合并集运算规则即可得解.【详解】由题:集合,,则.故选:C【点睛】此题考查集合的并集运算,根据给定集合直接写出并集,属于简单题.2.()A. -2B. -1C. 0D. 1【答案】D【解析】【分析】根据同底对数减法法则求解.【详解】根据同底对数减法法则:.故选:D【点睛】此题考查对数的基本运算,同底对数相减,根据公式直接求解.3.()A. 1B. -1C.D.【答案】A【解析】【分析】处理即可得解.【详解】由题:.故选:A【点睛】此题考查求已知角的正切值,根据正切函数的周期直接写出正切值,或根据诱导公式求解,属于简单题.4.若函数,则()A. B. C. D.【答案】B【解析】【分析】根据函数解析式直接代入得解.【详解】由题:函数,则.故选:B【点睛】此题考查根据函数解析式求函数值,代入解析式计算即可.5.若角的终边经过点,则()A. B. C. D.【答案】A【解析】【分析】根据角的终边上的点的坐标表示三角函数的公式即可得解.【详解】由题:角的终边经过点,则.故选:A【点睛】此题考查根据角的终边上的点的坐标求正弦值,关键在于熟练掌握相关公式,直接计算.6.若函数,则的最小正周期是()A. B. C. D. 1【答案】C【解析】【分析】根据函数最小正周期的求法,即可得解.详解】函数,则的最小正周期.故选:C【点睛】此题考查正切型函数最小正周期的求法,此题易错点在于混淆正弦型与正切型函数最小正周期的公式,导致出错.7.已知是偶函数,且在区间上单调递减,则满足的实数x的取值范围是( )A. B. C. D.【解析】【分析】根据题意可得在上单调递增,从而可得,解不等式即可.【详解】解析:由是偶函数且在上单调递减,知在上单调递增,则满足的实数x的取值范围为解得.故选:B【点睛】本题考查了利用函数的奇偶性、单调性解抽象函数不等式,属于基础题.8.为了得到函数,的图象,只需把函数,的图象上所有的点()A. 向右平行移动个单位长度B. 向左平行移动个单位长度C. 向右平行移动个单位长度D. 向左平行移动个单位长度【答案】D【分析】根据同名函数之间的平移规则,将平移后的函数变形为即可得解.【详解】由题:把函数平移得到即,只需将函数图象上的所有点向左平行移动个单位长度.故选:D【点睛】此题考查函数的平移,熟练掌握平移规则和口诀,对函数解析式进行适当变形.9.若,则的值为()A. 0B. 1C.D. 2【答案】B【解析】【分析】对所求代数式变形,分子分母同时除以即可得解.【详解】由题:,故选:B【点睛】此题考查三角函数给值求值,涉及同角三角函数的基本关系,常用构造齐次式分子分母同时除以求解.10.若,则()A. B. C. D.【答案】C【解析】【分析】根据指数函数的单调性得的大小关系和取值范围,构造函数,即可进行比较.【详解】指数函数单调递减,,即,所以,所以指数函数是减函数,,,考虑幂函数在单调递增,,即,综上所述:.故选:C【点睛】此题考查比较指数幂的大小关系,关键在于构造恰当的指数函数或幂函数,结合单调性比较大小.11.若,则的最小值是()A. B. C. D.【答案】D【解析】令,因为,所以,则,当时,;故选D.点睛:求形如或的值域或最值时,要利用换元思想,将问题转化为三角函数的有界性和一元二次函数的值域问题,即令或,则,但要注意的取值范围.12.已知函数,若方程有四个不同的实根,,,,满足,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】作出函数图象,根据图象关系,得出,,即可求解的取值范围.【详解】作出函数的图象,如图所示:方程有四个不同的实根,,,,满足,则,即:,所以,,所以,根据二次函数的对称性可得:,,考虑函数单调递增,,所以时的取值范围为.故选:A【点睛】此题考查函数零点的综合应用,涉及分段函数,关键在于根据对数函数和二次函数的图象性质找出零点的等量关系,构造函数关系求解取值范围.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.幂函数的图像经过,则= ________.【答案】【解析】试题分析:设,则有,所以,=9考点:幂函数点评:简单题,待定系数法确定幂函数,进一步求函数值.14.若,则______.【答案】【解析】【分析】根据同角三角函数关系变形即可得解.【详解】因为,所以,由题:,即,所以.故答案为:【点睛】此题考查根据同角三角函数关系求值,关键在于准确找出其中隐含的平方关系,构造出的等价形式求解.15.若偶函数对任意都有,且当时,,则______.【答案】【解析】【分析】由得函数周期为6,结合周期性和奇偶性计算.【详解】由题:任意都有,所以,所以周期为6,且为偶函数,当时,,,,所以,根据函数为偶函数,所以,即.故答案为:【点睛】此题考查根据函数的奇偶性和周期性求函数值,关键在于准确识别函数关系,将自变量的取值转化到给定解析式的区间.16.下面有四个命题:①若是定义在上的偶函数,且在上是减函数,则当时,;②终边落在坐标轴上的角的集合是;③若函数,则对于任意恒成立;④函数在区间上是减函数.其中真命题的编号是______.(写出所有真命题的编号)【答案】①②【解析】【分析】①当时,,根据奇偶性和单调性即可判定;②根据终边相同的角的表示方法即可得解;③举出反例;④函数在区间上是增函数.【详解】①若是定义在上的偶函数,且在上是减函数,所以在单调递增,则当时,所以,所以①正确;②终边落在坐标轴上的角的集合是,所以②正确;③若函数,可得,不相等,所以③说法错误;④函数在单调递增,函数向右平移得到在区间上增函数,所以④错误.故答案为:①②【点睛】此题考查三角函数及相关概念辨析,涉及单调性与奇偶性及函数平移的综合应用,终边相同的角的表示方式和周期性的辨析,综合性强.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知函数.(1)求函数的定义域;(2)若,求值.【答案】(1)(2)或55【解析】【分析】(1)解不等式,其解集就是定义域;(2)解方程即可得解.【详解】(1)函数的自变量应满足:,即,所以函数的定义域是.(2)因为,所以,化简得,,所以或55.【点睛】此题考查求函数定义域和根据函数值求自变量的取值,关键在于求解不等式和解方程,需要注意定义域要写成集合或区间的形式.18.(1)计算:.(2)化简:.【答案】(1)(2)【解析】【分析】(1)根据指数幂及对数的运算法则求解;(2)结合诱导公式即可化简.【详解】(1)原式.(2)原式.【点睛】此题考查指数对数基本运算以及根据诱导公式进行化简,考查通式通法和对基本公式的掌握.19.已知是定义在上的奇函数,当时,.(1)求函数的解析式;(2)求函数的零点.【答案】(1)(2)零点是-1,0,1【解析】【分析】(1)根据函数的奇偶性,则,,即可得到解析式;(2)分段解方程即可得到函数的零点.【详解】解:(1)设,则,所以,因为为奇函数,所以,所以,故的解析式为.(2)由,得或,解得或或,所以的零点是-1,0,1.【点睛】此题考查根据函数的奇偶性求函数的解析式,根据函数解析式求函数的零点,关键在于准确求解方程.20.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式;(2)求函数在区间上的最小值和最大值.【答案】(1)(2)最大值为,最小值为-1【解析】【分析】(1)根据对称中心和对称轴的距离得出周期,根据即可求解;(2)求出函数的单调增区间,即可得到函数在的单调性,即可得到最值.【详解】解:(1)设的周期为,图象的对称中心到对称轴的最小距离为,则,所以,所以,所以.所以函数的解析式是.(2)因为,讨论函数的增区间:令,得,所以函数在区间上为增函数,在区间上为减函数.因为,,,故函数在区间上的最大值为,最小值为-1.【点睛】此题考查根据函数图象特征求参数得函数解析式,解决三角函数在某一区间的最值问题,可以利用单调性讨论,也可利用换元法求值域.21.已知变量,满足关系式(且,,且),变量,满足关系式.(1)求关于的函数表达式;(2)若(1)中确定的函数在区间上是单调递增函数,求实数的取值范围.【答案】(1)(2)【解析】分析】(1)根据,结合,利用对数的运算法则,变形得到;(2)根据复合函数单调性的讨论方法分类讨论实数的取值范围.【详解】解:(1)由得,由知,代入上式得,所以,所以.(2)令,则.因为函数在上是增函数,则或,解得或,故实数的取值范围是.【点睛】此题考查根据对数型复合函数关系求解函数解析式,根据指数型复合函数单调性求参数的取值范围,涉及分类讨论思想.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分22.求证:函数在上是减函数.【答案】证明见解析【解析】【分析】利用定义法证明函数单调性.【详解】证明:任取,且,则.因为,,所以,即,所以在上是减函数.【点睛】此题考查利用定义法证明函数的单调性,关键在于任取,且,通过作差法比较函数值的大小.23.已知函数.(1)求函数的定义域;(2)求函数的单调区间.【答案】(1)(2),【解析】【分析】(1)求解,,得出解集即函数定义域;(2)由,,即可得到函数的单调增区间,没有减区间.【详解】解:(1)函数的自变量应满足,,即,.所以,函数的定义域是.(2)由,,解得,.因此,函数的单调递增区间是,,没有减区间.【点睛】此题考查求正切型函数的定义域和单调区间,考查通式通法,关键在于准确求解不等式的解集.2019-2020学年高一数学上学期期末考试试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页,满分150分,考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,只将答题卡交回.注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标题涂黑.第Ⅰ卷共12小题.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】根据集合并集运算规则即可得解.【详解】由题:集合,,则.故选:C【点睛】此题考查集合的并集运算,根据给定集合直接写出并集,属于简单题.2.()A. -2B. -1C. 0D. 1【答案】D【解析】【分析】根据同底对数减法法则求解.【详解】根据同底对数减法法则:.故选:D【点睛】此题考查对数的基本运算,同底对数相减,根据公式直接求解.3.()A. 1B. -1C.D.【答案】A【解析】【分析】处理即可得解.【详解】由题:.故选:A【点睛】此题考查求已知角的正切值,根据正切函数的周期直接写出正切值,或根据诱导公式求解,属于简单题.4.若函数,则()A. B. C. D.【答案】B【解析】【分析】根据函数解析式直接代入得解.【详解】由题:函数,则.故选:B【点睛】此题考查根据函数解析式求函数值,代入解析式计算即可.5.若角的终边经过点,则()A. B. C. D.【答案】A【解析】【分析】根据角的终边上的点的坐标表示三角函数的公式即可得解.【详解】由题:角的终边经过点,则.故选:A【点睛】此题考查根据角的终边上的点的坐标求正弦值,关键在于熟练掌握相关公式,直接计算.6.若函数,则的最小正周期是()A. B. C. D. 1【答案】C【解析】【分析】根据函数最小正周期的求法,即可得解.详解】函数,则的最小正周期.故选:C【点睛】此题考查正切型函数最小正周期的求法,此题易错点在于混淆正弦型与正切型函数最小正周期的公式,导致出错.7.已知是偶函数,且在区间上单调递减,则满足的实数x的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据题意可得在上单调递增,从而可得,解不等式即可.【详解】解析:由是偶函数且在上单调递减,知在上单调递增,则满足的实数x的取值范围为解得.故选:B【点睛】本题考查了利用函数的奇偶性、单调性解抽象函数不等式,属于基础题.8.为了得到函数,的图象,只需把函数,的图象上所有的点()A. 向右平行移动个单位长度B. 向左平行移动个单位长度C. 向右平行移动个单位长度D. 向左平行移动个单位长度【答案】D【解析】【分析】根据同名函数之间的平移规则,将平移后的函数变形为即可得解.【详解】由题:把函数平移得到即,只需将函数图象上的所有点向左平行移动个单位长度.故选:D【点睛】此题考查函数的平移,熟练掌握平移规则和口诀,对函数解析式进行适当变形.9.若,则的值为()A. 0B. 1C.D. 2【答案】B【解析】【分析】对所求代数式变形,分子分母同时除以即可得解.【详解】由题:,故选:B【点睛】此题考查三角函数给值求值,涉及同角三角函数的基本关系,常用构造齐次式分子分母同时除以求解.10.若,则()A. B. C. D.【答案】C【解析】【分析】根据指数函数的单调性得的大小关系和取值范围,构造函数,即可进行比较.【详解】指数函数单调递减,,即,所以,所以指数函数是减函数,,,考虑幂函数在单调递增,,即,综上所述:.故选:C【点睛】此题考查比较指数幂的大小关系,关键在于构造恰当的指数函数或幂函数,结合单调性比较大小.11.若,则的最小值是()A. B. C. D.【答案】D【解析】令,因为,所以,则,当时,;故选D.点睛:求形如或的值域或最值时,要利用换元思想,将问题转化为三角函数的有界性和一元二次函数的值域问题,即令或,则,但要注意的取值范围.12.已知函数,若方程有四个不同的实根,,,,满足,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】作出函数图象,根据图象关系,得出,,即可求解的取值范围.【详解】作出函数的图象,如图所示:方程有四个不同的实根,,,,满足,则,即:,所以,,所以,根据二次函数的对称性可得:,,考虑函数单调递增,,所以时的取值范围为.故选:A【点睛】此题考查函数零点的综合应用,涉及分段函数,关键在于根据对数函数和二次函数的图象性质找出零点的等量关系,构造函数关系求解取值范围.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.幂函数的图像经过,则= ________.【答案】【解析】试题分析:设,则有,所以,=9考点:幂函数点评:简单题,待定系数法确定幂函数,进一步求函数值.14.若,则______.【答案】【解析】【分析】根据同角三角函数关系变形即可得解.【详解】因为,所以,由题:,即,所以.故答案为:【点睛】此题考查根据同角三角函数关系求值,关键在于准确找出其中隐含的平方关系,构造出的等价形式求解.15.若偶函数对任意都有,且当时,,则______.【答案】【解析】【分析】由得函数周期为6,结合周期性和奇偶性计算.【详解】由题:任意都有,所以,所以周期为6,且为偶函数,当时,,,,所以,根据函数为偶函数,所以,即.故答案为:【点睛】此题考查根据函数的奇偶性和周期性求函数值,关键在于准确识别函数关系,将自变量的取值转化到给定解析式的区间.16.下面有四个命题:①若是定义在上的偶函数,且在上是减函数,则当时,;②终边落在坐标轴上的角的集合是;③若函数,则对于任意恒成立;④函数在区间上是减函数.其中真命题的编号是______.(写出所有真命题的编号)【答案】①②【解析】【分析】①当时,,根据奇偶性和单调性即可判定;②根据终边相同的角的表示方法即可得解;③举出反例;④函数在区间上是增函数.【详解】①若是定义在上的偶函数,且在上是减函数,所以在单调递增,则当时,所以,所以①正确;②终边落在坐标轴上的角的集合是,所以②正确;③若函数,可得,不相等,所以③说法错误;④函数在单调递增,函数向右平移得到在区间上增函数,所以④错误.故答案为:①②【点睛】此题考查三角函数及相关概念辨析,涉及单调性与奇偶性及函数平移的综合应用,终边相同的角的表示方式和周期性的辨析,综合性强.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知函数.(1)求函数的定义域;(2)若,求值.【答案】(1)(2)或55【解析】【分析】(1)解不等式,其解集就是定义域;(2)解方程即可得解.【详解】(1)函数的自变量应满足:,即,所以函数的定义域是.(2)因为,所以,化简得,,所以或55.【点睛】此题考查求函数定义域和根据函数值求自变量的取值,关键在于求解不等式和解方程,需要注意定义域要写成集合或区间的形式.18.(1)计算:.(2)化简:.【答案】(1)(2)【解析】【分析】(1)根据指数幂及对数的运算法则求解;(2)结合诱导公式即可化简.【详解】(1)原式.(2)原式.【点睛】此题考查指数对数基本运算以及根据诱导公式进行化简,考查通式通法和对基本公式的掌握.19.已知是定义在上的奇函数,当时,.(1)求函数的解析式;(2)求函数的零点.【答案】(1)(2)零点是-1,0,1【解析】【分析】(1)根据函数的奇偶性,则,,即可得到解析式;(2)分段解方程即可得到函数的零点.【详解】解:(1)设,则,所以,因为为奇函数,所以,所以,故的解析式为.(2)由,得或,解得或或,所以的零点是-1,0,1.【点睛】此题考查根据函数的奇偶性求函数的解析式,根据函数解析式求函数的零点,关键在于准确求解方程.20.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式;(2)求函数在区间上的最小值和最大值.【答案】(1)(2)最大值为,最小值为-1【解析】【分析】(1)根据对称中心和对称轴的距离得出周期,根据即可求解;(2)求出函数的单调增区间,即可得到函数在的单调性,即可得到最值.【详解】解:(1)设的周期为,图象的对称中心到对称轴的最小距离为,则,所以,所以,所以.所以函数的解析式是.(2)因为,讨论函数的增区间:令,得,所以函数在区间上为增函数,在区间上为减函数.因为,,,故函数在区间上的最大值为,最小值为-1.【点睛】此题考查根据函数图象特征求参数得函数解析式,解决三角函数在某一区间的最值问题,可以利用单调性讨论,也可利用换元法求值域.21.已知变量,满足关系式(且,,且),变量,满足关系式.(1)求关于的函数表达式;(2)若(1)中确定的函数在区间上是单调递增函数,求实数的取值范围.【答案】(1)(2)【解析】分析】(1)根据,结合,利用对数的运算法则,变形得到;(2)根据复合函数单调性的讨论方法分类讨论实数的取值范围.【详解】解:(1)由得,由知,代入上式得,所以,所以.(2)令,则.因为函数在上是增函数,则或,解得或,故实数的取值范围是.【点睛】此题考查根据对数型复合函数关系求解函数解析式,根据指数型复合函数单调性求参数的取值范围,涉及分类讨论思想.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分22.求证:函数在上是减函数.【答案】证明见解析【解析】【分析】利用定义法证明函数单调性.【详解】证明:任取,且,则.因为,,所以,即,所以在上是减函数.【点睛】此题考查利用定义法证明函数的单调性,关键在于任取,且,通过作差法比较函数值的大小.23.已知函数.(1)求函数的定义域;(2)求函数的单调区间.【答案】(1)(2),【解析】【分析】(1)求解,,得出解集即函数定义域;(2)由,,即可得到函数的单调增区间,没有减区间.【详解】解:(1)函数的自变量应满足,,即,.所以,函数的定义域是.(2)由,,解得,.因此,函数的单调递增区间是,,没有减区间.【点睛】此题考查求正切型函数的定义域和单调区间,考查通式通法,关键在于准确求解不等式的解集.。

2019-2020学年高一数学上学期期末调研测试试题及答案(新人教A版第46套)

2019-2020学年高一数学上学期期末调研测试试题及答案(新人教A版第46套)

深圳市宝安区 2019-2020学年第一学期期末调研测试卷高一 数学2014.1一、选择题:本大题共10小题,每题 5 分,满分 50 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.会合 U{ 1,3,5,7,9} , A {1,9} ,则 C U A( )A . {2 , 4, 8, 10}B . {3 , 5,7}C . {1,3}D . {1 , 7,9}2.设函数 f (x)x 11 x 1 ,则 f ( x) ()A .奇函数B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数3.函数 ylog 0.5 x 的定义域为()A . [1,)B . [1,2)C . (0,1]D . (0,1)4.要获得 f (x) cos( x2) 的图像只要要把 f ( x) cos( x 1) 的图像()A .向右挪动 1 个单位B .向左挪动 1 个单位C .向右挪动 3 个单位D .向左挪动 3 个单位5.以下图 , 在平面直角坐标系 xOy 中 , 角 α 的终边与单位圆交于点 A, 点 A 的纵坐标为45A .3 3 C .2 2 5B .5D .556.已知 x, y 为正实数 , 则以下选项中正确的选项是(),cos α (=).A . 2lg x lg y 2lg x 2lg yB . 2lg( x y) 2lg x ?2lg yC . 2lg x?lg y 2lg x 2lg yD . 2lg( xy) 2lg x ? 2lg y7.若 a b c , 则函数 f xx a x bx b x c x c x a 的两个零点分别位于区间 ( )A . a, b 和 b, c 内B .,a 和 a,b 内C . b, c 和 c,内 D . ,a 和 c,内8.函数 f (x)2sin( x),(0,22 ) 的部分图象以下图 , 则 , 的值分别是 ()A . 2,B . 2,63C . 4,D . 4,3665 分,共 30 分 . 把答案填在题中横线上 .二、填空题:本大题共 小题,每题A2,1,2Ba1,a,且 BA ,则实数 a 的值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市坪山区高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)A)∪B为()1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}2.(5分)已知函数f()是奇函数,且当>0时,f()=2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.23.(5分)函数f()=的定义域为()A.[﹣1,0)∪(0,1] B.[﹣1,1] C.[﹣1,0)∪(0,1)D.[﹣1,1)4.(5分)一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下进行问卷调查,这运用的抽样方法是()A.分层抽样B.抽签法C.随机数表法 D.系统抽样法5.(5分)幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,则m的值为()A.1或3 B.1 C.3 D.26.(5分)为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.9 C.8 D.67.(5分)甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是,,则下列说法正确的是()A.,甲比乙成绩稳定B.,乙比甲成绩稳定C.,甲比乙成绩稳定D.,乙比甲成绩稳定8.(5分)若函数y=2﹣3﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4] B.C.D.9.(5分)函数f()与g()=()互为反函数,则函数f(4﹣2)的单调增区间是()A.(﹣∞,0] B.[0,+∞)C.(﹣2,0] D.[0,2)10.(5分)若函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上既是奇函数,又是减函数,则g()=loga(+)的图象是()A.B.C.D.11.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.312.(5分)定义在R上的偶函数f()满足:对任意的1,2∈(﹣∞,0)(1≠2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a+a=5(a>0,∈R),则a+a﹣= .14.(5分)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是岁.15.(5分)设集合A=[﹣1,+∞),B=[t,+∞),对应法则f:→y=2,若能够建立从A到B的函数f:A→B,则实数t的取值范围是.16.(5分)已知函数,若函数g()=f()﹣m有3个零点,则实数m的取值范围是.三、解答题(共6小题,满分70分)>1}.17.(10分)已知集合A={|3≤3≤27},B={|log2B)∪A;(1)分别求A∩B,(∁R(2)已知集合C={|1<<a},若C⊆A,求实数a的取值集合.18.(12分)化简或求值:(1)()﹣()0.5+(0.008)×(2)计算.19.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为件,服装的实际出厂单价为P元,写出函数P=f()的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)20.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.21.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于的线性回归方程=+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:==,)22.(12分)已知函数f()=.(1)判断f()的奇偶性;(2)判断f()在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.广东省深圳市坪山区高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)A)∪B为()1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}【解答】解:全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},A={0,4},则∁UA)∪B={0,2,4}.所以(∁U故选:C.2.(5分)已知函数f()是奇函数,且当>0时,f()=2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【解答】解:∵f()是定义在R上的奇函数,∴f(﹣)=﹣f(),f(﹣1)=﹣f(1),又当>0时,f()=2+,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选:A.3.(5分)函数f()=的定义域为()A.[﹣1,0)∪(0,1] B.[﹣1,1] C.[﹣1,0)∪(0,1)D.[﹣1,1)【解答】解:由,解得﹣1≤≤1且≠0.∴函数f()=的定义域为[﹣1,0)∪(0,1].故选:A.4.(5分)一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下进行问卷调查,这运用的抽样方法是()A.分层抽样B.抽签法C.随机数表法 D.系统抽样法【解答】解:当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.故选D.5.(5分)幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,则m的值为()A.1或3 B.1 C.3 D.2【解答】解:幂函数f()=(m2﹣4m+4)在(0,+∞)为增函数,∴,解得,所以m的值为1.故选:B.6.(5分)为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.9 C.8 D.6【解答】解:根据题意,设阴影部分的面积为S,则正方形的面积为36,向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,则向正方形内随机投掷一点,其落到阴影部分的概率P==;而P=,则=,解可得,S=9;故选B.7.(5分)甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是,,则下列说法正确的是()A.,甲比乙成绩稳定B.,乙比甲成绩稳定C.,甲比乙成绩稳定D.,乙比甲成绩稳定【解答】解:由茎叶图知:=(72+77+78+86+92)=81,=(78+88+88+91+90)=87,∴,由茎叶图知甲的数据较分散,乙的数据较集中,∴乙比甲成绩稳定.故选:B.8.(5分)若函数y=2﹣3﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4] B.C.D.【解答】解:∵f()=2﹣3﹣4=(﹣)2﹣,∴f()=﹣,又f(0)=﹣4,故由二次函数图象可知:m的值最小为;最大为3.m的取值范围是:[,3],故选:C9.(5分)函数f()与g()=()互为反函数,则函数f(4﹣2)的单调增区间是()A.(﹣∞,0] B.[0,+∞)C.(﹣2,0] D.[0,2)【解答】解:∵f()与g()=()互为反函数,.(>0).∴f()==﹣log2则函数f(4﹣2)=﹣,由4﹣2>0,解得﹣2<<2.∴函数的单调增区间是[0,2).故选:D.10.(5分)若函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上既是奇函数,又是减函数,则(+)的图象是()g()=logaA.B.C.D.【解答】解:∵函数f()=(﹣1)a﹣a﹣(a>0,a≠1)在R上是奇函数,∴f(0)=0∴=2,又∵f()=a﹣a﹣为减函数,所以1>a>0,所以g()=log(+2)a定义域为>﹣2,且递减,故选:A11.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.3【解答】解:模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.12.(5分)定义在R上的偶函数f()满足:对任意的1,2∈(﹣∞,0)(1≠2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)【解答】解:∵对任意1,2∈(﹣∞,0),且1≠2,都有<0,∴f()在(﹣∞,0)上是减函数,又∵f()是R上的偶函数,∴f()在(0,+∞)上是增函数,∵0.32<20.3<log25∴f(0.32)<f(20.3)<f(log25).故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a+a=5(a>0,∈R),则a+a﹣= 23 .【解答】解:由已知a+a=5得(a+a)2=25,展开得a+a﹣+2=25,所以a+a﹣=25﹣2=23;故答案为:2314.(5分)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是33.6 岁.【解答】解:根据频率和为1,得;年龄在25~30之间的频率是1﹣(0.01+0.07+0.06+0.02)×5=0.2;∵0.01×5+0.2=0.25<0.5,0.25+0.07×5=0.6>0.5,令0.25+0.07=0.5,解得≈3.6;∴估计该市出租车司机年龄的中位数大约是30+3.6=33.6.故答案为:33.6.15.(5分)设集合A=[﹣1,+∞),B=[t,+∞),对应法则f:→y=2,若能够建立从A到B的函数f:A→B,则实数t的取值范围是(﹣∞,0] .【解答】解:∵集合A=[﹣1,+∞),f:→y=2,为A到B的映射∴y≥0∵B=[t,+∞),∴t≤0.故答案为:(﹣∞,0].16.(5分)已知函数,若函数g()=f()﹣m有3个零点,则实数m的取值范围是(0,1).【解答】解:令g()=f()﹣m=0,得m=f()作出y=f()与y=m的图象,要使函数g()=f()﹣m有3个零点,则y=f()与y=m的图象有3个不同的交点,所以0<m<1,故答案为:(0,1).三、解答题(共6小题,满分70分)17.(10分)已知集合A={|3≤3≤27},B={|log>1}.2B)∪A;(1)分别求A∩B,(∁R(2)已知集合C={|1<<a},若C⊆A,求实数a的取值集合.【解答】解:(1)A={|3≤3≤27}={|1≤≤3}…(1分)B={|log>1}={|>2}…(1分)2A∩B={|2<≤3}…(1分)(CB)∪A={|≤2}∪{|1≤≤3}={|≤3}…(2分)R(2)当a≤1时,C=φ,此时C⊆A…(1分)当a>1时,C⊆A,则1<a≤3…(1分)综上所述,a的取值范围是(﹣∞,3]…(1分)18.(12分)化简或求值:(1)()﹣()0.5+(0.008)×(2)计算.【解答】解:(1)()﹣()0.5+(0.008)×==;(2)=====.19.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为件,服装的实际出厂单价为P元,写出函数P=f()的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)【解答】解:(1)当0<≤100时,P=60,当100<≤500时,P=60﹣0.02(﹣100)=62﹣,所以P=f()=(∈N);(2)设销售商的一次订购量为件时,工厂获得的利润为L元,则L=(P﹣40)=,此函数在[0,500]上是增函数,故当=500时,函数取到最大值,因此,当销售商一次订购了500件服装时,该厂获利的利润是6000元20.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【解答】解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1,4和2,1和3,1和4,2和3,2和4,3,共6个.从袋中取出的球的编号之和不大于4的事件共有1,3和2,1两个.因此所求事件的概率P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为:(1,3),(1,4),(2,4),共3个,=.所以满足条件n≥m+2的事件的概率为P1故满足条件n<m+2的事件的概率为1﹣P=1﹣=.121.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于的线性回归方程=+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:==,)【解答】解:(1)设抽到不相邻两组数据为事件A,因为从5组数据中选取组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1﹣0.4=0.6.故选取的组数据恰好是不相邻天数据的概率是0.6;(2)由数据,求得=(11+13+12)=12,=(25+30+26)=27,由公式求得===,=﹣3.所以关于的线性回归方程为y=﹣3.(3)当=10时,y=﹣3=22,|22﹣23|<2,同样,当=8时,y=﹣3=17,|17﹣16|<2.所以,该研究所得到的线性回归方程是可靠的.22.(12分)已知函数f()=.(1)判断f()的奇偶性;(2)判断f()在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.【解答】解:(1)函数的定义域为(﹣∞,+∞),则f(﹣)===﹣=﹣f(),则f()为奇函数.(2)f()===1﹣,则f()在R上的单调性递增,证明:设1<2,则f(1)﹣f(2)=1﹣﹣(1﹣)=(﹣)=,∵1<2,∴<,∴﹣<0,即f(1)﹣f(2)<0,即f(1)<f(2),即函数为增函数.(3)若存在实数t,使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立,则f(2﹣t2)≥﹣f(﹣t)=f(t﹣).即2﹣t2≥t﹣.即2+≥t2+t恒成立,设y=2+=(+)2﹣,∵∈[1,2],∴y∈[2,6],即t2+t≤2,即t2+t﹣2≤0.解得﹣2≤t≤1,即存在实数t,当﹣2≤t≤1时使不等式f(﹣t)+f(2﹣t2)≥0对一切∈[1,2]恒成立.。

相关文档
最新文档