双台子区高中2018-2019学年上学期高三数学期末模拟试卷含答案

合集下载

城区高中2018-2019学年上学期高三数学期末模拟试卷含答案

城区高中2018-2019学年上学期高三数学期末模拟试卷含答案

城区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A .B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=2. 集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A . B .C .D .M P N =⊆N P M =⊆M N P =⊆M P N==3. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是()A .f (x )=﹣xe |x|B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|4. 在正方体中, 分别为的中点,则下列直线中与直线 EF相交1111ABCD A B C D -,E F 1,BC BB 的是()A .直线B .直线C. 直线D .直线1AA 11A B 11A D 11B C 5. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A .90种B .180种C .270种D .540种6. 函数f (x )=1﹣xlnx 的零点所在区间是()A .(0,)B .(,1)C .(1,2)D .(2,3)7. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)8. “a=2”是“直线x+y=0与直线2x ﹣ay=0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点 10.双曲线的渐近线方程是()A .B .C .D .11.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要12.直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .二、填空题13.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为 ()f x 0x ≥2()2f x x x =-()y f x =14.曲线y=x+e x 在点A (0,1)处的切线方程是 .15.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 .16.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .17.设S n 是数列{a n }的前n 项和,且a 1=﹣1,=S n .则数列{a n }的通项公式a n = .18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 三、解答题19.已知函数f (x )=alnx ﹣x (a >0).(Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α 20.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)21.(本小题满分12分)已知函数().2()(21)ln f x x a x a x =-++a R ∈ (I )若,求的单调区间;12a >)(x f y = (II )函数,若使得成立,求实数的取值范围.()(1)g x a x =-0[1,]x e ∃∈00()()f x g x ≥a22.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.23.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.24.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.城区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:圆心,设切线斜率为,则切线方程为,由(0,0),C r =1(1),10y k x kx y k -=+∴-++=,所以切线方程为,故选A.,1d r k =∴=20x y -+=考点:直线与圆的位置关系.2. 【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±± M P N =⊆考点:两个集合相等、子集.13. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数,A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数,故选:A . 4. 【答案】D 【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平11111,,AA A B A D EF 11B C EF 面内,且这两条直线不平行;所以直线和相交,故选D.11B C EF 考点:异面直线的概念与判断.5. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种.故选D .6.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.7.【答案】A【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)则A∪B=(0,+∞)故选:A.【点评】本题考查了集合的化简与运算问题,是基础题目.8.【答案】C【解析】解:由直线x+y=0与直线2x﹣ay=0互相垂直,得:(﹣1)•=﹣1,解得:a=2,∴“a=2”是“直线x+y=0与直线2x﹣ay=0互相垂直”的充要条件,故选:C.【点评】本题考察了直线互相垂直的性质,考察充分必要条件,是一道基础题.9.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.10.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x .故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题. 11.【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.12.【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是: =.故选:A . 二、填空题13.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩【解析】试题分析:令,则,所以,又因为奇函数满足,0x <0x ->()()()2222f x x x x x -=---=+()()f x f x -=-所以,所以在R 上的解析式为。

双滦区高中2018-2019学年上学期高三数学期末模拟试卷含答案

双滦区高中2018-2019学年上学期高三数学期末模拟试卷含答案

双滦区高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ2. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D . 3. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部4. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 5. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >6. 正方体的内切球与外接球的半径之比为( )A .B .C .D .7. 在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( )A .96B .108C .204D .2168. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )A.B.C.D.9.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A.4 B.5 C.32D.3310.双曲线4x2+ty2﹣4t=0的虚轴长等于()A. B.﹣2t C.D.411.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A. B. C.24 D.4812.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.必要不充分条件B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件二、填空题13.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .16.(﹣)0+[(﹣2)3]= .17.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.18.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)三、解答题19.已知复数z=.(1)求z 的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.20.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.21.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.22.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.23.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,(1)求集合A ,B ; (2)求集合A ∪B ,A ∩B .24.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .双滦区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.2.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.3.【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.4.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.5.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.6.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C7. 【答案】B【解析】解:∵在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78, ∴3a 2=﹣24,3a 11=78,解得a 2=﹣8,a 11=26, ∴此数列前12项和==6×18=108, 故选B .【点评】本题考查了等差数列的前n 项和公式,以及等差数列的性质,属于基础题.8. 【答案】 C【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C . 【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.9. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征. 10.【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .11.【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,∴△PF 1F 2的面积=. 故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.12.【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.二、填空题13.【答案】12()()f x f x ] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.14.【答案】(﹣3,0).【解析】解:由题意,a≥0时,x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,f(x)在(0,+∞)上至多一个零点;x≥0,函数y=|x﹣3|+a无零点,∴a≥0,不符合题意;﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).故答案为(﹣3,0).15.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣2116.【答案】.【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.17.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质.18.【答案】 ①④【解析】解:∵对于任意给定的不等实数x 1,x 2,不等式x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1)恒成立, ∴不等式等价为(x 1﹣x 2)[f (x 1)﹣f (x 2)]≥0恒成立, 即函数f (x )是定义在R 上的不减函数(即无递减区间); ①f (x )在R 递增,符合题意; ②f (x )在R 递减,不合题意;③f (x )在(﹣∞,0)递减,在(0,+∞)递增,不合题意; ④f (x )在R 递增,符合题意; 故答案为:①④.三、解答题19.【答案】【解析】解:(1).∴=1﹣i .(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.20.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m <0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.22.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 3=2,S 8=22.∴,解得,∴{a n }的通项公式为a n =1+(n ﹣1)=.(2)∵b n ===﹣,∴T n =2+…+=2=.23.【答案】【解析】解:(1)由x 2﹣5x+6>0,即(x ﹣2)(x ﹣3)>0, 解得:x >3或x <2,即A={x|x >3或x <2}, 由g (x )=,得到﹣1≥0,当x >0时,整理得:4﹣x ≥0,即x ≤4; 当x <0时,整理得:4﹣x ≤0,无解,综上,不等式的解集为0<x ≤4,即B={x|0<x ≤4}; (2)∵A={x|x >3或x <2},B={x|0<x ≤4}, ∴A ∪B=R ,A ∩B={x|0<x <2或3<x ≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21n n +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=.(2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+, ∴111111(1)2335212121n nT n n n =-+-++-=-++….考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.。

2018-2019高三数学上学期期末试卷文科、理科带答案(可供参考)

2018-2019高三数学上学期期末试卷文科、理科带答案(可供参考)

2018-2019高三数学上学期期末试卷(文科、理科带答案)2018-2019学年上学期高三期末考试注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018•攀枝花统考]已知集合,,则集合()A. B. C. D.2.[2018•南宁三中]复数满足,则()3.[2018•青岛调研]如图,在正方体中,为棱的中点,用过点,,的平面截去该正方体的上半部分,则剩余几何体的侧视图为()A. B.C. D.4.[2018•佛山调研]已知,则()A. B. C.或1 D.1 5.[2018•厦门质检]甲乙两名同学分别从“象棋”、“文学”、“摄影” 三个社团中随机选取一个社团加入,则这两名同学加入同一个社团的概率是()A. B. C. D.6.[2018•中山一中]函数的单调递增区间是()A., B.,C., D.,7.[2018•山师附中]函数是上的偶函数,且,若在上单调递减,则函数在上是()A.增函数 B.减函数 C.先增后减的函数 D.先减后增的函数8.[2018•棠湖中学]已知两点,,若曲线上存在点,使得,则正实数的取值范围为()9.[2018•优创名校]函数的图象大致为()A. B.C. D.10.[2018•南海中学]已知双曲线的右焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为()A. B.C. D.11.[2018•黄陵中学]在中,角,,所对的边分别为,,,已知,,,则()A. B. C.或 D.12.[2018•赤峰二中]如图是边长为1的正方体,是高为1的正四棱锥,若点,,,,在同一个球面上,则该球的表面积为()A. B. C. D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018•南康模拟]已知单位向量,的夹角为,则________.14.[2018•南宁摸底]某学校共有教师300人,其中中级教师有120人,高级教师与初级教师的人数比为.为了解教师专业发展要求,现采用分层抽样的方法进行调查,在抽取的样本中有中级教师72人,则该样本中的高级教师人数为__________.15.[2018•高新区月考]若实数,满足不等式组,则的取值范围是__________.16.[2018•河南名校联盟]已知函数,函数.若当时,函数与函数的值域的交集非空,则实数的取值范围为__________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2018•华侨中学]已知数列的前项和为,且.(1)求数列的通项公式;(2)求数列的前项和.18.(12分)[2018•太原五中]为了解太原各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“太原市有哪几个著名的旅游景点?”,统计结果及频率分布直方图如图表.组号分组回答正确的人数回答正确的人数占本组的频率第1组第2组 18第3组第4组 9第5组 3(1)分别求出,,,的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.19.(12分)[2018•肇庆统测]如图1,在高为2的梯形中,,,,过、分别作,,垂足分别为、.已知,将梯形沿、,同侧折起,使得,,得空间几何体,如图2.(1)证明:;(2)求三棱锥的体积.20.(12分)[2018•成都实验中学]已知椭圆的中心在原点,焦点在轴上,焦距为,离心率为.(1)求椭圆的方程;(2)设直线经过点,且与椭圆交于,两点,若,求直线的方程.21.(12分)[2018•齐齐哈尔期末]已知常数项为的函数的导函数为,其中为常数.(1)当时,求的最大值;(2)若在区间(为自然对数的底数)上的最大值为,求的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2018•南昌模拟]在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为.(1)求的参数方程;(2)求直线被截得的弦长.23.(10分)【选修4-5:不等式选讲】[2018•安康中学]已知函数.(1)解不等式;(2)设函数的最小值为,若,均为正数,且,求的最小值.2018-2019学年上学期高三期末考试文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合,∵,∴,故选B.2.【答案】D【解析】∵,∴,∴.故选D.3.【答案】C【解析】取中点,连接,.平面为截面.如下图:∴故选C.4.【答案】D【解析】∵,又∵,∴.故选D.5.【答案】B【解析】由题意,甲乙两名同学各自等可能地从“象棋”、“文学”、“摄影”三个社团中选取一个社团加入,共有种不同的结果,这两名同学加入同一个社团的有3种情况,则这两名同学加入同一个社团的概率是.故选B.6.【答案】B【解析】由题意,函数,令,,解得,,即函数单调递增区间是,,故选B.7.【答案】D【解析】已知,则函数周期,∵函数是上的偶函数,在上单调递减,∴函数在上单调递增,即函数在先减后增的函数.故选D.8.【答案】D【解析】∵,∴点在圆,又点还在圆,故,解不等式有,故选D.9.【答案】C【解析】由,得为偶数,图象关于轴对称,排除;,排除;,排除,故选C.10.【答案】B【解析】双曲线的右焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),可得,,即,,解得,,双曲线的焦点坐标在轴,所得双曲线的方程为,故选B.11.【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:,去分母移项得:,∴,∴.由同角三角函数得:,由正弦定理,解得,∴或(舍).故选B.12.【答案】D【解析】设球的半径为,球心到平面的距离为,则利用勾股定理可得,∴,∴球的表面积为.故选D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】【解析】,,,故答案为.14.【答案】60【解析】∵学校共有教师300人,其中中级教师有120人,∴高级教师与初级教师的人数为人,∵抽取的样本中有中级教师72人,∴设样本人数为,则,解得,则抽取的高级教师与初级教师的人数为,∵高级教师与初级教师的人数比为.∴该样本中的高级教师人数为.故答案为60.15.【答案】【解析】∵实数,满足,对应的平面区域如图所示:则表示可行域内的点到的两点的连线斜率的范围,由图可知的取值范围为.16.【答案】【解析】依题意,;当时,是减函数,,当时,,时单调递减,,∴,∴;当时,,时单调递增,显然不符合题意;综上所述,实数的取值范围为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)当时,;当时,.当时,也符合上式,故.(2)∵,故.18.【答案】(1),,,;(2)2,3,1;(3).【解析】(1)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知,∴,,,;(2)∵第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人,(3)设第2组2人为:,;第3组3人为:,,;第4组1人为:.则从6人中随机抽取2人的所有可能的结果为:,,,,,,,,,,,,,,共15个基本事件,其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是.19.【答案】(1)见解析;(2).【解析】(1)证法一:连接交于,取的中点,连接,则是的中位线,∴.由已知得,∴,连接,则四边形是平行四边形,∴,又∵,,∴,即.证法二:延长,交于点,连接,则,由已知得,∴是的中位线,∴,∴,四边形是平行四边形,,又∵,,∴.证法三:取的中点,连接,,易得,即四边形是平行四边形,则,又,,∴,又∵,∴四边形是平行四边形,∴,又是平行四边形,∴,∴,∴四边形是平行四边形,∴,又,,∴,又,∴面,又,∴.(2)∵,∴,由已知得,四边形为正方形,且边长为2,则在图2中,,由已知,,可得,又,∴,又,,∴,且,∴,∴是三棱锥的高,四边形是直角梯形..20.【答案】(1);(2).【解析】(1)设椭圆方程为,∵,,∴,,所求椭圆方程为.(2)由题得直线的斜率存在,设直线方程为,则由得,且.设,,则由,得,又,,∴,,消去解得,,∴直线的方程为.21.【答案】(1);(2).【解析】(1)∵函数的常数项为,∴.当时,,∴,∴当时,,单调递增;当时,,单调递减.∴当时,有极大值,也为最大值,且.(2)∵,,∴,①若,则,在上是增函数,∴,不合题意.②若,则当时,,单调递增;当时,,单调递减.∴当时,函数有极大值,也为最大值,且,令,则,解得,符合题意.综上.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1)的参数方程为(为参数);(2).【解析】(1)∵的极坐标方程为,∴的直角坐标方程为,即,∴的参数方程为(为参数).(2)∵直线的参数方程为(为参数),∴直线的普通方程为,∴圆心到直线的距离,∴直线被截得的弦长为.23.【答案】(1);(2).【解析】(1)∵,∴或或,∴,∴不等式解集为;(2)∵,∴,又,,,∴,∴,当且仅当,即时取等号,∴.。

双台子区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

双台子区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

双台子区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合,,若,则的取值范围是( ){|12}A x x =<<{|}B x x a =<A B ⊆A .B .C .D .{|2}a a ≤{|1}a a ≤{|1}a a ≥{|2}a a ≥2. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.3. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.4. 方程表示的曲线是( )1x -=A .一个圆B . 两个半圆C .两个圆D .半圆5. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.6. 在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2 B .3C.1 D .47. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.8. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N9. 经过点且在两轴上截距相等的直线是( )()1,1M A . B .20x y +-=10x y +-=C .或 D .或1x =1y =20x y +-=0x y -=10.已知向量=(1,2),=(x ,﹣4),若∥,则x=() A . 4 B . ﹣4 C . 2 D . ﹣211.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}12.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .13.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一14.在中,,,,则等于( )ABC ∆b =3c =30B =A B .C D .215.若命题“p ∧q ”为假,且“¬q ”为假,则( )A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假二、填空题16.已知函数的三个零点成等比数列,则 .5()sin (0)2f x x a x π=-≤≤2log a =17.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 18.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+19.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .三、解答题20.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n =,数列{b n }的前n 项和为S n .①证明:b n+1+b n+2+…+b 2n <②证明:当n ≥2时,S n 2>2(++…+)21.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD22.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.23.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.24.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)25.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.双台子区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D 【解析】试题分析:∵,∴.故选D .A B ⊆2a ≥考点:集合的包含关系.2. 【答案】D第Ⅱ卷(共100分)[.Com]3. 【答案】D.【解析】4. 【答案】A 【解析】试题分析:由方程,两边平方得,即,所1x -=221x -=22(1)(1)1x y -++=以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.5. 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA A OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为O 12PC ==可得,解得,故选B .34243316ππ=72PA =6. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.7. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log xx y a =B )1,0(∈x,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=x x y a A +∞→x 0→y D C 8. 【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M ∪N={1,2,3,6,7,8},M ∩N={3};∁I M ∪∁I N={1,2,4,5,6,7,8};∁I M ∩∁I N={2,7,8},故选:D . 9. 【答案】D 【解析】考点:直线的方程.10.【答案】D【解析】: 解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D .11.【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M ,∴集合N 不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础. 12.【答案】 A 【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.13.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.14.【答案】C【解析】考点:余弦定理.15.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题. 二、填空题16.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.17.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x 的取值范围(﹣∞,]∪[,+∞).18.【答案】②④【解析】 试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角sin sin a A b B =A B =2A B π+=形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正sin sin a B b A =sin sin sin sin A B B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知是正确,故选选②④.1sin sin sin a b c A B C+=+考点:正弦定理;三角恒等变换.19.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立,则满足,即,∴解得﹣4<a <0,综上:a 的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论. 三、解答题20.【答案】【解析】(Ⅰ)证明:∵数列{a n }满足a 1=﹣1,a n+1=(n ∈N *),∴na n =3(n+1)a n +4n+6,两边同除n (n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.21.【答案】C【解析】22.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.23.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.24.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.当x变化时,f′(x)与f(x)的变化如下表所示:xf′(x)+0﹣f(x)↗↘所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.当x变化时,g′(x)与g(x)的变化如下表所示:x(0,n)n(n,+∞)g′(x)﹣0+g(x)↘↗所以g(x)在(0,n)上单调递减,在(n,+∞)上单调递增.(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0,则n的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题. 25.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…∵函数y=f(x)的图象与g(X)的图象关于x轴对称,∴.…(Ⅱ)∵f(x﹣1)>f(5﹣x),∴,即,解得1<x<3,所以x的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题. 。

双台子区民族中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区民族中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2) C .f (a+1)≤f (b+2) D .f (a+1)<f (b+2)2.已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A.(,+∞) B .(1,) C .(2.+∞)D .(1,2)3. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%4. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件5. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .36. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°7. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .±2C.或3D .1或28. f()=,则f (2)=( ) A .3B .1C .2D.9. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)11.已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 12.已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .14.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.函数y=sin 2x ﹣2sinx 的值域是y ∈ .16.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 17.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .18.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .三、解答题19.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .20. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.22.已知函数g (x )=f (x )+﹣bx ,函数f (x )=x+alnx 在x=1处的切线l 与直线x+2y=0垂直.(1)求实数a 的值;(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;(3)设x 1、x 2(x 1<x 2)是函数g (x )的两个极值点,若b ,求g (x 1)﹣g (x 2)的最小值.23.(本小题满分12分) 设函数mx x x x f -+=ln 21)(2(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;(3)证明:曲线)(x f y 没有经过原点的切线.24.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.双台子区民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.2.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.3.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.4.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.5.【答案】D【解析】考点:简单线性规划.6.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.7.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.8.【答案】A【解析】解:∵f()=,∴f(2)=f()==3.故选:A.9.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.10.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.11.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.12.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.二、填空题13.【答案】(,).【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.14.【答案】D【解析】15.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.16.【答案】.【解析】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.17.【答案】A.【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.18.【答案】 0.3 .【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600). 【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.三、解答题19.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2.20.【答案】【解析】(Ⅰ)(3,0)F 在圆22:(16M x y +=内,∴圆N 内切于圆.MNM NF +∴轨迹E 的方程为4(11OA OC =2(14)(14k k++≤当且仅当182,5>∴∆21.【答案】【解析】解:(1)f (x )=•=2cos 2x+sin2x=sin2x+cos2x+1=2sin (2x+)+1,令﹣+2k π≤2x+≤+2k π, 解得﹣+k π≤x ≤+k π,函数y=f (x )的单调递增区间是[﹣+k π, +k π], (Ⅱ)∵f (A )=2∴2sin (2A+)+1=2,即sin (2A+)= …. 又∵0<A <π,∴A=.… ∵a=,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7 ①…∵sinB=2sinC ∴b=2c ②…由①②得c 2=.…∴S △ABC=.…22.【答案】【解析】解:(1)∵f (x )=x+alnx ,∴f ′(x )=1+,∵f (x )在x=1处的切线l 与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,x1+x2=b﹣1,x1x2=1,∵x>0,设μ(x)=x2﹣(b﹣1)x+1,则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)=ln﹣(﹣),∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣(1+)=<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,由x 1+x 2=b ﹣1,x 1x 2=1,可得t+≥,∵0<t <1,∴由4t 2﹣17t+4=(4t ﹣1)(t ﹣4)≥0得0<t≤,∴h (t )≥h()=ln﹣(﹣4)=﹣2ln2, 故g (x 1)﹣g (x 2)的最小值为﹣2ln2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.23.【答案】【解析】(1)()f x 的定义域为(0,)+∞,211()x mx f x x m x x-+'=+-=. 令()0f x '=,得210x mx -+=.当240m ≤∆=-,即02m ≤<时,()0f x ≥',∴()f x 在(0,)+∞内单调递增.当240m ∆=->,即2m >时,由210x mx -+=解得1x =,2x =120x x <<, 在区间1(0,)x 及2(,)x +∞内,()0f x '>,在12(,)x x 内,()0f x '<,∴()f x 在区间1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减.(2)由(1)可知,当02m ≤<时,()f x 在(0,)+∞内单调递增,∴()f x 最多只有一个零点.又∵1()(2)ln 2f x x x m x =-+,∴当02x m <<且1x <时,()0f x <; 当2x m >且1x >时,()0f x >,故()f x 有且仅有一个零点. 当2m >时,∵()f x 在1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减,且211(()(lnm m m m f x =+-=+22204m m -+-<<, 40124m -<=<=(∵2m >), ∴1()0f x <,由此知21()()0f x f x <<,又∵当2x m >且1x >时,()0f x >,故()f x 在(0,)+∞内有且仅有一个零点. 综上所述,当0m >时,()f x 有且仅有一个零点.(3)假设曲线()y f x =在点(,())x f x (0x >)处的切线经过原点,则有()()f x f x x '=,即21ln 2x x mx x+-1x m x =+-,化简得:21ln 102x x -+=(0x >).(*) 记21()ln 12g x x x =-+(0x >),则211()x g x x x x-'=-=, 令()0g x '=,解得1x =. 当01x <<时,()0g x '<,当1x >时,()0g x '>, ∴3(1)2g =是()g x 的最小值,即当0x >时,213ln 122x x -+≥. 由此说明方程(*)无解,∴曲线()y f x =没有经过原点的切线.24.【答案】【解析】解:(1)由导数的几何意义f ′(a+1)=12∴3(a+1)2﹣3a (a+1)=12∴3a=9∴a=3(2)∵f ′(x )=3x 2﹣3ax ,f (0)=b∴由f ′(x )=3x (x ﹣a )=0得x 1=0,x 2=a∵x ∈[﹣1,1],1<a <2∴当x ∈[﹣1,0)时,f ′(x )>0,f (x )递增;当x ∈(0,1]时,f ′(x )<0,f (x )递减.∴f (x )在区间[﹣1,1]上的最大值为f (0)∵f (0)=b ,∴b=1∵,∴f (﹣1)<f (1)∴f (﹣1)是函数f (x )的最小值,∴∴ ∴f (x )=x 3﹣2x 2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.。

双台子区第二中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区第二中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.2. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( )A .S 10B .S 9C .S 8D .S 73. 复数z=在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)5. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=6. 已知集合,,则满足条件的集合的2{320,}A x x x x R =-+=∈{05,}B x x x N =<<∈A C B ⊆⊆C 个数为 A 、B 、C 、D 、2347. 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,C 28y x =F P C P 是直线与抛物线的一个交点,若,则直线的方程为( )Q PFC PQ =u u u r u u rPF A . B .C .D .20x y --=20x y +-=20x y -+=20x y ++=8. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FN A .B .C .D2)21:(1+9. 设x ,y ∈R ,且满足,则x+y=()A .1B .2C .3D .410.在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±9611.已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .132312班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.(2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为()A .B .C .D .二、填空题13.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.14.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)16.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .17.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 18.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.三、解答题19.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.20.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.21.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.22.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围23.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.24.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.双台子区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】,故选B .(2016)(2016)(54031)(1)f f f f e -==⨯+==2. 【答案】C【解析】解:∵S 16<0,S 17>0,∴=8(a 8+a 9)<0,=17a 9>0,∴a 8<0,a 9>0,∴公差d >0.∴S n 中最小的是S 8.故选:C .【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题. 3. 【答案】A【解析】解:∵z===+i ,∴复数z 在复平面上对应的点位于第一象限.故选A .【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具. 4. 【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g (﹣1)=﹣2﹣1=﹣3,故结合图象可知,a >﹣3时,方程a=2x ﹣有且只有一个解,即函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,故选:D . 5. 【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数;B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确.故选:C . 6. 【答案】D【解析】, .{|(1)(2)0,}{1,2}A x x x x =--=∈=R {}{}|05,1,2,3,4=<<∈=N B x x x ∵,∴可以为,,,.⊆⊆A C B C {}1,2{}1,2,3{}1,2,4{}1,2,3,47. 【答案】B 【解析】考点:抛物线的定义及性质.【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.8.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题M得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.9.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.10.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a2和a8的等比中项为=±48.故选:B.11.【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为的正方体21111ABCD A B C D -中的一个四面体,其中,∴该三棱锥的体积为,选B .1ACED 11ED =112(12)2323⨯⨯⨯⨯=12.【答案】 C【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C .【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用. 二、填空题13.【答案】 75 【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A 、B 、C 三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A 、B 、C 三门选一门,再从其它6门选3门,有C 31C 63=60,第二类,若从其他六门中选4门有C 64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.14.【答案】 {1,﹣1} .【解析】解:合M={x||x|≤2,x ∈R}={x|﹣2≤x ≤2},N={x ∈R|(x ﹣3)lnx 2=0}={3,﹣1,1},则M ∩N={1,﹣1},故答案为:{1,﹣1},【点评】本题主要考查集合的基本运算,比较基础. 15.【答案】②③【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;(,)A B ϕ==11,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.16.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时,直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题. 17.【答案】 ( 1,±2) .【解析】解:设点P 坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.18.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.三、解答题19.【答案】【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}∵B⊆A,∴(1)B=∅时,a=0(2)当B={1}时,a=2(3))当B={2}时,a=1故a值为:2或1或0.20.【答案】【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,∴PK∥GF,∵PK⊄平面EFG,∴PK∥平面EFG,∴四边形EBKF为平行四边形,∴BK∥EF,∵BK⊄平面EFG,∴BK∥平面EFG,∵PK∩BK=K,∴平面EFG∥平面PKB,又∵PB⊂平面PKB,∴PB∥平面EFG.(2)解:连结PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,PE⊥平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,∴P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,依题意得:,∴x2>16y,(﹣1≤x≤1),(i)又=(x+,y﹣,﹣),∵GH⊥PD,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH ⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.22.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.23.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.24.【答案】【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.。

双台子区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

双台子区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个2. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4 B .4 C .2 D .23. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h() B .h() C .h() D .h()4. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5πC .12πD .20π5. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B.C .2D .66. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对 7. 已知二次曲线+=1,则当m ∈[﹣2,﹣1]时,该曲线的离心率e 的取值范围是( ) A .[,]B .[,]C .[,]D .[,]8. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A. B. C .1 D.9. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .10B .9C .8D .510.已知两不共线的向量,,若对非零实数m ,n 有m+n与﹣2共线,则=( )A .﹣2B .2 C.﹣ D.11.复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)二、填空题13.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .14.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元. 15.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 17.设S n 是数列{a n }的前n 项和,且a 1=﹣1,=S n .则数列{a n }的通项公式a n = .18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .三、解答题19.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.20.已知函数f(x)=xlnx,求函数f(x)的最小值.21.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.23.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.24.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.双台子区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13. .14.146415. (﹣1,0) .16.11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)17. .18. 5 .三、解答题19.20.21. 22.(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 23. 24.。

双城区高中2018-2019学年上学期高三数学期末模拟试卷含答案

双城区高中2018-2019学年上学期高三数学期末模拟试卷含答案

双城区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±32. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于()A .B .﹣2tC .D .43. 已知全集为,且集合,,则等于( )R }2)1(log |{2<+=x x A }012|{≥--=x x x B )(B C A R A .B .C .D .)1,1(-]1,1(-)2,1[]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.4. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )A .1B .2C .3D .45. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是()A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]6. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .47. 函数是周期为4的奇函数,且在上的解析式为,则()()f x x R Î02[,](1),01()sin ,12x x x f x x x ì-££ï=íp <£ïî( )1741()()46f f +=A . B . C . D .71691611161316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.8. 在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( )A .96B .108C .204D .2169. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<10.设集合,,则(){}|22A x R x =∈-≤≤{}|10B x x =-≥()R A B = ðA. B. C. D. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.11.设函数f (x )=的最小值为﹣1,则实数a 的取值范围是()A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣12.设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <3二、填空题13.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.16.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 升.三、解答题19.已知复数z=.(1)求z 的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.20.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列.(1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .21.(本小题满分12分)已知数列{}的前n 项和为,且满足.n a n S *)(2N n a n S n n ∈=+(1)证明:数列为等比数列,并求数列{}的通项公式;}1{+n a n a (2)数列{}满足,其前n 项和为,试求满足的n b *))(1(log 2N n a a b n n n ∈+⋅=n T 201522>++nn T n 最小正整数n .【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.n 22.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1.(1)求数列{a n }的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.23.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.24.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.双城区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.2.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.3.【答案】C4.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)| }将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题5.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.6.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.7.【答案】C8.【答案】B【解析】解:∵在等差数列{a n}中,a1+a2+a3=﹣24,a10+a11+a12=78,∴3a2=﹣24,3a11=78,解得a2=﹣8,a11=26,∴此数列前12项和==6×18=108,故选B .【点评】本题考查了等差数列的前n 项和公式,以及等差数列的性质,属于基础题. 9. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.10.【答案】B 【解析】易知,所以,故选B.{}{}|10|1B x x x x =-≥=≥()R A B = ð{}|21x x -≤<11.【答案】C【解析】解:当x ≥时,f (x )=4x ﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x <时,f (x )=x 2﹣2x+a=(x ﹣1)2+a ﹣1,即有f (x )在(﹣∞,)递减,则f (x )>f ()=a ﹣,由题意可得a ﹣≥﹣1,解得a ≥﹣.故选:C .【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题. 12.【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是,x <1是x >2的既不充分也不必要条件,x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.二、填空题13.【答案】 .【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,∴,解得b=1,a=2.∴|a ﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题. 14.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力. 15.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d .考点:数列与不等式综合.16.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A (﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x 2)dx ﹣∫﹣11(﹣4x ﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.17.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.18.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8.三、解答题19.【答案】【解析】解:(1). ∴=1﹣i .(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键. 20.【答案】【解析】解:(1)由a 2+2,a 3,a 4﹣2成等比数列,∴=(a 2+2)(a 4﹣2),(1+2d )2=(3+d )(﹣1+3d ),d 2﹣4d+4=0,解得:d=2,∴a n =1+2(n ﹣1)=2n ﹣1,数列{a n }的通项公式a n =2n ﹣1;(2)b n ===(﹣),S n = [(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n }的前n 项和S n ,S n =. 21.【答案】【解析】(1)当,解得.(1分)111,12n a a =+=时11a =当时,,①2n ≥2n n S n a +=,②11(1)2n n S n a --+-=①-②得,即,(3分)1122n n n a a a -+=-121n n a a -=+即,又.112(1)(2)n n a a n -+=+≥112a +=所以是以2为首项,2为公比的等比数列.{}1n a +即故().(5分)12n n a +=21n n a =-*n N ∈22.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n .则所求和为6分12nn 23.【答案】【解析】解:(1)由题意,n=10, =x i =8, =y i =2,∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).24.【答案】【解析】(本题满分为12分)解:(1)由题意知:A=2,…∵T=6π,∴=6π得ω=,…∴f(x)=2sin(x+φ),∵函数图象过(π,2),∴sin(+φ)=1,∵﹣<φ+<,∴φ+=,得φ=…∴A=2,ω=,φ=,∴f(x)=2sin(x+).…(2)∵将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.故y=g(x)的解析式为:g(x)=2sin(﹣).…【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴cosA= , 又 a=7,c=6, 根据余弦定理得:a2=b2+c2﹣2bc•cosA,即 49=b2+36﹣ b,
解得:b=5 或 b=﹣ (舍去), 则 b=5. 故选 D 11.【答案】D
【解析】解:如图所示, △ABC 中, =2 , =2 , 根据定比分点的向量式,得
=
=+,
=2 ,
=2
=2 .
当且仅当 4m=2n,即 2m=n,
即 n= ,m= 时取等号.
∴4m+2n 的最小值为 2 .
第 10 页,共 16 页
故答案为:2
15.【答案】
.
【解析】由题意,y′=lnx+1−2mx
令 f′(x)=lnx−2mx+1=0 得 lnx=2mx−1,
函数 f x x lnx mx 有两个极值点,等价于 f′(x)=lnx−2mx+1 有两个零点,
值为18 3 ,则球 O 的体积为( ) A. 81 B.128 C.144 D. 288
【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算
求解能力.
5. 已知函数 f (x) 3x2 2ax a2 ,其中 a (0,3] , f (x) 0 对任意的 x 1,1 都成立,在 1
和两数间插入 2015 个数,使之与 1,构成等比数列,设插入的这 2015 个数的成绩为 T ,则T ( )
A. 22015
B. 32015
2015
C. 3 2
2015
D. 2 2
6. 设等比数列{an}的公比 q=2,前 n 项和为 Sn,则 =(

A.2 B.4 C. D. 7. 下列图象中,不能作为函数 y=f(x)的图象的是( )
所以所求概率为 =
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概
念,有利于计算一些事件的概率,有利于解释生活中的一些问题. 4. 【答案】D
【解析】当 OC 平面 AOB 平面时,三棱锥 O ABC 的体积最大,且此时 OC 为球的半径.设球的半径为
第 1 页,共 16 页
A.
B.
C.
D.
8.
已知函数
f
(
x)

log
2
| x |
x(x 0) ,函数 g(x) 满足以下三点条件:①定义域为 R ;②对任意 x R ,有
(x 0)
g(x) 1 g(x 2) ;③当 x [1,1] 时, g(x) 1 x2 .则函数 y f (x) g(x) 在区间[4,4] 上零 2
= + ,= + ,
以上三式相加,得
+ + =﹣ ,
所以,
与 反向共线.
【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目. 12.【答案】C 【解析】函数 f(x)=sin(2x+θ)(﹣ <θ< )向右平移 φ 个单位,得到 g(x)=sin(2x+θ﹣2φ),
第 9 页,共 16 页
,则 .
第 5 页,共 16 页
双台子区高中 2018-2019 学年上学期高三数学期末模拟试卷含答案(参考答案) 一、选择题
1. 【答案】C 【解析】解:如图,
+
+(
).
故选 C.
2. 【答案】A
【解析】解:复数 Z= =
=(1+2i)(1﹣i)=3+i 在复平面内对应点的坐标是(3,1).
曲线的标准方程为 y2 x2 1 .故答案为: y2 x2 1 .
45
45
考点:双曲线的简单性质;椭圆的简单性质.
14.【答案】 2 .
【解析】解:整理函数解析式得 f(x)﹣1=loga(x﹣1),故可知函数 f(x)的图象恒过(2,1)即 A(2,1),
故 2m+n=1.
∴4m+2n≥2
二、填空题 13.【答案】 y2 x2 1
45
【解析】
试题分析:由题意可知椭圆 x2 y2 1 的焦点在 y 轴上,且 c2 36 27 9 ,故焦点坐标为 0,3 由双曲
27 36
线的定义可得 2a 15 0 2 4 32 15 0 2 4 32 4 ,故 a 2 , b2 9 4 5 ,故所求双
都成立,所以


f f
1 1 0
0
,解得
a 3 或 a 1 ,又因为 a (0, 3] ,所以 a 3 ,在和两数间插入 a1, a2...a2015 共 2015 个数,使之与,构成等
比数列, T a1Aa2...a2015 , T a2015 Aa2...a1 ,两式相乘,根据等比数列的性质得 T 2 a1a2015 2015 1 3 2015 ,
恒成立,则实数的取值范围是

17.△ABC 中,
,BC=3,
,则∠C= .
18.曲线 y=x+ex 在点 A(0,1)处的切线方程是 .
三、解答题
19.命题 p:关于 x 的不等式 x2+2ax+4>0 对一切 x∈R 恒成立,q:函数 f(x)=(3﹣2a)x 是增函数.若 p∨q 为真,p∧q 为假.求实数 a 的取值范围.
等价于函数 y=lnx 与 y=2mx−1 的图象有两个交点,

当 m= 1 时,直线 y=2mx−1 与 y=lnx 的图象相切, 2
的最小值是 .
15.【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f x x lnx ax 有两个极值点,则实数 a 的
取值范围是.
16.设函数 f (x) x3 (1 a)x2 ax 有两个不同的极值点 x1 , x2 ,且对不等式 f (x1) f (x2 ) 0
点的个数为( )
A.7
B.6
C.5
D.4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题
综合性强,难度大.
9. 在平面直角坐标系中,若不等式组
( 为常数)表示的区域面积等于 , 则 的值为
()
A.
B.
C.
D.
10.已知锐角△ABC 的内角 A,B,C 的对边分别为 a,b,c,23cos2A+cos2A=0,a=7,c=6,则 b=(
20.已知函数 f(x)=lnx﹣a(1﹣ ),a∈R. (Ⅰ)求 f(x)的单调区间; (Ⅱ)若 f(x)的最小值为 0. (i)求实数 a 的值; (ii)已知数列{an}满足:a1=1,an+1=f(an)+2,记[x]表示不大于 x 的最大整数,求证:n>1 时[an]=2.
第 3 页,共 16 页
21.已知集合 A={x|1<x<3},集合 B={x|2m<x<1﹣m}. (1)若 A⊆B,求实数 m 的取值范围; (2)若 A∩B=∅,求实数 m 的取值范围.
22.(本题满分
12
分)已知数列{an}的前 n
项和为
Sn

Sn

3an 3 2
(n
N
).
(1)求数列 {an } 的通项公式;
图象,若 f(x),g(x)的图象都经过点 P(0, ),则 φ 的值不可能是( )
A. B.π C. D.
二、填空题
13.设某双曲线与椭圆 x2 y 2 1 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 27 36
( 15,4) ,则此双曲线的标准方程是
.
14.当 a>0,a≠1 时,函数 f(x)=loga(x﹣1)+1 的图象恒过定点 A,若点 A 在直线 mx﹣y+n=0 上,则 4m+2n

A.10 B.9 C.8 D.5
11.设 D、E、F 分别是△ABC 的三边 BC、CA、AB 上的点,且 =2 , =2 , =2 ,则
与( )
A.互相垂直
B.同向平行
C.反向平行
D.既不平行也不垂直
第 2 页,共 16 页
12.将函数 f(x)=3sin(2x+θ)(﹣ <θ< )的图象向右平移 φ(φ>0)个单位长度后得到函数 g(x)的
2015
T 3 2 ,故选 C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.
6. 【答案】C
【解析】解:由于 q=2,



故选:C. 7. 【答案】B
【解析】解:根据函数的定义可知,对应定义域内的任意变量 x 只能有唯一的 y 与 x 对应,选项 B 中,当 x> 0 时,有两个不同的 y 和 x 对应,所以不满足 y 值的唯一性. 所以 B 不能作为函数图象. 故选 B. 【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集 ,定义域内 x 的任意性,x 对应 y 值的唯一性. 8. 【答案】D
第 7 页,共 16 页
第 Ⅱ卷(共 100 分)[.Com] 9. 【答案】B 【解析】【知识点】线性规划 【试题解析】作可行域:
由题知: 所以
第 8 页,共 16 页
故答案为:B 10.【答案】D
【解析】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即 cos2A= ,A 为锐角,
【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
相关文档
最新文档