最新高三数学上学期期末考试试卷含答案

合集下载

山东省威海市2023-2024学年高三上学期期末考试 数学含答案

山东省威海市2023-2024学年高三上学期期末考试  数学含答案

高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。

北京市房山区2023-2024学年高三上学期期末考试数学含答案解析

北京市房山区2023-2024学年高三上学期期末考试数学含答案解析

房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32- B.32C.23- D.235.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b > B.11a b> C.b a a b> D.2211ab a b>6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9B.1-或9C.1-或9- D.1或9-7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A .2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.14.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.20.已知函数()1e x f x a x ⎛⎫=+⋅⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N,都有n mna q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j ijQ j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-【答案】C 【解析】【分析】计算出集合B 后由交集定义运算可得.【详解】{}{}101B x x x x =->=<,故{}2,0A B ⋂=-.故选:C.2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-【答案】A 【解析】【分析】利用复数的几何意义可得出复数z ,再利用复数的乘法可求得()1i z --的值.【详解】在复平面内,若复数z 对应的点为()1,1-,由复数的几何意义可得1i z =-+,因此,()()()1i 1i 1i 2z --=--⋅-+=.故选:A.3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.【答案】B 【解析】【分析】先表示出,,a b a b ⋅ ,然后根据πcos 3a b a b ⋅= 求解出m 的值.【详解】因为2a b m ⋅= ,2,a b ==所以πcos 3a b a b ⋅= ,所以1222m =,解得33m =或33m =-(舍去),故选:B.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32-B.32C.23- D.23【答案】B 【解析】【分析】写出二项式展开式通项,令x 的指数为零,求出参数的值,代入通项即可得解.【详解】432x x ⎛⎫+ ⎪⎝⎭的展开式通项为()()431241442C C 20,1,2,3,4kk k kk k k T x x k x --+⎛⎫=⋅⋅=⋅⋅= ⎪⎝⎭,令1240k -=,可得3k =,因此,展开式中的常数项为3334C 24832T =⋅=⨯=.故选:B.5.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b >B.11a b> C.b a a b > D.2211ab a b>【答案】D 【解析】【分析】对A 、B 、C 举反例即可得,对D 作差计算即可得.【详解】对A :若0a b >>,则22a b <,故错误;对B :若0a b >>,则11a b<,故错误;对C :若0a b >>,则22a b >,0ab >,左右同除ab ,有a bb a>,故错误;对D :由a b >且a ,b 为非零实数,则2222110a b ab a b a b --=>,即2211ab a b>,故正确.故选:D.6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9 B.1-或9 C.1-或9- D.1或9-【答案】D 【解析】【分析】利用圆心到直线的距离等于圆的半径,可求得实数b 的值.【详解】圆C 的圆心为()1,2C -因为直线:20l x y b -+=与圆C=,即45b +=,解得1b =或9-.故选:D.7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据给定条件,可得函数()f x 是R 上的偶函数,利用充分条件、必要条件的定义,结合偶函数性质及单调性判断即得.【详解】由函数()f x 满足()()0f x f x --=,得函数()f x 是R 上的偶函数,而()f x 在[0,)+∞上单调递减,因此22()()(||)(||)||||f a f b f a f b a b a b >⇔>⇔<⇔<,所以“22a b <”是“()()f a f b >”的充要条件.故选:C8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%【解析】【分析】根据题意可得9001e5kP P -⋅=,解得1331e 5k -⎛⎫= ⎪⎝⎭,从而求得关于残留数量与过滤时间的函数关系式,再将12t =代入即可求得答案.【详解】因为前9个小时废气中的污染物恰好被过滤掉80%,所以9001e5kP P -⋅=,即91e ,5k -=所以1331e 5k -⎛⎫= ⎪⎝⎭.再继续过滤3小时,废气中污染物的残留量约为()4341230000011ee0.58512%55kkP P P P P --⎛⎫⋅=⨯=⨯≈⨯≈ ⎪⎝⎭.故选:A.9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A.2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=【答案】C 【解析】【分析】根据给定条件,利用双曲线定义确定2PQ PF +最小时,点Q 的位置,进而求出,a b 的关系即得.【详解】双曲线C :22221(0,0)x y a b a b-=>>的渐近线为0bx ay ±=,由对称性不妨令点P 在第二象限,由双曲线定义得211||||2||2PQ PF PQ PF a F Q a +=++≥+,当且仅当P 为线段1FQ 与双曲线的交点时因此2PQ PF +的最小值为1||F Q 的最小值与2a 的和,显然当1FQ 与渐近线0bx ay +=垂直时,1||F Q 取得最小值,而1PF 平行于渐近线0bx ay -=,于是双曲线的两条渐近线互相垂直,即1ba=,则双曲线22221x y a b -=的渐近线方程为0x y ±=,显然选项ABD 不满足,C 满足,所以双曲线C 的方程可能是22122x y -=.故选:C10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5【答案】B 【解析】【分析】根据题意不断计算即可解出.【详解】因为2a 为强率,由310π13<<可得,373101331.31244159a +==>+,即3a 为强率;由313π14<<可得,473131631.41254159a +==>+,即4a 为强率;由316π15<<可得,573161931.51264159a +==>+,即5a 为强率;由319π16<<可得,673192231.61274159a +==>+,即6a 为强率;由322π17<<可得,763222531.1252183.41597a +===<+,即7a 为弱率,所以7m =,故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.【答案】()1,00,2⎛⎫-∞⋃ ⎪⎝⎭【解析】【分析】由真数大于零及分母不等于零计算即可得.【详解】由题意可得120x ->、0x ≠,故12x <且0x ≠,故该函数定义域为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.故答案为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.【答案】29n -【解析】【分析】由等差数列及其前n 项和的性质计算即可得.【详解】设()()1171n a a n d n d =+-=-+-,则313321315S a d d =+=-+=-,即2d =,故()72129n a n n =-+-=-.故答案为:29n -.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.【答案】π4【解析】【分析】根据给定条件,利用正弦定理边化角,再利用和角的正弦公式求解即得.【详解】在ABC 中,由2cos 2b c a C -=及正弦定理,得2sin sin sin cos 2B C A C -=,则sin()sin sin cos 2A C C A C +-=,整理得cos sin sin 2A C C =,而sin 0C >,因此2cos 2A =,又0πA <<,所以π4A =.故答案为:π414.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.【答案】28(0)x y y =-≤或0(0)x y =>【解析】【分析】设出点M 的坐标,利用已知列出方程化简即得.【详解】设点(,)M x y ,依题意,||||2MF y =+||2y =+,整理得24(||)x y y =-,所以M 的轨迹方程是28(0)x y y =-≤或0(0)x y =>.故答案为:28(0)x y y =-≤或0(0)x y =>15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.【答案】①②④【解析】【分析】建立空间直角坐标系后逐个分析即可得.【详解】以D 为原点,建立如图所示空间直角坐标系,则有()0,0,0D 、(),0,0A a 、()1,0,A a a 、(),,0B a a 、()10,0,D a 、()1,,B a a a 、()0,,0C a 、()10,,C a a ,则()1,0,B C a a =-- 、()1,,BD a a a =-- 、()11,,0A C a a =- 、()1,0,A D a a =-- 、()10,,AB a a = 、()11,0,0A D a =- 、()10,0,AA a = ,设11B P B C λ= ,[]0,1λ∈,则()11,,AP AB B P a a a a λλ=+=-- ,222210AP BD a a a a λλ⋅=-+-= ,故1AP BD ⊥,故①正确;设平面11AC D 的法向量为(),,n x y z =,则有11100A C n A D n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00ax ay ax az -+=⎧⎨--=⎩,取1x =,则()1,1,1n =- ,有0AP n a a a λλ⋅=-+-+= ,故AP n ⊥ ,又AP ⊄平面11A C D ,则//AP 平面11A C D ,故②正确;当0λ=时,有()0,,AP a a = ,此时110000A A P D =+⋅+= ,即11AP A D ⊥,即此时直线AP 与直线11A D 所成角为π2,故③错误;由()1,1,1n =- ,()11,,PA AA AP a a a λλ=-=- ,则133PA n d n ⋅== ,故④正确.故答案为:①②④.【点睛】关键点睛:对空间中线上动点问题,可设出未知数表示该动点分线段所得比例,从而用未知数的变化来体现动点的变化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)6【解析】【分析】(1)由线面平行的判定定理即可得;(2)选①,由题意及CD PA ⊥去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题;选②,由题意及PB =结合勾股定理的逆定理去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题.【小问1详解】连接点B 与AP 中点E 、连接ME ,又M ,N 分别为棱PD ,BC 的中点,故//ME AD 、12ME AD =,又底面ABCD 是正方形,故//BN AD 、12=BN AD ,故//ME BN 且ME BN =,故四边形MEBN 为平行四边形,故//MN EB ,又EB ⊂平面PAB ,MN ⊄平面PAB ,故//MN 平面PAB ;【小问2详解】选条件①:CD PA ⊥,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由CD PA ⊥,CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.条件②:PB =,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由PB =,则222PB PA AB =+,故PA AB ⊥,又//AB CD ,故CD PA ⊥,又CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.【答案】(1)π4ϕ=(2)π5π,1212⎛⎤ ⎥⎝⎦【解析】【分析】(1)求出平移后所得函数的解析式,根据正弦型函数的奇偶性,结合ϕ的取值范围可求得ϕ的值;(2)利用三角恒等变换化简得出()1sin 22g x x =-,由0x m <<可得022x m <<,结合题意可得出关于m 的不等式,解之即可.【小问1详解】解:将函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,可得到函数ππ2284y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,函数π24y x ϕ⎛⎫=+- ⎪⎝⎭为奇函数,则()ππ4k k ϕ-=∈Z ,可得()ππ4k k ϕ=+∈Z ,又因为π2ϕ<,则π4ϕ=.【小问2详解】解:由(1)可知,()π2sin 2cos 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,则()()()21112cos sin 2cos 21cos 2sin 2222g x f x x x x x x =-+=+-++=-,因为0x m <<,则022x m <<,由()0g x =,可得1sin 22x =,因为()g x 在区间()0,m 上有且只有一个零点,则π5π266m <≤,解得π5π1212m <≤.因此,实数m 的取值范围是π5π,1212⎛⎤ ⎥⎝⎦.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).【答案】(1)27(2)X 的分布列见解析,()47E x =(3)23s >2212s s =【解析】【分析】(1)利用古典概型计算公式进行求解即可;(2)利用古典概型计算公式,结合数学期望公式进行求解即可.(3)根据数据的集中趋势进行判断即可.【小问1详解】由图可知,七天中只有1日、2日乙获得流量大于丙获得流量,所以该天乙获得流量大于丙获得流量的概率为27;【小问2详解】由(1)可知七天中只有1日、2日乙获得流量大于丙获得流量,因此0,1,2X =,()2527C 100C 21P X ===,()2227C 12C 21P X ===,()1011011212121P X ==--=,所以X 的分布列如下图所示:X012P 10211021121()1010140122121217E X =⨯+⨯+⨯=;【小问3详解】根据图中数据信息,甲、乙七天的数据相同,都是1个50,2个30,1个10,3个5;而且丙的的数据最分散,所以,23s >2212s s =.19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.【答案】19.22143x y +=20.3260x y ±-=【解析】【分析】(1)由题意计算即可得;(2)设出直线,联立曲线,得到P 、Q 两点的纵坐标,结合面积公式计算即可得.【小问1详解】由13A F a c =+=,12c e a ==,解得2a =,1c =,故3b ==,即椭圆C 的标准方程为22143x y +=;【小问2详解】由椭圆C 的标准方程为22143x y +=,则()12,0A -、()22,0A 、()1,0F ,由题意可得直线2A P 斜率存在且不为0,设2:2A P l x my =+,令0x =,则2y m =-,故20,Q m ⎛⎫- ⎪⎝⎭,联立222143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234120m y my ++=,即()234120m y m y ⎡⎤++=⎣⎦,故0y =或21234m y m -=+,由()22,0A ,故21234P m y m -=+,则112121144222A PQ A A Q A A P Q P Q P S S S y y y y =-=⨯-⨯=- ,又()212122P A FP P y S y =⨯-=,即2422P Q P P y y y y -=⨯=,即Q P P y y y -=,若Q P y y >,则2Q P y y =,即2122234m m m -=⨯+,即223412m m +=,即249m =,则23m =±,若Q P y y <,则P Q P y y y -=,即0Q y =,不符,故舍去,即23m =±,故22:23A P l x y =±+,即直线2A P 的方程为3260x y ±-=.20.已知函数()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.【答案】(1)ey =(2)15,2⎛⎫+-∞- ⎪ ⎪⎝⎭、51,2⎛⎫+∞ ⎪ ⎪⎝⎭(3)()0,∞+【解析】【分析】(1)当0a =时,求出()1f 、()1f '的值,利用导数的几何意义可求得所求切线的方程;(2)当1a =时,求出()f x ',利用函数的单调性与导数的关系可求得函数()f x 的单调递增区间;(3)令()21g x ax x =+-,分析可知,函数()g x 在()0,1上有且只有一个异号零点,对实数a 的取值进行分类讨论,结合题意可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:当0a =时,()e xf x x =,则()()2e 1x x f x x-'=,所以,()1e f =,()10f '=,故当0a =时,曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=,即e y =.【小问2详解】解:当1a =时,()()1e 11e x x x f x x x +⎛⎫=+= ⎪⎝⎭,该函数的定义域为{}0x x ≠,()()()()2221e 2e 1e x x x x x x x x f x x x +-+-+'==,由()0f x ¢>,即210x x +->,解得152x +<-或512x ->,因此,当1a =时,函数()f x的单调递增区间为1,2⎛+-∞- ⎪⎝⎭、⎫+∞⎪⎪⎝⎭.【小问3详解】解:因为()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭,则()()2221e 11e x x ax x f x a xx x +-⎛⎫'=+-= ⎪⎝⎭,令()21g x ax x =+-,因为函数()f x 在()0,1上有且只有一个极值点,则函数()g x 在()0,1上有一个异号零点,当0a =时,对任意的()0,1x ∈,()10g x x =-<,不合乎题意;当0a >时,函数()21g x ax x =+-在()0,1上单调递增,因为()010g =-<,只需()10g a =>,合乎题意;当a<0时,函数()g x 的图象开口向下,对称轴为直线102x a=->,因为()010g =-<,只需()10g a =>,不合乎题意,舍去.综上所述,实数a 的取值范围是()0,∞+.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N ,都有n m na q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【答案】(1)53(2){}n a 不具有性质“(2,1,3)Q ”,理由见解析(3)证明见解析【解析】【分析】(1)由{}n a 具有性质“(4,2,3)Q ”,可得当2n ≥时,43n n a a +=,结合题意计算即可得;(2)由题意计算出n a 通项公式后,检验2n na a +是否恒等于3即可得;(3)借助{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,则当1n ≥时,有1n i n a q a +=,2n j n a q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,通过运算得到12j i q q =,从而可验证对任意的1n i ≥+时,是否有2j i n j ij n a q a -+-=即可得.【小问1详解】由{}n a 具有性质“(4,2,3)Q ”,则当2n ≥时,43n na a +=,故623a a =,953a a =,117339a a a ==,又31a =,52a =,故691125323393329120a a a a a a a ++=++=+⨯+⨯=,即253a =;【小问2详解】{}n a 不具有性质“(2,1,3)Q ”,理由如下:设()11n b b n d =+-,112n n c c -=⋅,由234b c ==,112b c c +=,即有11111442b d c b c c +==⎧⎨+=⎩,解得1113b c d ==⎧⎨=⎩,故32n b n =-,12n n c -=,则1232n n n n a b c n -=+=+-,有()21122322234n n n a n n +-++=++-=++,则121234232n n n n a n a n ++-++=+-,不恒等于3,故{}n a 不具有性质“(2,1,3)Q ”;【小问3详解】由{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,即当1n ≥时,有1n i n a q a +=,2n j na q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,由i j <,故121212112212121j ii i j j i i j i j j i j i i j ia a a a a a a a a q a a a q a a a a a a ++++++++++⨯⨯⨯===⨯⨯⨯ ,故12j i q q =,即12i j q q =,由1n i n a q a +=,2n j n a q a +=,则21n j n i a q a q ++=,当1n i ≥+,即1n i -≥时,有22212j i n i j n j i j i n i in j a a q q q a a q q --++--+====,即对任意的1n i ≥+时,有2j i n j ij n a q a -+-=,即{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【点睛】关键点睛:本题关键点在于通过对数列新定义的分析,从而得到1n i n a q a +=,2n j na q a +=,并由此得到12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i i a a a q a a a +++⨯⨯⨯= ,从而得出12j i q q =.。

2024年山东省枣庄市高三上学期期末考试数学试题试题及答案

2024年山东省枣庄市高三上学期期末考试数学试题试题及答案

( ) ON ⊥ l 于点 N ,直线 MF 与 ON 交于点 A ,点 B 5, 0 ,则 AB 的取值范围是__________.
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(10 分)
已知数列 an 中, a1 = 1, n2an+1 = (n +1)2 an .
22.(12 分)
已知双曲线 C 的渐近线方程为 3x y = 0 ,过右焦点 F (2, 0) 且斜率为 k 的直线 l 与 C 相交于 A, B 两点.
(1)求 C 的方程; (2)①若 B 点关于 x 轴的对称点为 E ,求证直线 AE 恒过定点 M ,并求出点 M 的坐标; ②若 k…3,求 AEF 面积的最大值.
比( ) A.极差变小
B.平均数变大
C.方差变小
D.第 25 百分位数变小
10.设 m = (−1,3), n = (1, 2) ,则( )
A. m − 2n = 10
B. (m − 2n) ⊥ m C.若 (m − 2n) ∥ (km + n) ,则 k = − 1
2 D. n 在 m 上的投影向量为 1 m
A1

ABD
外接球的表面积最小值为
100π 3
12.已知定义在 R 上的连续函数
f
( x) ,其导函数为
f ( x) ,且
f
(0) = e,
f
1 2
=
1
பைடு நூலகம்,函数
y
=
f
x
+
1 2

奇函数,当 x 1 时 f ( x) f ( x) ,则( )
2

河南省郑州市2023-2024学年高三上学期1月期末考试 数学含解析

河南省郑州市2023-2024学年高三上学期1月期末考试 数学含解析

绝密★启用前2023—2024学年郑州市高三(上)期末考试数学(答案在最后)考生注意:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知各项均为正数的等比数列{}n a 满足10986a a a +=.若存在两项m a ,n a ,使得14a =,则14m n+的最小值为()A.4 B.23C.32D.92.已知函数()()223x x f x a bx -=-++,且0ab ≠.若()2019f h =-,则()f h -=()A.2024B.2023C.2022D.20253.已知函数()sin()f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭上单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条相邻对称轴,则512f π⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.324.在ABC △中,下列各式正确的是()A.sin sin a B b A=B.sin sin a C c B=C.2222cos()c a b ab A B =+-+D.sin()sin a A B c A+=5.满足下列条件的两条直线1l 与2l ,其中可以推出12//l l 的条件是()①1l 的斜率为2,2l 过点(1,2)A ,(4,8)B ;②1l 经过点(3,3)P ,(5,3)Q -,2l 平行于x 轴,但不经过P 点;③1l 经过点(1,0)M -,(5,2)N --,2l 经过点(4,3)R -,(0,5)S .A.①②B.②③C.①③D.①②③6.在三棱锥P ABC -中,CP ,CA ,CB 两两互相垂直,1AC CB ==,2PC =,建立如图所示的空间直角坐标系,则平面PAB 的法向量可以是()A.11,1,2⎛⎫ ⎪⎝⎭B.C.(1,1,1)D.(2,2,1)-7.已知数列{}n a 满足:6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,且数列{}n a 是递增数列,则实数a 的取值范围是()A.9,34⎛⎫⎪⎝⎭B.9,34⎡⎫⎪⎢⎣⎭C.(1,3)D.(2,3)8.一个物体做直线运动,位移s (单位:m)与时间t (单位:s )之间的函数关系为()25s t t mt =+,且这一物体在23t ≤≤这段时间内的平均速度为26m /s ,则实数m 的值为()A.2B.1C.1- D.6二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设一元二次方程220x ax a ++=的两个实根为,1x ,()212x x x ≠,则()A.1216x x >B.当17a >时,12117x x a +-的最小值为34+C.1211x x +为定值D.当21127x x x x +=时,16a =10.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R的水车,一个水斗从点3)A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过t 秒后,水斗旋转到点P ,设点P 的坐标为(),x y ,其纵坐标满足()sin()y f t R t ωϕ==+(0t ≥,0ω>,π||2ϕ<),则下列叙述正确的是()A.6R =,π30ω=,π6ϕ=-B.当[35,55]t ∈时,点P 到x 轴的距离的最大值为6C.当[10,25]t ∈时,函数()y f t =单调递减D.当20t =时,||PA =三、填空题:本大题共4个小题,每小题5分,共20分.13.已知样本数据1x ,2x ,…,2022x 的平均数与方差分别是m 和n ,若i i 2(i 1,2,,2022)y x =-+= ,且样本数据的1y ,2y ,…,2022y 平均数与方差分别是n 和m ,则222122022x x x +++= ________.14.已知过不同两点()222,3A m m +-,()23,2B m m m --的直线l 的一个方向向量(1,1)=a ,则实数m =_________.15.若直线l 的斜率k 的取值范围是,则该直线的倾斜角α的取值范围是__________.16.商场对某种产品的广告费用支出x (元)与销售额y (元)之间的关系进行调查,通过回归分析,求得x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额y 的预报值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球, .球数构成一个数列{}n a ,满足1n n a a n -=+,1n >且*n ∈N .(1)求数列{}n a 的通项公式;(2)求证:121112na a a +++< .(1)求sin ABD ∠的值;(2)求ABD △的面积.19.(12分)已知函数()cos )sin f x x x =+-,在ABC △中,AB =,()f C =ABC △的面积为2.(1)求C 的值;(2)求sin sin A B +的值.20.(12分)“现值”与“终值”是利息计算中的两个基本概念,终值是现在的一笔钱按给定的利息率计算所得到的在未来某个时间点的价值.现值是未来的一笔钱按给定的利息率计算所得到的现在的价值.例如,在复利计息的情况下,设本金为A ,每期利率为r ,期数为n ,到期末的本利和为S ,则()1n S A r =+其中,S 称为n 期末的终值,A 称为n 期后22.(12分)已知0a >,设函数()(2)ln f x x a x x =-+,()f x '是()f x 的导函数.(1)若2a =,求曲线()f x 在点(1,(1))f 处的切线方程;(2)若()f x 在区间(1,)+∞上存在两个不同的零点1x ,()212x x x <.①求实数a 的取值范围;②证明:()222e 2e 2a ax f x '<--.2023—2024学年郑州市高三(上)期末考试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:设等比数列{}n a 的公比为(0)q q >.由各项均为正数的等比数列{}n a 满足10986a a a +=,可得28886a q a q a +=,即260q q +-=,解得2q =或3q =-(舍).14a =,2216m n +-∴=,6m n ∴+=,141141413()5(56662n m m n m n m n m n ⎛⎫⎛⎫∴+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当4n m m n =,即2m =,4n =时,等号成立.故14m n +的最小值为32.故选C.2.答案:D解析:由()()223x x f x a bx -=-++,得()()223x x f x a bx --=--+,()()6f x f x -+∴=,()()62025f h f h ∴-=-=.故选:D.3.答案:D解析:由题意得122236ωπππ⨯=-,解得2ω=,易知6x π=是()f x 的最小值点,所以322()62k k ϕππ⨯+=+π∈Z ,得72()6k k ϕπ=+π∈Z ,于是77()sin 22sin 266f x x k x ππ⎛⎫⎛⎫=++π=+ ⎪ ⎪⎝⎭⎝⎭,则557sin 2sin 1212632f ππππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭,故选D.4.答案:D解析:对于选项A:由正弦定理有sin sin sin a b c A B C ==,故sin sin a Ab B=,故选项A 错误;对于选项B :因为sin sin a c A C=,故sin sin a C c A =,故选项B 错误;对于选项C:()cos cos A B C +=-,由余弦定理2222cos c a b ab C =+-得()2222cos c a b ab A B =+++;故选项C 错误;对于选项D:由正弦定理可得sin sin a c A C=,再根据诱导公式可得:()sin sin a c A A B =+,即()sin sin a A B c A +=,故选项D 正确;故选:D 5.答案:B解析:根据两点间的斜率公式知①中2l 的斜率为2,但是不能保证12//l l ,因为有可能直线1l 与2l 重合;②③中的两条直线斜率相等但不重合,可以保证12//l l .故选B.6.答案:A解析:由题意,得(1,0,0)A ,(0,1,0)B ,(0,0,2)P ,则(1,1,0)AB =- ,(1,0,2)AP =-,设平面PAB 的一个法向量是(,,)x y z =n ,则0,0,AB AP ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩令1x =,则1y =,12z =,所以11,1,2⎛⎫= ⎪⎝⎭n ,故选A.7.答案:D解析:根据题意,6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,要使{}n a 是递增数列,必有8630,1,(3)73,a a a a -->⎧⎪>⎨⎪-⨯-<⎩即3,1,29,a a a a <⎧⎪>⎨⎪><-⎩或可得23a <<.故选D.8.答案:B 解析:由已知,得()()322632s s -=-,()()2253352226m m ∴⨯+-⨯+=,解得1m =,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.答案:BC解析:因为方程220x ax a ++=的两个实根为1x ,()212x x x ≠,所以280a a ∆=->,解得()(),08,a ∈-∞+∞ ,由12x x a +=-,122x x a =,所以()()12,016,x x ∈-∞+∞ ,所以A 错误;则()1211123421734342171717x x a a a a a ⋅+=+=+-+++--- ,当172a =+时,等号成立,所以12117x x a +-的最小值为34+B 正确;由1212121112x x x x x x ++==-,所以C 正确;当21127x x x x +=时,()22221212121212242722x x x x x x a a a x x x x a +-+-===-=,得18a =,所以D 错误.故选:BC.10.答案:ABD解析:由题意可知60T =,所以2π60ω=,解得π30ω=,又从点3)A -出发,所以6R =,6sin 3ϕ=-,又π||2ϕ<,所以π6ϕ=-,A 正确;ππ6sin()306y t =-,当[35,55]t ∈时,ππ5π[π,]3063t -∈,则ππsin([1,0]306t -∈-,[6,0]y ∈-,点P 到x 轴的距离为||y ,所以点P 到x 轴的距离的最大值为6,B 正确;当[10,25]t ∈时,πππ2π[,30663t -∈,所以函数ππ6sin(306y t =-在[10,25]上不单调,C 不正确;当20t =时,πππ3062t -=,则π6sin 62y ==,且π6cos 02x ==,所以()0,6P ,则||PA ==正确.故选ABD.三、填空题:本大题共4个小题,每小题5分,共20分.解析:分析知2223m m m +≠--,即1m ≠-且12m ≠.又由题意,得()()222231132m m m m m --=---+,所以2m =-.15.答案:0,3π⎡⎫⎪⎢⎣⎭解析:0k ≤< 0tan α∴≤<.又[0,)α∈π,0,3απ⎡⎫∴∈⎪⎢⎣⎭.16.答案:82.5解析:x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额的预报值为6.51017.582.5⨯+=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.答案:(1)π3A =(2)见解析解析:(1)因为1n n a a n -=+,1n >,所以1n n a a n --=,1n >,所以当1n >时,()()()112211n n n n n a a a a a a a a ---=-+-+-+()()11212n n n n +=+-+++= ,当1n =时,上式也成立,所以()12n n n a +=;(2)由()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,所以121111111112121222311n a a a n n n ⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪++⎝⎭⎝⎭.19.答案:(1)3C =(2)32解析:(1)π()cos )sin 2cos()6f x x x x =+-=++由()f C =,得π2cos(6C +=,π2cos(06C +=()0,πC ∈ ππ7π(,)666C ∴+∈π3C ∴=.(2)由(1)知π3C =,又1sin 2ABC S ab C = △31πsin 223ab ∴=2ab ∴=由余弦定理得2222π32cos23a b ab a b ==+-+-225a b ∴+=,3a b +=由正弦定理得sin sin sin 12A B C a b c ===13sin sin ()22A B a b +=+=∴.(2)①a >;②证明见解析解析:(1)由题设()2(1)ln f x x x x =-+,则2(1)2()2ln 12ln 3x f x x x x x-'=++=-+,且0x >,所以(1)1f =,(1)1f '=,则在点(1,(1))f 处的切线方程为11y x -=-,即0x y -=.(2)①当1x >时()0f x =等价于20ln x x a x +-=,设()2ln x g x x a x =+-,则22ln 1(ln 1)(2ln 1)()2ln ln x x x g x x x -+-=+'=.当1x <<时()0g x '<,()g x 单调递减;当x >()0g x '>,()g x 单调递增;所以,当1x >时min ()g x g a ==,因为()f x 在(1,)+∞上存在两个不同的零点1x ,2x ,则min ()0g x <,解得a >.当a >时,取1a a x a =∈-,则1ln 11a a x x a <-=-,故()221201ln 111a a a a a x a a a g x x a a x a a a -=+->+-=>---,又2002ln 2a a g a⎛⎫=>= ⎪⎝⎭,所以()f x在和2a ⎫⎪⎭上各有一个零点,故a >.②因为()2ln 3a f x x x-'=+,所以22222()2ln 3x f x x x a x '=-+,结合()()22222ln 0f x x a x x =-+=知:()()2222222222232222a x a x f x a x a x x a a x -=-+=---+--'.设ln 1y x x =-+,则11y x'=-,在(0,1)上0y '>,在(1,)+∞上0y '<,所以y 在(0,1)上递增,在(1,)+∞上递减,故ln1110y ≤-+=,即ln 1x x ≤-,所以ln 1e ex x ⎛⎫≤- ⎪⎝⎭,即ln e x x ≤,当e x =时取等号,所以e e e e e e ln e 02222e 2a a a a a f -----⎛⎫=-+>-⋅+= ⎪⎝⎭.由①知,()f x 在[)2,x +∞上单调递增,且()20f x =,所以2e 2a x -≤,即22e a x -≥.因为22()2a a t t tϕ=--+在[e,)+∞上是减函数,且22e a x -≥,所以()()22222(e)e 22e a a x f x a x ϕϕ=-≤=--+',得证.。

广东省深圳市宝安区2023-2024学年高三上学期期末考试数学含答案解析

广东省深圳市宝安区2023-2024学年高三上学期期末考试数学含答案解析

深圳市宝安区高三期末考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数3(2i)+的实部与虚部之和是()A.7B.13C.21D.272.已知集合(){}(){}2,21,,31A x y y x x B x y y x ==--==+∣∣,则A B ⋂的元素个数是()A.0B.1C.2D.无数3.某单位有职工500人,其中男性职工有320人,为了解所有职工的身体健康情况,按性别采用分层抽样的方法抽取100人进行调查,则抽取到的男性职工的人数比女性职工的人数多()A.28B.36C.52D.644.“01x ≤≤”是“11x≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数()54f x x x a =++在()1,1-内有零点,则a 的取值范围是()A.()5,5- B.()(),55,-∞-⋃+∞ C.[]5,5- D.][(),55,∞∞--⋃+6.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在该抛物线上,点C 在y 轴上,若57,2FA FB ==,则AB BC =()A.83B.72C.73D.37.若函数()()2cos cos f x x x ϕ=-+的最大值是7,则常数ϕ的值可能是()A.π6B.π3C.2π3D.5π68.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,M 为α上的一点,且24MH =,过点M 作球O 的截面,则所得的截面面积最小的圆的半径为()A.142B.114C.144D.112二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的前n 项和为n S ,则下列结论正确的是()A.若2537a a a =,则{}n a 是等比数列B.若{}n a 是等比数列,则2537a a a =C.若31nn S =-,则{}n a 是等比数列D.若{}n a 是等比数列,且3nn S a =+,则1a =-10.直线():2310l m x y m +--+=与圆22:244C x y x y +-+=,则()A.圆C 的半径为2B.直线l 过定点()1,1C.直线l 与圆C 一定有公共点D.圆C 的圆心到直线l 的距离的最大值是311.若直线y ax b =+与曲线2ln y x =+相切,则a b +的取值可能为()A.1B.2C.3D.612.正三棱柱111ABC A B C -中,12AB AA ==,D ,E ,F 分别为1AA ,1BB ,1CC 的中点,P 为棱1CC 上的动点,则()A .平面1AB F ⊥平面11ABB AB.点1B 到平面BCD 的距离为C.1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦D.以F 为球心,393为半径的球面与侧面11ABB A 的交线长为43π9三、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量,a b满足2a b += a b -= __________.14.函数()(()3log R f x x a a =+-∈是奇函数,则()4f a =__________.15.为了检查学生的身体素质情况,从田径类3项,球类2项,武术类2项共7项项目中随机抽取3项进行测试,则恰好抽到两类项目的概率是__________.16.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为(),0F c -,直线:30l x y c -+=与C 交于A ,B 两点,若3AB AF =,则C 的离心率是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos213cos B B =-.(1)求角B 的值;(2)若b ABC = 的面积为,求ABC 的周长.18.在等差数列{}n a 中,375818,24a a a a +=+=.(1)求{}n a 的通项公式;(2)若1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n S .19.已知某地中学生的男生和女生的人数比例是3:2,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:男生女生只喜欢羽毛球0.30.3只喜欢乒乓球0.250.2既喜欢羽毛球,又喜欢乒乓球0.30.15(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为X ,求X 的分布列和期望.20.如图,在圆锥SO 中,AB 是圆O 的直径,且SAB △是边长为4的等边三角形,,C D 为圆弧AB 的两个三等分点,E 是SB 的中点.(1)证明:DE //平面SAC ;(2)求平面SAC 与平面SBD 所成锐二面角的余弦值.21.已知双曲线2222:1(0,0)y x C a b a b-=>>的离心率是3,点(P 在C 上.(1)求C 的标准方程;(2)已知直线l 与C 相切,且与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,试问OA OB ⋅是否为定值?若是,求出该定值;若不是,请说明理由.22.已知函数()3f x x x =-.(1)求()f x 的极值;(2)已知()()ππ0,,sin cos tan 26mf nf ααα⎛⎫∈+= ⎪⎝⎭,证明:32m n +>.深圳市宝安区高三期末考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数3(2i)+的实部与虚部之和是()A.7B.13C.21D.27【答案】B 【解析】【分析】根据复数的运算求解即可.【详解】因为()()()()322(2i)44i i2i 34i 2i 63i 8i 4i211i +=+++=++=+++=+,所以复数3(2i)+的实部与虚部之和是21113+=,故选:B.2.已知集合(){}(){}2,21,,31A x y y x x B x y y x ==--==+∣∣,则A B ⋂的元素个数是()A.0B.1C.2D.无数【答案】C 【解析】【分析】依题意,A B ⋂转换为两个图象交点问题,两函数联立,转为一元二次方程解得个数问题,从而得到答案.【详解】联立221,31,y x x y x ⎧=--⎨=+⎩整理得2520x x --=.由()2(5)412330∆=--⨯⨯-=>,得原方程组有两组解,即A B ⋂中有2个元素,故选:C.3.某单位有职工500人,其中男性职工有320人,为了解所有职工的身体健康情况,按性别采用分层抽样的方法抽取100人进行调查,则抽取到的男性职工的人数比女性职工的人数多()A.28B.36C.52D.64【答案】A 【解析】【分析】根据已知条件,结合分层抽样的定义,即可得解.【详解】由题意可知抽取到的男性职工人数为10032064500⨯=,女性职工人数为1006436-=,则抽取到的男性职工的人数比女性职工的人数多643628-=.故选:A.4.“01x ≤≤”是“11x≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】对11x≥可得01x <≤,然后根据充分条件和必要条件的定义判断即可.【详解】由11x ≥,则110x -≥,即10xx -≥,即()100x x x ⎧-≥⎨≠⎩,解得得01x <≤,则01x ≤≤不能推出11x ≥,11x≥能推出01x ≤≤,则“01x ≤≤”是“11x≥”的必要不充分条件.故选:B.5.已知函数()54f x x x a =++在()1,1-内有零点,则a 的取值范围是()A.()5,5- B.()(),55,-∞-⋃+∞ C.[]5,5- D.][(),55,∞∞--⋃+【答案】A 【解析】【分析】首先判断函数的单调性,再根据零点存在性定理,即可列式求解.【详解】5y x =是增函数,4y x a =+也是增函数,所以()f x 是R 上的增函数.因为()f x 在()1,1-内有零点,所以()()11401140f a f a ⎧-=--+<⎪⎨=++>⎪⎩,解得55a -<<.故选:A6.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在该抛物线上,点C 在y 轴上,若57,2FA FB ==,则AB BC =()A.83B.72C.73D.3【答案】D 【解析】【分析】根据抛物线定义可求出,A B x x ,根据三角形相似即可求出AB BC.【详解】设(),A A A x y ,(),B B B x y ,由57,2FA FB ==,根据抛物线定义可得517,12A B x x +=+=,故36,2A B x x ==,,过A ,B 分别作y 轴的垂线,过B 作x 轴的垂线,垂足为E ,明显ABE BCM ,所以362332A BB CAB x x BCx x --===-.故选:D7.若函数()()2cos cos f x x x ϕ=-+的最大值是7,则常数ϕ的值可能是()A.π6B.π3C.2π3D.5π6【答案】B 【解析】【分析】根据两角差的余弦以及辅助角公式对()()2cos cos f x x x ϕ=-+化简,表示出最大值,进而得到答案.【详解】因为()()2cos cos 2sin sin cos 2sin sin 2cos 1cos f x x x x x xϕϕϕϕ=++=++()22(2sin )(2cos 1)sin x ϕϕα=+++,其中s t 2co 12i an s n ϕαϕ+=,22(2sin )(2cos 1)7ϕϕ++=,所以1cos 2ϕ=,对于A 选项,当π6ϕ=,πcos co 3s 62ϕ==,故A 错误;对于B 选项,当π3ϕ=,πcos co 1s 32ϕ==,故B 正确;对于C 选项,当2π3ϕ=,2πcos cos213ϕ==-,故C 错误;对于D 选项,当5π6ϕ=,5πcos cos 236ϕ==-,故D 错误,故选:B.8.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,M 为α上的一点,且4MH =,过点M 作球O 的截面,则所得的截面面积最小的圆的半径为()A.142B.114 C.144D.112【答案】C 【解析】【分析】设截得的截面圆的半径为r ,球的半径为R ,由平面几何知识得截面与球心的距离为13R ,利用勾股定理求得2R 的值,由题意可知球心O 到所求截面的距离d 最大时截面面积最小,利用面积公式,即可得答案.【详解】如图,设截得的截面圆的半径为r ,球O 的半径为R ,因为:1:2AH HB =,所以13OH R =.由勾股定理,得222R r OH =+,由题意得2ππ,1r r ==,所以22113R R ⎛⎫=+ ⎪⎝⎭,解得298R =,此时过点M 作球O 的截面,若要所得的截面面积最小,只需所求截面圆的半径最小.设球心O 到所求截面的距离为d ,所求截面的半径为r ',则r '=,所以只需球心O 到所求截面的距离d 最大即可,而当且仅当OM 与所求截面垂直时,球心O 到所求截面的距离d 最大,即max12d OM ==,所以min 144r =='.故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的前n 项和为n S ,则下列结论正确的是()A.若2537a a a =,则{}n a 是等比数列B.若{}n a 是等比数列,则2537a a a =C.若31nn S =-,则{}n a 是等比数列D.若{}n a 是等比数列,且3nn S a =+,则1a =-【答案】BCD 【解析】【分析】举特列可判断A ;由等比数列的性质可判断B ;由31nn S =-,得1131n n S --=-,两式相减可得123n n a -=⨯可判断C ;由等比中项的性质可判断D.【详解】当0n a =时,满足2537a a a =,但{}n a 不是等比数列,则A 错误由等比数列的性质可知2537a a a =,则B 正确.由31nn S =-,得1131n n S --=-,则()11232n n n n a S S n --=-=⨯≥,当n 1=时,112a S ==,则123n n a -=⨯,从而可知{}n a 是等比数列,则C 正确.由3nn S a =+,得1233,9,27a a S a S a =+=+=+.由等比数列的性质可知2213a a a =,22113326,3,18a S S a a a S S =-==+=-=,即()26183a =+,解得1a =-,再代入结合C 选项可知此时{}n a 为等比数列,则D 正确.故选:BCD.10.直线():2310l m x y m +--+=与圆22:244C x y x y +-+=,则()A.圆C 的半径为2B.直线l 过定点()1,1C.直线l 与圆C 一定有公共点D.圆C 的圆心到直线l 的距离的最大值是3【答案】BCD 【解析】【分析】将圆的方程化为标准方程,即可得出圆心、半径,判断A 项;整理直线方程,解102310x x y -=⎧⎨-+=⎩,即可得出定点坐标;直线l 恒过圆上点()1,1,即可判断C ;设()1,1A ,当AC l ⊥时,距离最大,根据点到直线的距离,求出,即可判断D.【详解】对于A 项,将圆22:244C x y x y +-+=化为标准方程可得,()()22129x y -++=,所以圆C 的圆心坐标为()1,2-,半径为3.故A 项错误;对于B 项,直线():2310l m x y m +--+=可化为()()12310m x x y -+-+=,由102310x x y -=⎧⎨-+=⎩可得,11x y =⎧⎨=⎩,所以直线l 过定点()1,1,故B 项正确;对于C 项,因为点()1,1在圆C 上,直线l 过定点()1,1,所以,直线l 与圆C 一定有公共点.故C 项正确;对于D 项,设()1,1A ,当AC l ⊥时,点C 到直线l 的距离最大,所以,圆C 的圆心到直线l 的距离的最大值是3=,故D 项正确.故选:BCD.11.若直线y ax b =+与曲线2ln y x =+相切,则a b +的取值可能为()A.1B.2C.3D.6【答案】BCD 【解析】【分析】设出切点,利用导数几何意义得出01a x =,由切点既在直线上又在曲线上得出012ln b x +=+,由此将a b +转化为函数0()g x 求值域可得.【详解】设切点为()00,2ln x x +,因为1(2ln )x x'+=,所以01a x =.又因为切点()00,2ln x x +在直线y ax b =+上,所以002ln 1x ax b b +=+=+,解得01ln b x =+,所以000)11l ,(0n a x x b x +=+>+,令()11ln g x x x =++,则()22111x g x x x x-=-+=',令()0g x '=,得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()min ()12g x g ==,又当,()→+∞→+∞x g x .故a b +的取值范围为[)2,+∞.故选:BCD.12.正三棱柱111ABC A B C -中,12AB AA ==,D ,E ,F 分别为1AA ,1BB ,1CC 的中点,P 为棱1CC 上的动点,则()A.平面1AB F ⊥平面11ABB AB.点1B 到平面BCD的距离为C.1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦D.以F 为球心,393为半径的球面与侧面11ABB A 的交线长为43π9【答案】ACD 【解析】【分析】对A ,利用面面垂直的判定即可证明,对B 利用等体积法即可求出距离,对C 建立空间直角坐标系,利用线线角的向量求法即可求出其范围,对D ,作出交线,将立体平面化求解即可.【详解】对于A ,取1AB 的中点G ,连接FG ,DE ,易知G 也是DE 的中点,在1AB F △中,因为1FA FB =,G 为1AB 的中点,所以1FG AB ⊥,在DEF 中,因为FD FE =,G 为DE 的中点,所以FG DE ⊥,又因为1AB ,DE ⊂平面11ABB A ,1AB DE G = ,所以FG ⊥平面11ABB A .又因为FG ⊂平面1AB F ,所以平面1AB F ⊥平面11ABB A ,A 正确.对于B ,设点1B 到平面BCD 的距离为h ,易知1222BCD S =⨯= ,112222BB D S =⨯⨯=△,取AB 中点为M ,连接CM ,因为CA CB =,则CM AB ⊥,因为1BB ⊥底面ABC ,且CM ⊂面ABC ,则1BB CM ⊥,又因为1,AB BB ⊂平面1ABB ,且1AB BB B Ç=,所以CM ⊥平面1ABB,且CM =,因为11B BCD C BB D V V --=,所以112233h ⨯=⨯,解得h =,B 错误.对于C ,取BC 的中点Q ,连接AQ ,易知AQ BC ⊥.以A 为坐标原点,向量CB ,AQ ,1AA的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,则()0,0,1D.()1B,设()P t -,02t ≤≤,()1DB =,()1DP t =--,设1DB 与DP 所成的角为θ,则cos θ==.令1u t =-(11u -≤≤),则cos θ=,当0u =即1t =时,5cos 5θ=;当01u <≤,即12t <≤时,cos θ=,根据对勾函数1y u u =+在(]0,1上单调递减可知53cos 55θ<≤;当10u -≤<,即01t ≤<时,同理根据对勾函数1y u u=+在[)1,0-上单调递减可知15cos 55θ≤<.综上,1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦,C正确.对于D ,由A 选项中的结论知FG ⊥平面11ABB A,FG =又因为球面的半径为393,所以以F 为球心,393为半径的球面与侧面11ABB A 的交线(圆3=.如图,3GM =,1GE =,所以cos 2MGE ∠=,解得π6MGE ∠=,由圆与正方形的对称性知π6MGN ∠=,所以球面与侧面11ABB A的交线长为π4369⨯⨯=,D 正确.故选:ACD.【点睛】关键点睛:本题B 选项关键是利用等体积法求出点到平面距离,C 选项关键是建立空间直角坐标系,设()3,P t -,得到线线角表达式,再结合对勾函数单调性即可得到其范围.三、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量,a b满足23a b += ,则a b -= __________.3【解析】【分析】利用向量数量积的运算律及已知可得12a b ⋅=- ,再由运算律求a b - 即可.【详解】因为23a b += 22443a a b b +⋅+= ,所以12a b ⋅=- ,则222()23a b a a b b -=-⋅+= ,故3a b -=r r .314.函数()(()23log 9R f x x x a a =++-∈是奇函数,则()4f a =__________.【答案】1【解析】【分析】根据奇函数的性质,结合对数运算,即可求解a ,再代入函数解析式求值.【详解】因为()(23log 9f x x x a =+-,所以()(23log 9f x x x a -=-+-,因为()f x 是奇函数,所以()()0f x f x +-=,即((2233log 9log 90x x a x x a +-+-+-=,所以32log 92a ==,解得1a =,则()(34log 411f a =+-=.故答案为:115.为了检查学生的身体素质情况,从田径类3项,球类2项,武术类2项共7项项目中随机抽取3项进行测试,则恰好抽到两类项目的概率是__________.【答案】2235【解析】【分析】利用组合应用问题,结合排除法求出试验及所求概率的事件的基本事件数,再利用古典概率公式计算即得.【详解】从这7项项目中随机抽取3项的情况有37C 35=种,抽取的3项属同一类的情况有33C 1=种,抽取的3项包含三类的情况有111322C C C 12=种,则符合条件的情况有3511222--=种,所以所求概率为2235.故答案为:223516.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为(),0F c -,直线:30l x y c -+=与C交于A ,B 两点,若3AB AF =,则C 的离心率是__________.【答案】109【解析】【分析】依题意,设()()1122,,,A x y B x y ,因为3AB AF =,则有212y y =-,直线方程与椭圆方程联立,借助韦达定理得到228110c a =,从而得到离心率.【详解】设()()1122,,,A x y B x y ,因为3AB AF =,所以1212y AF y BF==,所以212y y =-.联立222230,1,x y c x y ab -+=⎧⎪⎨+=⎪⎩整理得()22224960a b y b cy b +--=,则21212269b c y y y a b +=-=+,412229b y y a b =-+,从而22422226299b c b a b a b ⎛⎫-⋅-=- ⎪++⎝⎭,整理得228110c a =,故9c e a ==,故答案为:9.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos213cos B B =-.(1)求角B 的值;(2)若b ABC =的面积为,求ABC 的周长.【答案】(1)π3B =(2)10【解析】【分析】(1)根据已知条件利用二倍角余弦公式化简求得cos B ,求得结果;(2)由三角形面积公式求得ac ,再利用余弦定理可求得a c +,从而得三角形周长.【小问1详解】因为cos213cos B B =-,所以22cos 113cos B B -=-,所以22cos 3cos 20B B +-=,所以()()2cos 1cos 20B B -+=,则1cos 2B =或cos 2B =-(舍去).因为0πB <<,所以π3B =.【小问2详解】因为ABC的面积为1sin 24ac B ac ==24ac =.由余弦定理可得22222cos ()3b a c ac B a c ac =+-=+-,则22()324a c =+-⨯,即2()100a c +=,解得10a c +=.故ABC的周长为10a b c ++=+.18.在等差数列{}n a 中,375818,24a a a a +=+=.(1)求{}n a 的通项公式;(2)若1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n S .【答案】(1)21n a n =-(2)284n n +【解析】【分析】(1)设数列{}n a 的公差为d ,由题意可得11281821124a d a d +=⎧⎨+=⎩,解方程即可求出1a 1,d 2==,再由等差数列的通项公式求出{}n a ;(2)由(1)可得()2(1)41nn b n=--,再由分组求和法和等差数列的前n 项和公式求解即可.【小问1详解】设数列{}n a 的公差为d ,则371581281821124a a a d a a a d +=+=⎧⎨+=+=⎩,解得1a 1,d 2==,.故()1121n a a n d n =+-=-.【小问2详解】由(1)可得()()()2(1)2121(1)41nn n b n n n =--+=--,则222124(21)14(2)1164n n b b n n n -⎡⎤⎡⎤+=---+-=-⎣⎦⎣⎦,故()()()()212342*********n n n S b b b b b b n -=++++++=+++-()212164842n n n n +-==+.19.已知某地中学生的男生和女生的人数比例是3:2,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:男生女生只喜欢羽毛球0.30.3只喜欢乒乓球0.250.2既喜欢羽毛球,又喜欢乒乓球0.30.15(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为X ,求X 的分布列和期望.【答案】(1)49;(2)分布列见解析,24.【解析】【分析】(1)根据给定条件,结合条件概率公式求解即得.(2)利用(1)的信息,结合二项分布求出分布列的期望.【小问1详解】记事件A 表示从该地中学生中随机抽取1人,被抽取的这名中学生喜欢羽毛球,事件B 表示从该地中学生中随机抽取1人,被抽取的这名中学生喜欢乒乓球,则()()()0.30.30.60.30.150.40.54P A =+⨯++⨯=,()0.30.60.150.40.24P AB =⨯+⨯=,所以所求的概率()()()0.244|0.549P AB P B A P A ===.【小问2详解】由(1)知从该地中学生中随机抽取1人,被抽取的这名中学生既喜欢羽毛球,又喜欢乒乓球的概率0.24p =,因此()100,0.24X B ~,所以X 的分布列为()()100100C 0.240.760,1,2,3,,100kkkP X k k -==⨯⨯= ,期望为()1000.2424E X =⨯=.20.如图,在圆锥SO 中,AB 是圆O 的直径,且SAB △是边长为4的等边三角形,,C D 为圆弧AB 的两个三等分点,E 是SB 的中点.(1)证明:DE //平面SAC ;(2)求平面SAC 与平面SBD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)15【解析】【分析】(1)证明:取SA 的中点F ,连接,,CF EF CD ,由题意可证得DE //CF ,再由线面平行的判定定理证明即可;(2)以O 为坐标原点,,OB OS的方向分别为,y z 轴的正方向,建立如图所示的空间直角坐标系.求出平面SAC 与平面SBD 的法向量,由二面角的向量公式求解即可.【小问1详解】证明:取SA 的中点F ,连接,,CF EF CD .因为,C D 为圆弧AB 的两个三等分点,所以CD //1,2AB CD AB =.因为,E F 分别为,SB SA 的中点,所以EF //1,2AB EF AB =,则CD //,EF EF CD =,从而四边形CDEF 为平行四边形,故DE //CF .因为DE ⊄平面,SAC CF ⊂平面SAC ,所以DE //平面SAC .【小问2详解】解:以O 为坐标原点,,OB OS 的方向分别为,y z 轴的正方向,建立如图所示的空间直角坐标系.因为4AB SA ==,所以()())0,2,0,0,2,0,1,0A B C--,)(,0,0,DS ,则)(),,1,0,AC AS BD BS ===-=(0,2,-.设平面SAC 的法向量为()111,,m x y z =,则11110,20,m AC y m AS y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令11x =,得()1,m = .设平面SBD 的法向量为()222,,n x y z = ,则22220,20,n BD y n BS y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 令21x =,得()n = .设平面SAC 与平面SBD 所成锐二面角为θ,则||1cos |cos ,|||||5m n m n m n θ⋅=〈〉== .故平面SAC 与平面SBD 所成锐二面角的余弦值为15.21.已知双曲线2222:1(0,0)y x C a b a b -=>>的离心率是3,点(P 在C 上.(1)求C 的标准方程;(2)已知直线l 与C 相切,且与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,试问OA OB ⋅ 是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)2218x y -=(2)是,7-【解析】【分析】(1)将点P 代入方程,结合离心率计算即可得;(2)设出切线方程,联立曲线可得切线中参数的关系,联立切线与渐近线,可得两交点坐标,即可得OA OB ⋅ ,结合所得切线中参数的关系即可得该定值.【小问1详解】由题可得2222231613a b c a c a b ⎧-=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得13a b c =⎧⎪=⎨⎪=⎩,故C 的标准方程为2218x y -=;【小问2详解】由题意可知直线l 的斜率存在,设直线()()1122:,,,,l y kx m A x y B x y =+,联立2218y kx m x y =+⎧⎪⎨-=⎪⎩,整理得()2228116880k x kmx m -++-=,则()()222Δ(16)481880km k m =---=,即2281k m +=.由(1)可知C 的渐近线方程为24y x =和24y x =-,不妨设直线l 与直线24y x =的交点为A ,与直线24y x =-的交点为B ,联立24y x y kx m ⎧=⎪⎨⎪=+⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即A ⎛⎫,联立24y x y kx m ⎧=-⎪⎨⎪=+⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即B ⎛⎫ ⎝,则OA ⎛⎫=,OB ⎛⎫= ⎝ ,得22781m OA OB k ⎛⋅=+= -⎝ ,因为2281k m +=,所以2218m k =-,所以227781m k =--,即7OA OB ⋅=- ,故OA OB ⋅ 是定值,且该定值为7-.【点睛】关键点睛:本题的关键是利用直线与双曲线相切得到2281k m +=,再求出,A B 的坐标,最后计算OA OB ⋅即可.22.已知函数()3f x x x =-.(1)求()f x 的极值;(2)已知()()ππ0,,sin cos tan 26mf nf ααα⎛⎫∈+= ⎪⎝⎭,证明:32m n +>.【答案】(1239-(2)证明见解析【解析】【分析】(1)先求得()f x 的单调性,进而求得()f x 的极值;(2)先利用题给条件构造出m n +的不等式,再利用(1)的结论即可证得32m n +>.【小问1详解】()3f x x x =-,()213f x x '=-,令()0f x '=,可得33x =±.令()0f x ¢>,可得33x -<<,令()0f x '<,可得3x >,或3x <-所以()f x 在,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,在,3⎛⎫-∞- ⎪ ⎪⎝⎭和3⎛⎫∞ ⎪ ⎪⎝⎭,+上单调递减.所以()f x 的极大值为()323,39f f x ⎛= ⎝⎭的极小值为32339f ⎛⎫-=- ⎪ ⎪⎝⎭.【小问2详解】由()()πsin cos tan 6mf nf αα+=,可得223cos sin sin cos 3m n αααα+=,所以3cos sin 3sin cos m n αααα+=.由对称性,不妨设π0,4α⎛⎤∈ ⎥⎝⎦,则()cos sin cos 3sin cos m n m n ααααα+=≤+,当且仅当2sin cos 2αα==时,等号成立,所以()23333sin cos 3sin sin m n αααα+≥=-.由(1)可知()f x 在20,2⎛ ⎝⎦上的最大值为=⎝⎭f ,所以()3330sin sin ,923sin sin αααα<-≤≥-,当且仅当3sin 3α=时,等号成立,因为等号不能同时取到,所以32m n +>.【点睛】方法点睛:利用导数证明不等式常见类型及解题策略:(1)构造差函数()()()h x f x g x =-,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数,一般思路为利用条件将所求问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.。

2023-2024学年江苏省苏州市高三(上)期末数学试卷【答案版】

2023-2024学年江苏省苏州市高三(上)期末数学试卷【答案版】

2023-2024学年江苏省苏州市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合U =R ,集合M ={x |log 2x <1},N ={x |x >1},则集合{x |0<x ≤1}=( ) A .M ∪NB .M ∩NC .(∁U M )∩ND .(∁U N )∩M2.设i 为虚数单位,复数z 满足(3﹣i )z =4+2i ,则|z |=( ) A .√2B .√3C .2D .43.2023年9月28日,沪宁沿江高速铁路开通运营,形成上海至南京间的第二条城际高速铁路,沪宁沿江高速铁路共设8座车站(如图).为体验高铁速度,游览各地风光,甲乙两人准备同时从南京南站出发,甲随机选择金坛、武进、江阴、张家港中的一站下车,乙随机选择金坛、武进、江阴、张家港、常熟中的一站下车.已知两人不在同一站下车,则甲比乙晚下车的概率为( )A .320B .14C .120D .384.已知函数f (x )=cos (ωx +π3)+1(ω>0)的最小正周期为π,则f (x )在区间[0,π2]上的最大值为( ) A .12B .1C .32D .25.在梯形ABCD 中,AD ∥BC ,∠ABC =π2,BC =2AD =2AB =2,以下底BC 所在直线为轴,其余三边旋转一周形成的面围成一个几何体,则该几何体的体积为( ) A .2π3B .4π3C .5π3D .2π6.在平面直角坐标系xOy 中,已知A 是圆C 1:x 2+(y ﹣3)2=1上的一点,B ,C 是圆C 2:(x ﹣4)2+y 2=4上的两点,则∠BAC 的最大值为( ) A .π6B .π3C .π2D .2π37.已知正实数a ,b ,c 满足2a+1a=2a ﹣a ,3b+1b =3b ﹣b ,4c+1c=4c ﹣c ,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .a <c <bD .b <a <c8.若sin π10是函数f (x )=ax 3﹣bx +1(a ,b ∈N *)的一个零点,则f (1)=( )A .2B .3C .4D .5二、选择题:本题共4小题,每小题5分,共20分。

2024北京东城区高三(上)期末数学试卷及答案

2024北京东城区高三(上)期末数学试卷及答案

东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。

山东省菏泽市2023-2024学年高三上学期期末考试数学试题(B)期末答案

山东省菏泽市2023-2024学年高三上学期期末考试数学试题(B)期末答案

228BC m −, .........6分22AC , .........7分 , 0,上的两个三等分点,, ...........3分⊥,PB PA)0,3,解:(1)因为()35P A B =,()23P B A =, 所以对杭州亚运会项目了解的女生为350305×=,...........1分了解亚运会项目的学生为304523=,...........2分结合男生和女生各50名,填写2×2列联表为:了解 不了解 合计 男生 15 35 50 女生 30 20 50 合计4555100...........4分零假设H 0:该校学生对杭州亚运会项目的了解情况与性别无关,根据列联表中的数据()220.001100152030351009.09110.8285050455511x χ××−×==≈<=×××, 依据α=0.001的独立性检验,可以推断H 0成立,即该校学生对杭州亚运会项目的了解情况与性别无关............6分 (2)由(1)知,采用分层随机抽样的方法随机抽取9名学生,其中男生人数为15931530×=+(人);...........7分女生人数为30961530×=+(人),...........8分由题意可得,随机变量X 的所有可能取值为0,1,2,3..........9分()043649C C 50C 42P X ===,()133649C C 10121C P X ===, ()223649C C 5214C P X ===,()313649C C 1321C P X ===.随机变量X 的分布列如下:则()5105140123422114213E X =×+×+×+×=............12分 ,0∆>, 211143x x −+, 221y x =+, )())()2121123423x x x x −+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知集合{}1|>=x x A ,{}20|<<=x x B ,则=A C B R ( ) A .()2,1 B .[)+∞,1 C .(]1,0D .()2,∞- 2.设i 为虚数单位,已知复数iiz -=1,则z 的共轭复数在复平面内表示的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(文)已知函数()x f 是奇函数,当0>x 时,()23xx f =,则⎪⎭⎫ ⎝⎛41log 2f 等于( )A .4-B .3-C .0D .2(理)二项式522⎪⎪⎭⎫⎝⎛-x ax 的展开式的常数项为160,则a 的值为( )A .1 B .2 C .3 D .44.已知向量a ,b 不共线,若b a AB+=1λ,b a AC 2λ+=,则“A ,B ,C 三点共线”是“121=λλ的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件5.阅读如图所示的程序框图,运行相应的程序,若输入42=m ,30=n ,则输出m 的值为( )A .6B .7C .30D .126.已知等差数列{}n a 的前n 项和为n S ,若14232975=++a a a ,则=13S ( )A .26B .28C .52D .137.已知点1F ,2F 分别为双曲线12222=-by a x ()0,0>>b a 的左、右焦点,P 为双曲线左支上的任意一点,且122PF PF =,若21F PF ∆为等腰三角形,则该双曲线的离心率为( )A .3 B .2 C .2 D .238.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=的最小值为( )A .5 B .6- C .10 D .10-9.已知0>ω,函数()⎪⎭⎫ ⎝⎛+=4cos πωx x f 在⎪⎭⎫⎝⎛ππ,2上单调递减,则ω的取值范围是( )A .⎥⎦⎤⎢⎣⎡45,21 B .⎥⎦⎤⎢⎣⎡47,21C .⎥⎦⎤⎢⎣⎡49,43 D .⎥⎦⎤⎢⎣⎡47,23 10.已知函数()⎩⎨⎧>-≤+-=1,521,2x ax x ax x x f ,若存在1x ,R x ∈2,且21x x ≠,使得()()21x f x f =成立,则实数a 的取值范围是( )A .2<a B .4<a C .42<≤a D .2>a11.已知四棱锥ABCD P -的顶点都在球O 的球面上,底面ABCD 是矩形,平面⊥PAD 底面ABCD ,PAD ∆是正三角形,42==AD AB ,则球O 的表面积为( )A .332πB .π32 C .π64D .364π12.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )A.x x y 5312513-=B .x x y 5412523-=C .x x y -=31253D .x x y 5112533+-=二.填空题:每题5分,共20分13.某样本数据的茎叶图如图所示,若该组数据的中位数是85,则该组数据的平均数为.14.一简单组合体的三视图及尺寸如图所示(单位:cm ),该组合体的体积为.15.已知抛物线E :()022>=p px y 经过圆F :044222=-+-+y x y x 的圆心,则抛物线E 的准线与圆F 相交所得过且过弦长为.16.已知数列{}n a 的前n 项和为n S ,且n n a S 21=+,则使不等式12222125+⨯<+++n n a a a 成立的n 的最大值为.三.解答题:17~21每题12分,22题10分,共70分 17.在ABC ∆中,a ,b ,c 为角A ,B ,C 的对边,且()C B C A sin sin 412cos 2-=+.(1)求A ;(2)若3=a ,312sin =B ,求b .18.(理)某市为了扶持所属企业发展,市工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:评估得分[)60,50[)70,60[)80,70[)90,80评定类型不合格合格良好优秀贷款金额0 200 400 800 (万元)为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如图所示:(1)估计该系统所属企业评估得分的中位数;(2)该系统所属企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,且系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?(理科18题图)(文科18题图)(文)某企业员工有500人参加“学雷锋”志愿活动,按年龄分组:第1组()30,25,第2组[)35,30,第3组[)40,35,第4组[)45,40,第5组[)50,45,得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a ,b 的值; 区 间 ()30,25[)35,30[)40,35[)45,40[)50,45人 数5050a150b(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.19.(理)如图(1),在矩形ABCD 中,3=AB ,3=AD ,E 为CD 边上的点,且DE EC 2=,AE 与BD 交于O .现沿AE 将ADE ∆折起,连结DB 、DC 得到如图(2)所示的几何体. (1)求证:⊥AE 平面DOB ;(2)当平面⊥ADE 平面ABCE 时,求二面角B DE A --的余弦值.(理科19题图)(文科19题图)(文)如图,在三棱柱111C B A ABC -中,⊥1AA 平面ABC ,BC AC ⊥,E 为11C B 边上的点,且113EC E B =,41===CC BC AC .(1)求证:1AC BC ⊥;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面11ABB A ?若存在,请指出点F 的位置;若不存在,说明理由.20.在平面直角坐标系xOy 中,已知椭圆C :12222=+by a x ()0>>b a 的离心率36=e ,且过点()1,3-. (1)求椭圆C 的标准方程;(2)若动点P 在直线l :22-=x 上,过P 作直线交椭圆C 于M ,N 两点,使得PN PM =,再过P 作直线MN l ⊥',证明:直线l '恒过定点,并求出该定点的坐标.21.设0>a ,函数()ax e x f x+=2.(1)若95=a ,求函数()x f 的单调区间;(2)当21=x 时,函数()x f 取得极值,证明:对于任意的1x ,⎥⎦⎤⎢⎣⎡∈23,212x ,()()e e x f x f 3321-≤-.四.选考题:请考生在22,23,24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号22.选修4—1:几何证明选讲如图,直线AB 经过圆O 上的点C ,并且OB OA =,CB CA =,圆O交直线OB 于E 、D .(1)证明:直线AB 是圆O 的切线;(2)若21tan =∠CED ,圆O 的半径为3,求OA 的长.23.选修4—4:坐标系与参数方程在直角坐标平面内,直线l 过点()1,1P ,且倾斜角4πα=.以坐标原点O 为极点,x 轴的非负半轴为极轴建立坐标系,已知圆C 的极坐标方程为θρsin 4=.(1)求圆C 的直角坐标方程;(2)设直线l 与圆C 交于A 、B 两点,求PB PA ⋅的值.24.选修4—5:不等式选讲设a ,b ,c 均为正数,且1=++c b a .证明: (1)9111≥++cba;(2)29111≥+++++c b c a b a .参考答案13.85.3;14.44;15.52;16.4; 17.(1)3π;(2)968; 18.(理)(1)75.68;(2)10%;(文)(1)200=a ,50=b ;(2)1,1,4;(3)1514; 19.(理)(1)略;(2)3737;(文)(1)略;(2)CA CF 41=; 20.(1)141222=+y x (2)过⎪⎪⎭⎫ ⎝⎛-0,324; 21.(1)增区间:⎪⎭⎫ ⎝⎛∞-31,,⎪⎭⎫ ⎝⎛+∞,35,减区间:⎪⎭⎫⎝⎛35,31;(2)略; 22.(1)略;(2)5;23.(1)0422=-+y y x ;(2)2;24.(1)略;(2)()()()c a c b b a +++++=2;。

相关文档
最新文档