2021年九年级中考数学 三轮专题突破:全等三角形(含答案)
2021年中考数学基础过关:17《全等三角形》(含答案)

2021年中考数学基础过关:17《全等三角形》一、选择题1.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC2.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EFB.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠ED.BC=EF,AC=DF3.如下图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=20°,则∠EAC=( )A.20°B.64°C.30°D.65°4.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC6.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于( )A.100°B.53°C.47°D.33°7.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,AD=2.5cm,DE=1.7cm,则BE的长()A.0.8cmB.0.7cmC.0.6cmD.1cm8.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分钟,在原地休息了4分钟,然后以500米/分的速度匀速骑回出发地,设时间为x分钟,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个桶注水,注5分钟后停止,等4分钟后,再以2升/分的速度匀速倒空桶中的水,设时间为x分钟,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0,其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3二、填空题9.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有对.10.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是.11.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.12.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为 .13.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= 度,DE= cm.14.如图,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于点H,连接CH,则∠CHE= .三、解答题15.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.16.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.参考答案1.C2.B3.B4.B5.C6.D7.A .8.C9.答案为: 6.10.答案为:AC=DF ,SAS .11.答案为:4.12.答案为:65°;13.答案为:52,13.14.答案为:70°.15.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE=∠DCF.∵AF=CE ,∴AF +EF=CE +EF ,即AE=CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS).16.(1)证明:∵AC 是角平分线,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE=CF ,∠F=∠CEB=90°,在Rt △BCE 和Rt △DCF 中,∴△BCE ≌△DCF ;(2)解:∵CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠F=∠CEA=90°,在Rt △FAC 和Rt △EAC 中,,∴Rt △FAC ≌Rt △EAC ,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.。
2021年九年级中考数学 专题训练:全等三角形(含答案)

2021 中考数学专题训练:全等三角形一、选择题1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .26. 如图,已知点A ,B ,C ,D 在同一条直线上,△AEC ≌△DFB.如果AD=37 cm ,BC=15 cm ,那么AB 的长为 ( )A .10 cmB .11 cmC .12 cmD .13 cm7. 如图,AB ⊥BC ,BE ⊥AC ,垂足分别为B ,E ,∠1=∠2,AD=AB ,则下列结论正确的是( )A .∠1=∠EFDB .BE=EC C .BF=CD D .FD ∥BC8. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A .90°B .120C .135°D .150°9. 如图,点G 在AB 的延长线上,∠GBC ,∠BAC 的平分线相交于点F ,BE ⊥CF于点H .若∠AFB =40°,则∠BCF 的度数为( )A.40°B.50°C.55°D.60°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题11. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.12. 如图,已知点B,C,F,E在同一直线上,∠1=∠2,∠A=∠D,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为________.14. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).15. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.16. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.17. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.18. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题19. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.20. 如图,AD∥BC,AB⊥BC于点B,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F.(1)若∠ABF=63°,求∠ADE的度数;DE=BF+EF.21. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.2021 中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】B [解析]依据SAS 全等判定可得乙三角形与△ABC 全等;依据AAS 全等判定可得丙三角形与△ABC 全等,不能判定甲三角形与△ABC 全等.故选B .2. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.3. 【答案】D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD , ∴∠CED=∠AFB=90°,∠A=∠C , 又∵AB=CD ,∴△CED ≌△AFB,∴AF=CE=a ,DE=BF=b ,DF=DE -EF=b -c , ∴AD=AF +DF=a +b -c ,故选D .4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] 在△AFD 和△AFB 中,∴△AFD ≌△AFB. ∴∠ADF=∠ABF . ∵AB ⊥BC ,BE ⊥AC , ∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.9. 【答案】B[解析] 如图,过点F 分别作FZ ⊥AE 于点Z ,FY ⊥CB 于点Y ,FW ⊥AB 于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】AB=DE(答案不唯一)13. 【答案】65°14. 【答案】答案不唯一,如∠C=∠E或AB=FD等15. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.17. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行18. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题19. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD. (2)由(1)知∠BAE=∠DAE.在△BAE与△DAE中,∴△BAE≌△DAE(SAS),∴BE=DE.20. 【答案】解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°. ∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF.∴DE =AF =AE +EF =BF +EF.21. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA). ∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10. ∴S △ABE +S △CDF =10.。
2021年中考数学专题复习:全等三角形(二)

2021年中考数学专题复习:全等三角形(二)1.在△ABC中,AB=AC,点D是BC的中点,点E和点F是AC上的两点,AB=BF,连接ED 交BF于点H.(1)如图1,连接BE,若∠BEC=90°,BC=10,CE=6,求AB的长;(2)如图2,G为ED延长线上一点,且BD=BG,∠ABF=∠CBG,求证:AE=EF.2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.3.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P 和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.5.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).6.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.7.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD 相交于点F.求证:(1)BF=AC;(2)CE=BF.8.在平面直角坐标系中,A(7,0),B(0,7).(1)如图1,P是AB上一点且=,求P点坐标;(2)如图2,D为OA上一点,AC∥OB且∠CBO=∠DCB,求∠CBD的度数;(3)如图3,E为OA上一点,OF⊥BE于F,若∠EOF=∠ABE,求的值9.如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.10.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.11.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B 落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.12.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.13.请将下面的说理过程和理由补充完整.如图,点B,E,C,F在一条直线上,BE=CF,AB∥DE,AB=DE,说明AC=DF.解:∵BE=CF,(已知)∴BE+EC=CF+ .(等式的性质)即BC=.∵AB∥DE,(已知).∴∠B=.()又∵AB=DE,(已知)∴△ABC≌△DEF.()∴AC=DF.()14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:∠ABE=∠ACE;(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.15.已知,在△ABC中,AC=BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E.(1)如图1.若CD=CE.求∠ABE的大小;(2)如图2.∠ABC=∠DEB=60°.求证:AD+DC=BE.参考答案1.解:(1)如图1,连接AD,∵AB=AC,点D是BC的中点,∴AD⊥BC∵∠BEC=90°,BC=10,CE=6,∴BE===8设AB=x,则AE=x﹣6∵AE2+BE2=AB2,即(x﹣6)2+82=x2,解得:x=,∴AB=,(2)证明:如图2,连接BE,∵BD=BG∴∠BDG=∠BGD∵AB=BF,∴∠A=∠AFB∵∠ABF=∠CBG,∴∠BDG=∠A∴∠EDC=∠BDG=∠A∵∠A+∠ABC+∠C=∠EDC+∠CED+∠C=180°∴∠CED=∠ABC∵AB=AC∴∠C=∠ABC∴∠C=∠CED∴DE=DC∵点D是BC的中点,∴BD=DC∴DE=DC=BD∴∠BED=∠EBD∵∠BED+∠EBD+∠C+∠CED=180°,即2∠BED+2∠CED=180°∴∠BED+∠CED=90°∴BE⊥AF∵BA=BF∴AE=EF2.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.3.解:∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,,CP=12﹣2t,CQ=16﹣6t,∴12﹣2t=16﹣6t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=12﹣2t=6t﹣16,∴t=3.5;③P到BC上,Q在AC时,此时不存在;理由是:16÷6×2<12,Q到AC上时,P点也在AC上;④当Q到A点(和A重合),P在BC上时,∵CP=CQ=AC=12.CP=12﹣2t,∴2t﹣12=12,∴t=12符合题意;答:点P运动1或3.5或12时,△PEC与△QFC全等.4.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.5.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE =S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.6.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;7.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.8.解:(1)作PG⊥x轴于G,PN⊥y轴于N,∵A(7,0),B(0,7),∴OA=7,OB=7,∵PG⊥x轴,∴PG∥OB,∴△AGP∽△AOB,∴=,即=,解得,PG=3,同理,PN=4,∴P点坐标为(4,3);(2)作BG⊥AC交AC的延长线于G,作BH⊥CD于H,∴四边形BOAG为矩形,∴BO=BG,∵OA=OB,∴矩形BOAG为正方形,∵AC∥OB,∴∠CBO=∠BCG,∵∠CBO=∠DCB,∴∠BCG=∠DCB,在△BCH和△BCG中,,∴△BCH≌△BCG(AAS),∴∠CBH=∠CBG,BG=BH,∴BO=BH,在Rt△BOD和Rt△BHD中,,∴Rt△BOD≌Rt△BHD(HL),∴∠BOD=∠HOD,∴∠CBD=∠DBH+∠CBH=∠OBG=45°;(3)∵OA=OB,∴∠ABO=∠BAO=45°,∵∠BEO=∠BAE+∠ABE=45°+∠EOF,∵OF⊥BE,∴∠BEO+∠EOF=90°,∴∠BEO=67.5°,∠EOF=22.5°,则∠OBE=22.5°,作∠BOP=∠OBE=22.5°,则PB=PO,∠OPF=45°,设OF=a,则PF=OF=a,由勾股定理得,OP=a,∴PB=a,∴BF=a+a,∵∠BOP=∠OBE,∠OFB=∠EFO=90°,∴△OFB∽△EFO,∴EF==a﹣a,∴==2.9.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.10.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.11.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.12.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.13.解:∵BE=CF,(已知)∴BE+EC=CF+EC(等式的性质)即BC=EF.∵AB∥DE,(已知)∴∠B=∠DEF.(两直线平行,同位角相等)又∵AB=DE,(已知)∴△ABC≌△DEF(SAS)∴AC=DF.(全等三角形对应边相等)故答案为:EC;EF;∠DEF;两直线平行,同位角相等;SAS;全等三角形对应边相等.14.解:(1)证明:∵点D是BC的中点,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴∠ABE=∠ACE;(2)如图,由(1)知,△ABE≌△ACE,∴BE=CE,∠ABE=∠ACE,在△BEG和△CEF中,,∴△BEG≌△CEF(ASA),∴EG=EF.15.(1)解:如图1,延长AC交BN于点F,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,∴∠DAC=∠BCH,在△DAC与△HCB中,,∴△DAC≌△HCB(AAS),∴AD=CH,DC=BH,又∵CH=CE=HE,∴BE=BH+HE=DC+AD,即AD+DC=BE.。
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)1.已知:如图,E是∠AOB平分线上的一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:(1)OC=OD;(2)OE是CD的垂直平分线.2.补充完成下列推理过程:.如图,在△ABC中,AB=AC,点D,E分别是BC,AC上的点,且BD=CE,连接AD,DE,若∠ADE=∠B.求证:AD=DE.证明:∵AB=AC∴∠B=∠C()∵∠ADC=∠B+∠()且∠ADE=∠B∴∠ADC=∠ADE+∠又∵∠ADC=∠ADE+∠CDE∴∠BAD=∠CDE在△BAD和△CDE中.∠B=∠C∠BAD=∠CDE=∴△BAD≌△CDE()∴AD=DE()3.如图,在Rt△ABC中,∠B=90°,过A作AC的垂线交∠BCA的角分线于点D.CD交AB于点F.(1)求证:∠ADF=∠AFD;(2)如图2,DE⊥AF,若AC+BC=16,DE=4,求BC的长.4.如图,在四边形ABCD中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A点作AE⊥BD于点E,交BC于点F,求证:AD=BF.5.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.6.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=16,DE=4,求△ADC的面积.7.(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.8.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.9.把两个含有45°角的直角三角板如图放置,点D在BC上,连结BE、AD,且AD的延长线交BE于点F.(1)求证:AF⊥BE;(2)若BD=2,AE=8,求EC,AC的长.10.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC =∠BAD =90°,得S 四边形ABCD =S △ABC +S △ADC =S ABC +S ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG =FN =HM =GH +MN =2cm ,∠G =∠N =90°,求五边形FGHMN 的面积.参考答案1.证明:(1)∵OE 平分∠AOB ,∴∠COE =∠DOE ,∵EC ⊥OA ,ED ⊥OB ,∴∠OCE =∠ODE =90°,又∵OE=OE,∴△OCE≌△ODE(AAS),∴OC=OD;(2)∵△OCE≌△ODE,∴OC=OD,CE=DE,∴OE是CD的垂直平分线.2.解:∵AB=AC,∴∠B=∠C(等边对等角),∵∠ADC=∠B+∠BAD(三角形的外角性质),且∠ADE=∠B,∴∠ADC=∠ADE+∠BAD,又∵∠ADC=∠ADE+∠CDE,∴∠BAD=∠CDE,在△BAD和△CDE中.,∴△BAD≌△CDE(AAS)∴AD=DE(全等三角形的对应边相等);故答案为:等边对等角;BAD,三角形的外角性质;BAD;BE,CE;AAS;全等三角形的对应边相等.3.证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCF,∵DA⊥AC,∴∠DAC=∠B=90°,∴∠ACD+∠D=90°,∠BCF+∠CFB=90°,∴∠D=∠CFB,∴∠ADF=∠CFB=∠AFD;(2)如图,过点D作DH⊥BC,交CB的延长线于H,在△ACD和△HCD中,,∴△ACD≌△HCD(AAS),∴AC=CH,∵∠ABC=∠H=90°,DE⊥AB,∠ABH=90°,∴AB∥DH,DE∥BH,∴DE=BH=4,∵AC+BC=16,∴CH+BC=BH+BC+BC=4+2BC=16,∴BC=6.4.证明:∵AE⊥BD,∴∠AEB=∠AED=∠BEF=90°,∵∠ABD=45°,∴∠BAE=45°=∠ABE,∴AE=BE,∵∠C=90°,∠BEF=90°,∴∠BDC+∠DBC=90°,∠BFE+∠DBC=90°,∴∠BFE=∠BDC,∵∠BDC=∠ADB,∴∠ADB=∠BFE,即∠ADE=∠BFE,在△AED和△BEF中,∴△AED≌△BEF(AAS),∴AD=BF.5.解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS)∴∠B=∠ADE,∵∠B=∠ADB,∴∠ADE=∠ADB,即AD平分∠BDE.6.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵DE=DF,DE=4,∴DF=4,∵AC=16,∴△ADC的面积是==32.7.(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.8.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.9.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠BCA=0°,CE=CD,BC=AC,∴在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴∠BEC=∠ADC,又∠ADC+∠DAC=90°,∴∠BEC+∠DAC=90°,∴∠AFE=90°,即AF⊥BE.(2)解:∵AE=8,∴EC+AC=8①,∵DB=2,∴BC﹣DC=2.∵BC=AC,EC=DC,∴AC﹣EC=2②,∴由①、②得:EC=3,AC=5.10.解:(1)由题意可得,AE=AC=2,∠EAC=90°,则△EAC的面积是:=2(cm2),即四边形ABCD的面积为2cm2,故答案为:2;(2)连接FH、FM,延长MN到O,截取NO=GH,在△GFH和△NFO中,,∴△GFH≌△NFO(SAS),∴FH=FO,∵FG=FN=HM=GH+MN=2cm,GH=NO,∴HM=OM,在△HFM和△OFM中,。
2021年中考九年级数学第三轮冲刺:三角形综合题 专项练习(含答案)

2021年中考九年级数学第三轮冲刺:三角形综合题专项练习1、如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC 于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.2、在△ABC中,∠BAC =90°,AB =AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN =90°,当∠AMN =30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF =90°,求证:BE =AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.3、在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.4、如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.5、阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC 的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).6、性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).7、阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A 1M1N1=90°.8、如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P 作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.9、阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A 1M1N1=90°.10、如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD 交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.11、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)12、在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).13、在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.14、如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM 并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?参考答案2021年中考九年级数学第三轮冲刺:三角形综合题专项练习1、如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC 于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.【解答】解:(1)∵MQ⊥BC,∴∠MQB=90°,∴∠MQB=∠CAB,又∠QBM=∠ABC,∴△QBM∽△ABC;(2)当BQ=MN时,四边形BMNQ为平行四边形,∵MN∥BQ,BQ=MN,∴四边形BMNQ为平行四边形;(3)∵∠A=90°,AB=3,AC=4,∴BC==5,∵△QBM∽△ABC,∴==,即==,解得,QM=x,BM=x,∵MN∥BC,∴=,即=,解得,MN=5﹣x,则四边形BMNQ的面积=×(5﹣x+x)×x=﹣(x﹣)2+,∴当x=时,四边形BMNQ的面积最大,最大值为.2、在△ABC中,∠BAC =90°,AB =AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN =90°,当∠AMN =30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE =AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△AMN中,,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.3、在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=25°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.4、如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=﹣(6﹣6)=3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣5、阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC 的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴6、性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为4;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα(用含α的式子表示).【解答】性质探究解:作CD⊥AB于D,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴==;故答案为:;理解运用(1)解:如图①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面积=AB×CD=×4×2=4;故答案为:4(2)①证明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:连接FH,作EP⊥FH于P,如图②所示:则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵点M、N分别是FG、GH的中点,∴MN是△FGH的中位线,∴MN=FH=5;类比拓展解:如图③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴==2sinα;故答案为:2sinα.7、阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A 1M1N1=90°.解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点, ∴∠M 1C 1N 1=90°+45°=135°, ∴∠B 1C 1E +∠M 1C 1N 1=180°, ∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ), ∴A 1M 1=EM 1,∠1=∠2, ∵A 1M 1=M 1N 1, ∴EM 1=M 1N 1, ∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°, ∴∠1=∠2=∠5, ∵∠1+∠6=90°, ∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.8、如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以lcm /s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 的延长线方向匀速运动,当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为以t (s ).过点P 作PE ⊥AC 于E ,连接PQ 交AC 边于D .以CQ 、CE 为边作平行四边形CQFE . (1)当t 为何值时,△BPQ 为直角三角形;(2)是否存在某一时刻t ,使点F 在∠ABC 的平分线上?若存在,求出t 的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.9、阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A 1M1N1=90°.【解答】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.10、如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD 交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为 6 .【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==3,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴△BOC的面积=,∴▱ABCD的面积=4×=6.故答案为6.11、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.12、在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:∠OCE=∠OAC;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.13、在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是 1 ,直线BD与直线CP相交所成的较小角的度数是60°.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.∵∠PAD=∠CAB=60°,∴∠CAP=∠BAD,∵CA=BA,PA=DA,∴△CAP≌△BAD(SAS),∴PC=BD,∠ACP=∠ABD,∵∠AOC=∠BOE,∴∠BEO=∠CAO=60°,∴=1,线BD与直线CP相交所成的较小角的度数是60°,故答案为1,60°.(2)如图2中,设BD交AC于点O,BD交PC于点E.∵∠PAD=∠CAB=45°,∴∠PAC=∠DAB,∵==,∴△DAB∽△PAC,∴∠PCA=∠DBA,==,∵∠EOC=∠AOB,∴∠CEO=∠OABB=45°,∴直线BD与直线CP相交所成的小角的度数为45°.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a,∴==2﹣.如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD =AD=a,PD=a,∴PC=a﹣a,∴==2+.14、如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM 并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?【解答】解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=6×=2.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴==,∴====.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH=r,r+r=2,∴r=,∴CG=×=4,AG=2,由△DFM∽△AGM,可得==,∴DM=AD=.②当⊙Q经过点E时,如图3﹣2中,延长CO交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3﹣r,EQ=r,EK=1,∴12+(3﹣r)2=r2,解得r=,∴CG=×=,由△DFM∽△AGM,可得DM=.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM=或<DM≤4时,满足条件的点P只有一个.。
2021年九年级数学中考复习小专题突破训练:全等三角形的判定与性质综合(附答案)

2021年九年级数学中考复习小专题突破训练:全等三角形的判定与性质综合(附答案)1.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.682.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a23.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM 平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.14.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c5.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定6.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个7.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD ⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①P A平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD =CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.112.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE13.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF =45°,则CF的长为()A.2B.3C.D.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.19.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.20.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.21.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)22.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是cm.23.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB =4,则三角形ABC的面积是.24.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有(将所有正确答案的序号填写在横线上).26.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.27.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE =60°.若BD=2CE,则DE的长为.28.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.29.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B =∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.30.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.31.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.32.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.33.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.34.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.35.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.参考答案1.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EF A=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EF A=∠AGB,∠EAF=∠ABG⇒△EF A≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=F A+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选:A.2.解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.3.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.4.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠BAC的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选:A.6.解:∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选:D.7.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选:A.8.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.解:(1)P A平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠P AR=∠P AS,∴P A平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵P A平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.10.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选:D.11.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,故(4)错误,故选:B.12.解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),13.解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.14.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.16.解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.18.解:∵△ABO≌△ADO,∴AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确;∴BC=DC,故②正确.故答案为:①②③.19.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.20.解:在AD的上方过点A作AD′⊥AD,使得AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.21.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正确;综上所述,正确的结论是①②④.故答案是:①②④.22.解:延长CD至点E,使DE=BC,连接AE,∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠EAD=∠BAC,AC=AE,S△AEC=S四边形ABCD ∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4或﹣4,∵AC为正数,∴AC=4.故答案为:4.23.解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠F AB=90°,∵∠ABF=90°,∴∠AFB+∠F AB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.24.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EF A=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EF A=∠AGB,∠EAF=∠ABG⇒△EF A≌△ABG同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=F A+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.25.解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴BG=GE,同理CH=HE,∴BG﹣CH=GE﹣EH=GH,故③正确.④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故④正确;故答案为:①③④.26.解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为:60°.27.解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM ⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.28.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.29.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.30.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.31.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.32.(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.33.(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.34.(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.35.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),。
2021年中考数学专项复习 专题 三角形全等的相关证明及计算含答案

专题二三角形全等的相关证明及计算1.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.第1题图2.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EA D.第2题图3.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.第3题图4.如图,AB=AD,AC=AE,∠BAE=∠DA C.求证:∠C=∠E.第4题图5.如图,点E,F在线段BD上,且BE=DF,AE=CF,AD=C B.求证:∠A=∠C.第5题图6.如图,D是AC上一点,AB=AD,DE∥AB,∠B=∠DAE.求证:BC=AE.第6题图7.如图,已知点E,C在线段BF上,BE=CF,AC∥DF,请添加一个条件(不得添加辅助线),使得△ABC ≌△DEF,并说明理由.第7题图8.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=C D.求证:AG=DH.第8题图9.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.第9题图10.如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.第10题图参考答案专题二 三角形全等的相关证明及计算1. 证明:在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AE =DE ,∠AEB =∠DEC ,BE =CE ,∴△AEB ≌△DEC (SAS).∴∠B =∠C .2. 证明:∵∠ECB =70°,∴∠ACB =110°.又∵∠D =110°,∴∠ACB =∠D .∵AB ∥DE ,∴∠CAB =∠E .在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠ACB =∠D ,∠CAB =∠E ,AB =EA ,∴△ABC ≌△EAD (AAS ).3. 证明:在Rt △ACB 和Rt △BDA 中,∠C =∠D =90°,⎩⎪⎨⎪⎧AB =BA ,AD =BC , ∴Rt △ACB ≌Rt △BDA (HL).∴∠CBA =∠DAB .∴OA =OB .又∵AD =BC ,∴CO =DO .4. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE .∴∠BAC =∠DAE .在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).∴∠C =∠E .5. 证明:∵BE =DF ,∴BE -EF =DF -EF ,即BF =DE .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧DE =BF ,AE =CF ,AD =CB ,∴△ADE ≌△CBF (SSS).∴∠A =∠C .6. 证明:∵DE ∥AB ,∴∠CAB =∠EDA .在△CBA 和△EAD 中,⎩⎪⎨⎪⎧∠B =∠DAE ,AB =AD ,∠CAB =∠EDA ,∴△CBA ≌△EAD (ASA).∴BC =AE .7. 解:添加AC =DF .(答案不唯一)理由:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .∵AC ∥DF ,∴∠ACB =∠DFE .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠ACB =∠DFE ,BC =EF ,∴△ABC ≌△DEF (SAS).8. 证明:∵AB ∥CD , ∴∠A =∠D .又∵CE ∥BF , ∴∠AHB =∠DGC .在△ABH 和△DCG 中,⎩⎪⎨⎪⎧∠AHB =∠DGC ,∠A =∠D ,AB =CD ,∴△ABH ≌△DCG (AAS ).∴AH =DG .又∵AH =AG +GH , DG =DH +GH ,∴AG =DH .9. (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC .∴∠A =∠CBF .∵BE ⊥AD ,CF ⊥AB ,∴∠AEB =∠BFC =90°.在△ABE 和△BCF 中,⎩⎪⎨⎪⎧∠AEB =∠BFC ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (AAS ).∴AE =BF ;(2)解:∵BE ⊥AD ,点E 恰好是AD 中点,∴BE 垂直平分AD .∴BD =AB =2.10. (1)证明:∵BE 平分∠ABC ,∴∠ABE =∠DBE .在△ABE 与△DBE 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBE ,BE =BE ,∴△ABE ≌△DBE (SAS);(2)解:∵∠A =100°,∠C =50°,∴∠ABC =30°.∴∠ABE =12∠ABC =15°. ∴∠AEB =180°-∠A -∠ABE =180°-100°-15°=65°.。
备考2021年九年级中考数学复习满分突破训练:全等三角形的性质与判定(五)(含答案)

备考2021年九年级中考数学复习满分突破训练:全等三角形的性质与判定(五)1.如图,在正方形ABCD中,点E,F分别是CD,AD的中点,BE与CF相交于点P.(1)求证:BE⊥CF.(2)若AB=a.①求CP和AP的长(用含a的代数式表示).②连结DP,直接写出∠DPF的度数.2.已知四边形ABCD,连接BD,∠ADB=∠CBD,AD=BC.(1)求证AB∥CD;(2)点O为BD的中点,直线EF经过点O,分别交直线CD、AB于点E、F,连接BE,若AB=BF,请直接写出与△ABD面积相等的三角形.(△ABD除外)3.如图,△BEF和△AGE是等腰直角三角形.(1)探究FG和AB的数量关系并证明;(2)延长FG和AB交于点C,利用图2补全图形,求∠ACF的度数.4.在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AM=3,MC=2,AB=3,求△ABC中AB边上的高.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED 并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.5.在△ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.6.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7.如图,△ABC为等腰直角三角形,∠ACB=90°,D,E分别是AC、AB的中点,P为直线DE上的一点,PQ⊥PC交直线AB于Q.(1)如图1,当P在ED延长线上时,求证:EC+EQ=EP;(2)当P在射线DE上时,请直接写出EC,EQ,EP三条线段之间的数量关系.8.如图,△ABC为等边三角形,点D,点E分别在BA,AB的延长线上,AD=BE.(1)求证:CD=CE;(2)若EF平分∠DEC交CD,CA于点F,点G,∠ACD=∠CEF,求证:EF=AC+AD.9.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,当PC⊥PD时,PC与PD 在(1)中的数量关系还成立吗?说明理由.10.如图,△ABC是等腰三角形,∠BAC=90°,BE是∠ABC的角平分线,DE⊥BC于点D.(1)请写出图中所有的等腰三角形(△ABC除外);(2)请你判断AD与BE是否垂直?并说明理由;(3)如果BC=10cm,求AB+AE的长.参考答案1.解:(1)证明:在△CDF和△BCE中,,∴△CDF≌△BCE(SAS),∴∠CEB=∠CFD,∵∠DCF+∠CFD=90°,∴∠DCF+∠CEB=90°,∴∠EPC=90°,∴BE⊥CF;(2)①如图1,延长CF交BA延长线于点M,在△CFD和△MFA中,,∴△CFD≌△MFA(ASA),∴CD=MA=AB=a,∵BP⊥CF,∴AP为Rt△MPB斜边BM上的中线,是斜边的一半,即AP=BM=×2a=a;∵CP⊥BE,∴CP×BE=CE×BC=,∵BE===a,∴CP==a.②如图2,连接DP,EF,∵点E,F分别是CD,AD的中点,∴DE=CD,DF=AD,∵正方形ABCD中,AD=DC,∠D=90°,∴DE=DF,∴∠DEF=∠DFE=45°,∵∠D=∠EPF=90°,∴D、F、P、E四点共圆,∴∠DPF=∠DEF=45°.2.(1)证明:∵DB=BD,∠ADB=∠CBD,AD=CB,∴△ADB≌△CBD(SAS),∴∠ABD=∠CDB,∴AB∥CD;(2)解:∵AB∥CD,∴∠F=∠OED,∠OBF=∠ODE,∵O为BD的中点,∴BO=DO,∴△BOF≌△DOE(AAS),∴BF=DE,∵△ADB≌△CBD,∴AB=CD,S△ADB =S△CBD,∵AB=BF,∴AB=CD=BF=DE,∴S△ADB =S△BFE=S△BCD=S△BDE.3.解:(1)FG=AB,理由如下:∵△BEF和△AGE是等腰直角三角形,∴EF=EB,EA=EG,∠FEB=∠AEG=90°,∴∠FEB﹣∠BEG=∠AEG﹣∠BEG,即∠FEG=∠BEA,在△FEG和△BEA中,,∴△FEG≌△BEA(SAS),∴FG=AB;(2)如图,即为补全的图形,由(1)知△FEG≌△BEA,∴∠EFG=∠EBA,∵△BEF是等腰直角三角形,∴∠EFB=∠EBF=45°,∴∠CFB+∠CBF=∠CFB+∠EBF+∠CBE=∠EFB+∠EBF=90°,∴∠FCB=90°,∴∠ACF=90°.4.解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=AB cos45°=3,∵MC=2,∴BC=5,∴AC=,∴△ABC中AB边上的高=;(2)延长EF到点G,使得FG=EF,连接BG.,∴△BMD≌△AMC(SAS),∴AC=BD,又∵CE=AC,∴BD=CE,,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠E,∴BD=CE=BG,∴∠BDG=∠G=∠E.5.解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=BC,∴CF=BF=1,∵CE=AE=2,∴EF===;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.6.解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.7.证明:(1)过点P作PH⊥PE,交直线AB于H,∵D,E分别是AC、AB的中点,∴DE∥BC,∵△ABC为等腰直角三角形,∠ACB=90°,∴AC⊥DE,∠CAB=∠B=∠BCE=45°,∴AC∥HP,∴∠H=∠CAB=45°,∠PEC=∠BCE=45°,∴∠H=∠PEC,△HPE为等腰直角三角形,∴HP=EP,HE=EP,∵∠HPQ+∠EPQ=∠EPC+∠EPQ=90°,∴∠HPQ=∠EPC,∴△HPQ≌△EPC(ASA),∴CE=QH,∵EH=QH+EQ,∴CE+EQ=EP;(2)EP+CE=EQ.证明:过点P作PG⊥DE交直线AB于G,连接CP,∵D,E分别是AC、AB的中点,∴DE∥BC,∵△ABC为等腰直角三角形,∠ACB=90°,∴AC⊥DE,∠CAB=∠ABC=∠BCE=∠CED=∠AED=∠PEG=45°,∴AC∥HP,∴∠PGE=∠CAB=45°,∠PEG=∠BCE=45°,∴∠PGE=∠PEG,∠PEC=∠PGQ=135°,∴△GPE为等腰直角三角形,∴GP=EP,GE=EP,∵∠GPQ+∠CPG=∠EPC+∠CPG=90°,∴∠GPQ=∠EPC,∴△GPQ≌△EPC(ASA),∴CE=QG,∵EG+QG=EQ,∴EP+CE=EQ.8.证明:(1)∵△ABC为等边三角形,∴∠BAC=∠ABC=∠ACB=60°,AB=BC=AC,∴∠DAC=∠EBC=120°,∵AD=BE,∴△ACD≌△BCE(SAS),∴CD=CE;(2)∵△ACD≌△BCE∴∠ACD=∠BCE,AD=BE,∵BF平分∠DEC,∴∠DEF=∠CEF,∵∠ACD=∠CEF,∴∠ACD=∠CEF=∠ACD=∠BCE,∵∠EGC=∠AEG+∠BAC=∠AEG+60°,∠ECG=∠BCE+∠ACB=∠BCE+60°,∴∠EGC=∠ECG,∴EC=EG,∵∠EGC=∠AEG+∠BAC=∠AEG+60°=∠EFC+∠ACD,∴∠BAC=∠EFC,即∠EAG=∠EFC,∴△EFC≌△EAG(ASA),∴EF=AE,∵AE=AB+BE=AC+AD,∴EF=AC+AD.9.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.10.解:(1)∵△ABC是等腰三角形,∠BAC=90°,∴∠C=45°,∵DE⊥BC,∴CD=DE,∴△EDC是等腰三角形,∵BE是∠ABC的角平分线,DE⊥BC于点D,∠BAC=90°,∴EA=ED,∴△ADE是等腰三角形,∵BE=BE,∴Rt△BAE≌Rt△DBE(HL),∴BA=BD,∴△ABD是等腰三角形,故图中的等腰三角形有:△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:由BE为∠ABC的平分线,知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,∴△ABE沿BE折叠,一定与△DBE重合.∴A、D是对称点,∴AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中,∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021中考数学三轮专题突破:全等三角形一、选择题1. 如图所示,P是∠BAC内一点,PE⊥AB于点E,PF⊥AC于点F,PE=PF,则直接得到△PEA≌△PF A的理由是()A.HL B.ASA C.AAS D.SAS2. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°3. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对4. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.75. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对6. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,AC=BD,AC与BD相交于点O,要使△ABC≌△BAD,则应添加的一个条件为__________(只需填一个).11. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.12. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.13. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.14. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.15. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.16. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题17. 如图所示,在△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一条直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗);(2)选择(1)中你写的一个命题,说明它的正确性.18. 如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G.若AF=4,求BC的长.19. (2019•苏州)如图,ABC △中,点E在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.20. 如图所示,已知在△ABC中,AB=AC=10 cm ,BC=8 cm ,D 为AB 的中点,点P 在线段BC 上以3 cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 以a cm/s 的速度运动,设运动的时间为t s(t>0). (1)求CP 的长(用含t 的式子表示);(2)若以C ,P ,Q 为顶点的三角形和以B ,D ,P 为顶点的三角形全等,且∠B 和∠C 是对应角,求a 的值.21. 如图,已知AP ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于点E ,过点E的直线分别交AP ,BC 于点D ,C .求证:AD +BC =AB .22. 如图①,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.2021中考数学 三轮专题突破:全等三角形-答案一、选择题1. 【答案】A2. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.3. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).4. 【答案】A5. 【答案】C【解析】由题意可知,△ABD ≌△CBD ,△MON ≌△M ′ON ′,△DON ≌△BON ′,△DOM ≌△BOM ′共4对.6. 【答案】B [解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.8. 【答案】B[解析] 如图,过点F 分别作FZ ⊥AE 于点Z ,FY ⊥CB 于点Y ,FW ⊥AB 于点W.∵AF 平分∠BAC ,FZ ⊥AE ,FW ⊥AB , ∴FZ =FW.同理FW =FY . ∴FZ =FY .又∵FZ ⊥AE ,FY ⊥CB , ∴∠FCZ =∠FCY .由∠AFB =40°,易得∠ACB =80°. ∴∠ZCY =100°.∴∠BCF =50°.二、填空题 9. 【答案】120° 【解析】由于△ABC ≌△A′B′C′,∴∠C =∠C′=24°,在△ABC 中,∠B =180°-24°-36°=120°.10. 【答案】答案不唯一,如BC =AD11. 【答案】AB =AC12. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.13. 【答案】20[解析] 由角平分线的性质可得CD =DE.易证Rt △ACD ≌Rt △AED ,则AC =AE ,DE +DB =CD +DB =BC =AC =AE ,故DE +DB +EB =AE +EB =AB.14. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).15. 【答案】16[解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.16. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题17. 【答案】解:(1)如果①③,那么②;如果②③,那么①. (2)对于“如果①③,那么②”说明如下: 因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF. 对于“如果②③,那么①”说明如下: 因为BE ∥AF , 所以∠AFD =∠BEC. 因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE. 在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE , 所以AD =BC.18. 【答案】(1)证明:∵AB =AC ,AD 平分∠CAE ,∴∠B =∠ACB ,∠CAD =∠EAD =12∠CAE , 又∵∠CAE =∠B +∠ACB , ∴∠B =∠EAD ,(3分) ∴ AD ∥BC.(4分) (2)解:∵CG ⊥AD , ∴∠CFA =∠GFA =90°, 在△ACF 和△AGF 中,⎩⎨⎧∠CFA =∠GFAAF =AF∠CAF =∠GAF, ∴△ACF ≌△AGF(ASA ), ∴AC =AG ,CF =GF ,(7分) 又∵AB =AC , ∴AB =AG ,(9分)∴AF 是△BCG 的中位线, ∵AF =4,∴BC =2AF =8.(10分)19. 【答案】(1)∵CAF BAE ∠=∠, ∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.20. 【答案】解:(1)依题意得BP=3t cm ,BC=8 cm ,∴CP=(8-3t )cm .(2)∵∠B 和∠C 是对应角,∴分两种情况讨论:①若△BDP ≌△CPQ ,则BD=CP ,BP=CQ.∵AB=10 cm ,D 为AB 的中点,∴BD=5 cm .∴5=8-3t ,解得t=1.∴CQ=BP=3 cm .∴a==3.②若△BDP ≌△CQP ,则BD=CQ ,BP=CP .∵BP=3t cm ,CP=(8-3t )cm , ∴3t=8-3t ,解得t=.∵BD=CQ ,∴5=a ,解得a=.综上所述,a 的值为3或.21. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.22. 【答案】(1)PM =PN ,PM ⊥PN ;【解法提示】∵AB =AC ,AD =AE ,∴BD =CE ,∵M ,P ,N 分别为DE ,DC ,BC 的中点,∴PM //CE 且PM =12CE ,PN ∥BD 且PN =12BD , ∴PM =PN ,∠DPM =∠DCE ,∠CNP =∠B ,∴∠DPN =∠PNC +∠PCN =∠B +∠PCN ,∵∠A =90°,∴∠B +∠ACB =90°,∴∠MPN =∠MPD +∠DPN =∠ACD +∠PCN +∠B =∠ACB +∠B =90°, ∴PM ⊥PN ;(2)△PMN 为等腰直角三角形.理由如下:由题可知△ABC 和△ADE 均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,又∵M,P,N分别是DE,CD,BC的中点,∴PM是△CDE的中位线,∴PM∥CE且PM=12 CE,同理PN∥BD且PN=12 BD,∴PM=PN,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,∴△PMN为等腰直角三角形;(3)49 2.【解法提示】∵△PMN为等腰直角三角形,∴S△PMN =12PM2,要使△PMN的面积最大,即PM最大,由(2)得,PM=12CE,即当CE最大时,PM最大.如解图,当点C、E在点A异侧,且在同一条直线上时,CE最大,此时CE=AE +AC=AD+AB=14,解图∴PM=12CE=12×14=7,故△PMN的最大面积为S△PMN =12×7×7=492.。