汽车系统动力学第五章 纵向动力学概述

合集下载

汽车理论课件第五章

汽车理论课件第五章
➢ 车轮旋转轴线在地平面上的投影 线为Y轴,以向左为正方向。
X轴和Y轴的交点就是坐标系原点O。 ➢ Z轴过原点O,垂直于地平面,以
向上为正方向。
正方向标示、而非
注意:
“受力实况”P164
• 由于车轮有外倾角γ(或上下跳动),车轮平面不一定垂直于地面;
• 由于轮胎有侧偏角α,X轴未必指向车轮速度方向。
• 钢丝子午线轮胎比尼龙子午线轮胎的侧偏刚度还要大些。
➢ 相同种类的轮胎,尺寸较大的轮胎具有较高的侧偏刚度。 ➢ 降低高宽比(扁平率),轮胎的侧偏刚度会显著提高。如图5-12
高宽比—轮胎断面高与轮胎断面宽之比,即H/B 。
解读轮胎规格:
• 降低高宽比还可以提高轮胎与地面的附着能力, 车辆的驱动、制动和极限转向能力会得到提高。 “追求高性能的运动型轿车”P174
➢ 在同一FZ作用下, FX和FY之间服从附 着椭圆关系。
➢ 由A到B,对应滑动率s的增大, FX和 FY的变动规律符合第四章的结论。
汽车理论 吉林大学汽车工程学院
17
§5-2 轮胎的侧偏现象与侧偏特性
6.行驶速度
➢ 在正常车速范围内时,速度的变 化对轮胎侧偏特性的影响很小。
➢ 车速很高时,侧偏刚度随着车速 的升高而下降,尤其是侧偏角较 大时。 这并不是行驶速度本身造成的,
L
P165
汽车理论 吉林大学汽车工程学院
6
§5-1 概述
上述 “理想刚性”条件,有些是不符合实际的。汽车系统存在
一些实际特性,使得:

① 各车轮的实际指向(即轮胎坐标 系的X轴)并不总是与各自的 “名义指向”完全重合;
② 各车轮的实际行驶方向也并不一 定沿着其轮胎坐标系的X轴方向。

纵向动力学PPT课件可编辑全文

纵向动力学PPT课件可编辑全文
等速百公里燃料经济性道路试验规范:试验在纵 坡不大于0.3%的良好路面上,测量路段长度500m(或 1000m) 。气温0~35°C,气压740~770mmHg,相 对湿度50~95%,风速小于3m/s。汽车技术状况良好。 试验前,汽车必须充分预热,使发动机出水温度80~ 90℃,变速器及驱动桥润滑油温度不低于50℃。试验 时,汽车用最高档等速行驶,从车速20km/h开始,以 速度间隔10km/h的整倍数,直至该档最高车速的80%, 至少测定5点。测定通过500m(或1000m)测量段的耗 油量和时间。每种车速往返试验各两次,两次试验之 间的时间间隔应尽可能地缩短,以保持稳定的热状况。 往返共4次试验结果的油耗量差值不应超过±5%,取4 次试验结果的平均值为等速行驶的耗油量。
汽车燃油经济性的试验方法
式中:Ff 、Fw-----滚动阻力、空气阻力; m、r -----汽车质量、车轮半径;
δ----旋转质量换算系数;
ua -----车速;
Tr -----滑行时,各车轮摩擦阻力矩之和, 常忽略不计。
(3). 在测功机上设定好。 (4). 进行试验。
第5页/共58页
汽车燃油经济性的试验方法
第1页/共58页
汽车燃油经济性评价指标
指汽车在一定载荷 (我国规定轿车半载、 货车满载)下,以最高档在水平良好路面上等 速行驶100km的燃油消耗量。
以一些典型的循环行驶试验工况来模拟实 际汽车的运行状况,并以百公里燃油消耗量 (或MPG)来评定相应工况的燃油经济性。
第2页/共58页
汽车燃油经济性的试验方法
所以, 档位数,会改善汽车的动力性 和燃油经济性。
第41页/共58页
传动系档位数及各档传动比的选择 一般认为档与档之间的传动比不宜大于

汽车系统动力学第5章 纵向动力学性能分析

汽车系统动力学第5章 纵向动力学性能分析

第一节 动力的需求与供应
二 车辆的动力供应
图5-5 不同输入转矩下传 动系统的传动效率
图5-6 发动机额定转矩和 净转矩随转速的变化
第一节 动力的需求与供应
二 车辆的动力供应
若驱动轮滚动半径为rd,根据净转矩Mn的定义,则可得到驱动力 Fx为: Fx=MH/rd=Mnigi0/rd(5-12) 若车辆传动系统效率为ηt,则驱动力Fx为: Fx=Mnigi0/rd=ηtMeigi0/rd(5-13) 根据车辆的动力需求式(5-9)和动力供应式(5-13),即得到车 辆沿前进方向的动力供求平衡方程为: =(δimv+mc)ax+(iG+fR)(mv+mc)g+CDAu2(5-14)
第二节 动力性
三 加速能力
车辆的加速能力通常由可达到的最大加速度来表示。由于车辆 加速时需同时考虑其平移质量和转动质量的影响,前面已经定 义了一个传动系统传动比为i时的旋转质量换算系数δi。因此, 若车辆可能达到的最大加速度为amax,此时瞬时后备驱动力 Fx,ex全部用来克服加速阻力,则可得到以下关系: Fx,ex=(δimv+mc)amax(5-16) amax=(5-17) 若不考虑旋转质量的影响(即令δi=1),则加速性能曲线与后备 驱动力曲线一致。
图5-3 车辆上坡时的行驶阻力曲线图
第一节 动力的需求与供应
一 车辆对动力的需求
各行驶阻力分量对总行驶阻力的影响程度与车辆的行驶状态有 关。通常,对野外高速行驶的乘用车而言,空气阻力起主导作用; 而对商用货车,空气阻力的影响相对较小。图5-4所示为典型 商用车在不同行驶条件下各阻力分量 引起的相对燃油消耗百分比。需强调的是,除空气阻力外,其他 所有行驶阻力分量均与车重有关。这也意味着减小车重对节省 能耗有显著意义。

3 汽车纵向动力学解读

3 汽车纵向动力学解读

FaV a < μFPH b ⋅ sin β ≈ μFPH bβ
当 F aH b > μ F pV a ⋅ sin β ≈ μ F 其中:
pV

FaV
= kV β
即满足kV a < μFPH b 时,汽车才处 于稳定状态
图 3-3-2
2009-10-19 18
第三章
汽车纵向动力学 四、驱动,后轮滑转
2009-10-19
( μ H − μ G λ T ) − ( μ H − μ G )λ (1 − λ T )
23
第三章
汽车纵向动力学
在此前提下,车辆和车轮的数学
模型可表达为:
I ω & = − T b + RF mv &= − Fb Fb
= μ ( λ ) Fz
b
制动力矩Ie It Iw
Id
aX
发动机旋转零件转动惯量
变速器旋转零件换算到其输入 端的等效转动惯量
车轮及半轴的转动惯量 传动轴转动惯量 车辆加速度
itf η tf
2009-10-19
5
第三章
汽车纵向动力学
2. 汽车的行驶阻力 汽车在水平道路上行驶时,必须克服来自地面的滚动阻力和来 自空气的空气阻力,当汽车在坡道上上坡行驶时,还必须克服重力 沿坡道的分力,称其为坡度阻力。

Td = Ft r / i f
Ts = Ts f + Tsr = Kφ r φ + Kφ f φ = Kφ φ
Ft r Kφ f i f t Kφ r+Kφ f
综合以上几式可得: Wy =
注意: 1. 横向载荷转移的大小是驱动力及一些其它车辆参数的函数; 2. 如果驱动桥的差速器未锁止,传至两侧车轮的转矩将受限于 垂直载荷较小一侧车轮的附着极限。

第五章 汽车转向系统动力学,

第五章  汽车转向系统动力学,

第五章汽车转向系统动力学问题的提出汽车转向系统动力学是研究驾驶员给系统以转向指令后汽车在曲线行驶中的运动学和动力学特性。

这一特性影响到汽车操纵的方便性和稳定性,所以也是汽车安全性的重要因素之一,因而成为汽车系统动力学中重要研究内容之一。

汽车操纵稳定性是与汽车的车速密不可分的,早期的低速汽车还谈不上稳定性的问题,最早出现稳定性的问题,是在具有较高车速的轿车上或赛车上,目前,随着车速的不断提高,轿车、大客车、载货汽车的设计都离不开汽车操纵稳定性的研究。

近年来,有许多学者研究这一问题,并取得很多成果。

操纵性不好的汽车的主要表现:1.“飘” -有时驾驶员并没有发出转向的指令,而汽车开始自己改编本方向,使人感到汽车漂浮2.“贼”-有时汽车像受惊的马,忽东忽西,汽车不听驾驶员的指令;3.“反应迟钝”-驾驶员虽然发出指令。

但是汽车还没有转向反映,转向过程反应较慢;4.“晃”-驾驶员发出了稳定的转型指令,可使汽车左右摇摆,行驶方向难以稳定,当汽车受到路面不平,或者是侧向风扰动时,汽车就会出现左右摇摆;5.“丧失路感”-正常汽车转弯的程度,会通过转向盘在驾驶员的手上产生相应的感觉,有些汽车操纵性不好的汽车,特别是在汽车车速较高时,或转向急剧时会丧失这种感觉,这会增加驾驶员操纵困难,或影响驾驶员的正确判断6.“失去控制”-某些汽车的车速超过一个临界值以后,驾驶员已经不能控制器行驶的方向。

汽车的操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。

汽车的操纵性:汽车能及时而准确的反映驾驶员主观操作的能力,也就是按照驾驶员的愿望维持或改变原来的行驶路线的能力。

汽车的稳定性:汽车在外力干扰下,仍能保持或很快恢复原来行驶状态和方向,而不致丧失控制、发生侧滑或翻车的能力。

101两者的关系:操纵性的丧失常导致侧滑、回转、甚至翻车;而稳定性的破坏也往往使汽车失去操纵性,处于危险状态。

6汽车系统动力学-纵向动力学控制系统

6汽车系统动力学-纵向动力学控制系统

(a)霍尔元件磁场较弱 (b)霍尔元件磁场较强 图 霍尔式车轮转速传感器 1—霍尔元件;2—永久磁铁;3-齿圈
20
6.1防抱死制动控制系统
霍尔元件输出的是毫伏级的准正弦波电压,通过电子电路转 换成标准的脉冲电压输出信号,电压幅值为 7V~14V,如图所示。

霍尔式车轮转速传感器电压波形
霍尔车轮转速传感器具有以下优点:输出信号电压幅值不受转 速的影响;频率响应高,其响应频率高达20 kHz,相当于车速为 1000km/h时所检测的信号频率;抗电磁干扰能力强。
26
6.2驱动力控制系统 基本原理和控制目标
■TCS(Bosch公司ASR)是在ABS基础上发展起来的主动安全系统
27
6.2驱动力控制系统
汽车牵引力控制系统的作用 汽车牵引力控制系统(Traction control System,TCS。也称 TRC)是继防抱死制动系统之后应用于车轮防滑的电子控制系统, 其功用是防止汽车在起步、加速时和在滑溜路面行驶时的驱动轮 滑转。故有些汽车公司也将该技术称为驱动防滑系统 (Acceleration Slip Regulation, ASR)。 当车轮转动而车身不动或是汽车的速度低于转动车轮的轮缘速 度时,轮胎与地面之间就有相对的滑动,这种滑动称为“滑转”。 汽车防滑控制系统可以在车轮出现滑转时,通过对滑转车轮 施以制动力或控制发动机的动力输出来抑制车轮的滑转,以避免 汽车牵引力和行驶稳定性下降。
2
6.1防抱死制动控制系统 控制目标
——由于前轮抱死,车辆失去转向能力;而
后轮抱死属于不稳定工况,易引起车辆急速 摔尾的危险。
——制动力通常在滑移率为某一特定值附近
达到最大值,因而将该滑移率值认为是最佳 滑移率,并作为ABS的控制目标。 ——由于车轮的滑移率不易直接测得,因此 必须采用其他参数作为ABS的控制目标参数。

纵向动力学

纵向动力学

汽车动力传递路线:发动机→离合器→变速器→ 副变速器→传动轴→主减速器→差速器→半轴→ 轮边减速器→车轮。
动力装置的匹配
P Ttq e
制动性
P e
功率Pe ---曲轴转速n
复习题
Ttq
转矩Ttq ---曲轴转速n
n
Lecture02: Longitudinal Dynamics of Vehicle System
动力性
2、加速时间 (t):
燃油经济性
动力装置的匹配
原地起步加速时间: 由I或II档起步,以amax,并考虑换 档时间,一般用0~400m或者0~ 100km/h的时间表示原地起步的加速时 间。 超车加速时间: 以最高档或次高档,以a 以最高档或次高档,以amax加速至某 一高速所用的时间。
制动性
复习题
1、最高车速 (kM/h):指在良好的路面(混凝土或 沥青)上所能达到的最高行驶车速。
制动性
复习题
Lecture02: Longitudinal Dynamics of Vehicle System
汽车动力性评价指标
SUBTITLES
Vehicle Tractive Performance Evaluation Criteria
复习题
ηt ----- 传动系的机械效率;
r ----- 车轮半径。
此式从数学、物理上容易理解,但有关参 数的意义尚需进一步探讨!
Lecture02: Longitudinal Dynamics of Vehicle System
汽车行驶方程式
SUBTITLES
1、理解发动机驱动力矩Ttq
动力性 燃油经济性
汽车行驶方程式
SUBTITLES

汽车系统动力学概论

汽车系统动力学概论

汽车系统动力学概论汽车系统动力学概论摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂向和横向两个方面的动力学内容。

本文通过对大量教科书和文献进行了分析,对汽车动力学的研究内容、研究方法和理论基础以及发展趋势进行了阐述。

关键词:系统,汽车,系统动力学1系统及系统动力学的概念1.1系统系统是一个由相互区别、相互作用的各部分(即单元或要素)有机地连接在一起,为同一目的的完成某种功能的集合体。

由此可知系统具有以下几个特点:具有目的性、具有层次性、具有功能共性、具有整体性。

1.2系统动力学系统动力学是一门分析研究信息反馈的学科。

它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。

系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决问题系统问题交叉、综合性的学科。

反馈系统就是包含反馈环节与其作用的系统。

它要受系统本身的历史行为的影响,把历史行为的结果回授给系统本身,以影响未来的行为。

如库存订货系统。

2汽车系统动力学及其研究内容2.1汽车系统动力学汽车系统动力学就是把汽车看做是一个动态系统,对其行为进行研究,讨论数学模型和响应。

是研究汽车受的力及其与汽车运动之间的相互关系,找出汽车主要性能的内在规律和联系,提出汽车设计参数选取的原则和依据。

汽车系统动力学研究所有与车辆系统运动有关的学科,包括空气动力学,纵向运动及其子系统的动力学响应,垂向和横向两个方面的动力学内容,即行驶动力学和操作动力学,行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯卧以及车轮的运动,操纵动力学研究车辆的操纵性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。

2.2汽车动力学研究内容汽车系统动力学是研究所有与汽车运动有关的学科,研究内容可按车辆运动方向分为纵向、垂向和侧向动力学三大部分。

2.2.1纵向动力学纵向或前进运动对于车辆来说都是最重要的,它们主要代表了运输任务需要的运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章纵向动力学性能分析
除空调等附属设备的能耗需求外,行驶过程中车辆所需的动力与能量由行驶阻力所决定。

本章将在分析动力需求与动力供应的基础上,分析车辆的纵向动力学特性,包括动力性、燃油经济性和制动性。

此外,还将讨论与路面附着条件相关的驱动和制动极限问题,最后进行制动稳定性的分析。

§5-1 动力的需求与供应
本节首先介绍车辆的行驶阻力,然后分析车辆对动力的需求及供应,最后给出车辆的动力供求平衡方程。

一、车辆对动力的需求
这里介绍的车辆行驶阻力,实际上代表了车辆对动力的需求。

按行驶状态的不同,车辆行驶阻力可分为稳态匀速行驶状态下的阻力和瞬态加速时的阻力两部分。

前者包括车轮滚动阻力、空气阻力和坡度阻力;后者主要是指加速阻力。

二、车辆的动力供应
§5-2 动力性
一、概述
车辆的动力性由加速能力、爬坡能力和最高车速来衡量,也可通过对特定行驶工况下车辆动力需求与动力供应之间的比较来评定,而供求双方的平衡关系则由驱动轮轮胎与地面间的相互作用所决定。

评价车辆动力性时,通常采用“驱动力平衡图”或“驱动功率平衡图”进行分析。

三、加速能力
§5-3 燃油经济性
目前,大多数车辆采用内燃机作为发动机,其经济性主要以燃油消耗量表示。

一、燃油消耗量的计算
根据初始的车辆设计参数,在车辆开发初期即可进行其燃油经济性理论上的估计,从而方便地在车辆设计阶段进行设计参数的修正。

二、减少油耗的途径
减少燃油消耗量的途径:
1)交通管理因素:包括交通管理系统、信号灯控制系统、驾驶员培训等因素,实际上均影响了车辆的行驶速度。

2)车辆行驶阻力因素:在保证汽车安全性、人机工程、经济性和舒适性的同时,尽可能降低车辆行驶阻力,如减小整车质量、轮胎滚动阻力系数、空气阻力系数和迎风面积等。

3)尽可能地降低附属设备(如空调、动力转向、动力制动等)的能耗。

4)提高传动系效率,使发动机功率要尽可能多地传递到驱动轮上。

§5-4 驱动与附着极限和驱动效率
第三章中对单个轮胎与地面附着极限问题已有介绍,本节将在整车受力分析的基础上,详细讨论整车驱动与附着极限。

§5-5 制动性
一、制动性的评价
车辆的制动性主要由下列三方面来评价:
1)制动效能,即制动距离与制动减速度。

2)制动效能的稳定性,即抗热衰退性能,它是指车辆高速行驶或下长坡连续制动时保持一定制动效能的程度。

3)制动时的方向稳定性,即制动时车辆不发生跑偏、侧滑以及失去转向能力的性能。

二、直线制动动力学分析
三、制动稳定性分析
四、转弯制动动力学分析
五、制动力控制系统。

相关文档
最新文档