东莞理工学院理论力学复习2014
理论力学复习资料

《理论力学》复习指南第一部分静力学•基本概念及基本原理•静力学基本概念力:是物体间相互的机械作用,这种作用使物体运动状态发生变化或使物体产生变形。
前者称为力的运动效应,后者称为力的变形效应。
刚体:是在力作用下不变形的物体,它是实际物体抽象化的力学模型。
等效:若两力系对物体的作用效应相同,称两力系等效。
用一简单力系等效地替代一复杂力系称为力系的简化或合成。
2.力的作用效果运动效应(外)移动效应变形效应(内)转动效应3.静力学基本公理力的平行四边形法则普遍适用。
二力平衡原理:作用于同一刚体的两个力,使刚体平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
加减平衡力系公理是研究力系等效变换的主要依据。
作用与反作用定律(普遍适用):两物体之间互相作用的力同时存在,大小相等,作用线相同而指向相反。
刚化公理给出了变形体可看作刚体的条件。
4.矢量的投影(1).在轴上的投影:标量,作垂线,(2).在平面上的投影:矢量,作垂线,夹角为力与轴正向的夹角。
1.计算力在空间直角坐标轴上的投影有两种方法一次〔直接〕投影法γβα cos , cos , cos ⋅=⋅=⋅=F Z F Y F X二次(间接)投影法。
θγϕθϕϕγϕθϕϕγsin cos sin cos sin sin sin cos cos cos cos sin ⋅=⋅=⋅⋅=⋅=⋅⋅=⋅⋅=⋅=⋅⋅=F F Z F F F Y F F F X xy xy直接投影法:已知F 与xyz 轴的夹角。
图二次投影法:已知F 与z 轴的夹角。
X在xy 平面上的投影与x 轴的夹角。
图 5.(1).力对轴之矩标量 (2).力对点之矩矢量6.力:滑移矢量。
矩矢:定位矢量。
力偶:自由矢量。
7.解答力对点之矩,力对点之矩的步骤:(1).写出力的作用点的坐标(X,Y,Z)(2).写出力F在坐标轴上的投影为:,(3).利用公式进行求解。
8.力偶的性质(1).力偶没有合力,不能用一个力代替,因而也不能和一个力平衡。
《理论力学》期末复习资料

a
L
T k(2b cos b a)
L
L F k(2b x b a)
b
2L L
x
a
FL2 k b2
例16、试用牛顿方法和拉氏方法证明单摆的运动微分方程 g sin 0
l
其中为摆线与铅直线之间的夹角,l为摆线长度。
解: (1)用牛顿法:
l
ml mg sin
T
g sin 0
l
mg
3
3
33
v2 x2 y 2 an
v2
2 2m
9
11
例4、一质点受有心力 轨道的微分方程。
F
km r2
作用,列出求解其
解:
h2u
2
(
d 2u
d 2
u)
F (r) m
F km kmu2 r2
d 2u u k
d 2
h2
例5、如下图所示,船长为L=2a,质量为M的小船,在船头上站一质量为m的人,
cos3 d
L
o
x
mg
y
18
例12、如下图所示的机构,已知各杆长为L,弹簧的原长L,弹性系数 k,若忽略各处摩擦不计,各杆的重量忽略不计。试用虚功原理求平衡
时p的大小与角度之间的关系。
y
TT
解: 2TxD pyA 0
xD L cos xD L sin yA 2L sin yA 2L cos
x
(2TLsin 2 pLcos ) 0
o
2TLsin 2 pLcos 0
p T tan k(2L cos L) tan kL(2sin tan )
19
例13、如下图所示的机构,已知各杆长为L,弹簧的原长也L,弹性系数为 k,若忽略各处摩擦不计,各杆的重量也忽略不计。试用虚功原理求平衡时
理论力学复习题40学时(1)期末复习题重点

第一部分 静力学1、如图所示的平面桁架,在铰链H 处作用了一个20kN 的水平力,在铰链D 处作用了一个60kN 的垂直力。
求A 、E 处的约束力和FH 杆的内力。
E 20kN xF = E 52.5kN y F = A 7.5kN y F = HF 12.5kN F =-2、图示等边三角形ABC ,边长为l ,现在其三顶点沿三边作用三个大小相等的力F ,试求此力系的简化结果。
3、外伸梁ABC 上作用有均布载荷q =10 kN/m ,集中力F =20 kN ,力偶矩m =10 kN ⋅m ,求A 、B 支座的约束力4、一木板放在两个半径 r =0.25 m 的传输鼓轮上面。
在图示瞬时,木板具有不变的加速度 a =0.5 m/s2,方向向右;同时,鼓轮边缘上的点具有一大小为 3 m/s2 的加速度。
如果木板在鼓轮上无滑动,试求此木板的速度。
5、求图示分布载荷的合力及对A点之矩。
6、结构上作用载荷分布如图,q1=3 kN/m,q2=0.5 kN/m,力偶矩M=2 kN m,试求固定端A与支座B的约束力和铰链C的内力。
答案:Fnb=-0.5,Fcy=1.5,Fcx=0,Fay=2,Fax=-4.57、在刚架B点受一水平力作用。
设F=20 kN,刚架的重量略去不计。
求A、D处的约束力。
F答案:FA=22.4kN,FD=10 kN8、图中AD=DB=2 m,CD=DE=1.5 m,Q=120 kN,不计杆和滑轮的重量。
试求支座A和B 的约束力和BC杆的内力。
答案:FNB=105,Fax=120,Fay=15,Fbc=1509、某厂房用三铰刚架,由于地形限制,铰A及B位于不同高度。
刚架上的载荷已简化为两个集中力F1及F2。
试求C处的约束力。
答案()()()()122Cy CyF l a H F l b H h F F l H h ---+'==+12、图示平面结构由不计自重的三个刚体在D 、E 处铰接而成。
(完整版)理论力学复习总结(知识点)

第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学复习资料资料

理论力学复习资料资料理论力学是物理学的基础学科之一,它研究物体运动的规律和力的作用。
对于理论力学的学习和掌握,复习资料是必不可少的。
本文将为大家提供一些理论力学复习资料的内容和方法,帮助大家更好地理解和应用这门学科。
一、基础知识回顾理论力学的基础知识包括牛顿三定律、质点运动学、质点动力学等内容。
在复习资料中,可以通过总结和归纳这些知识点,形成一个清晰的知识框架。
例如,可以将牛顿三定律分别列出,并给出具体的例子进行说明。
对于质点运动学和动力学,可以总结各种运动的基本公式和求解方法,如匀速直线运动、匀加速直线运动、曲线运动等。
二、力的研究力是理论力学中一个重要的概念,它描述了物体之间相互作用的效果。
在复习资料中,可以对力的性质、分类和计算方法进行详细的介绍。
例如,可以介绍重力、弹力、摩擦力等常见的力,并说明它们的特点和作用。
此外,还可以介绍力的合成和分解的方法,以及力的叠加原理和平衡条件的应用。
三、动量和能量动量和能量是理论力学中的两个重要概念,它们描述了物体运动的特征和变化。
在复习资料中,可以详细介绍动量和能量的定义、计算方法和守恒定律。
例如,可以介绍动量的定义为质量乘以速度,能量的定义为物体具有的做功能力。
此外,还可以介绍动量守恒定律和能量守恒定律的应用,如碰撞问题、弹性势能和动能的转化等。
四、刚体力学刚体力学是理论力学中的一个重要分支,它研究刚体的平衡和运动规律。
在复习资料中,可以对刚体的定义、性质和运动学描述进行详细的介绍。
例如,可以介绍刚体的几何性质,如质心、转动轴等。
此外,还可以介绍刚体的运动学描述,如平面运动和空间运动的公式和方法。
五、弹性力学弹性力学是理论力学中研究物体弹性变形和弹性力学性质的学科。
在复习资料中,可以对弹性力学的基本概念和公式进行介绍。
例如,可以介绍应力、应变和弹性模量等概念,并给出具体的计算方法和实例。
此外,还可以介绍弹性力学的应用,如弹簧的伸长、弹性体的变形等。
六、力学问题的求解方法理论力学中有许多复杂的问题需要用数学方法进行求解。
理论力学复习题

理论力学复习题1一、是非题1、力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
(√)2、在理论力学中只研究力的外效应。
(√)3、两端用光滑铰链连接的构件是二力构件。
(×)4、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
(√)5、作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
(×)6、三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
(×)7、平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
(√)8、约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
(×)9、在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。
(×)10、用解析法求平面汇交力系的平衡问题时,所建立的坐标系x,y轴一定要相互垂直。
(×)11、一空间任意力系,若各力的作用线均平行于某一固定平面,则其独立的平衡方程最多只有3个。
(×)12、静摩擦因数等于摩擦角的正切值。
(√)13、一个质点只要运动,就一定受有力的作用,而且运动的方向就是它受力方向。
(×)14、已知质点的质量和作用于质点的力,质点的运动规律就完全确定。
(×)15、质点系中各质点都处于静止时,质点系的动量为零。
于是可知如果质点系的动量为零,则质点系中各质点必都静止。
(×)16、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
(×)17、力对于一点的矩不因力沿其作用线移动而改变。
(√)18、在自然坐标系中,如果速度υ= 常数,则加速度α= 0。
(×)19、设一质点的质量为m,其速度 与x轴的夹角为α,则其动量在x轴上的投影为mvx =mvcos a。
(√)20、用力的平行四边形法则,将一已知力分解为F1和F2两个分力,要得到唯一解答,必须具备:已知F1和F2两力的大小;或已知F1和F2两力的方向;或已知F1或F2中任一个力的大小和方向。
理论力学复习 理论力学A总复习

5、列平衡方程求解。
1)尽量保证一方程求一未知。 2)一研究对象最多只列3方程(任意力系),对 于汇交力系和平行力系最多只列2方程。
注意:列平衡方程时,倾斜力取矩要就地沿坐标轴分解.列平 衡方程将分布力处理成集中力,分布力跨铰链在局部平衡时, 必须把分布力分段处理,然后进行简化。
3、点的复合运动加速度分析
一、恰当的选择动点和动系
原则: 1、动点动系不能选在一个物体上。动点 在定系上。 2、动点的相对运动轨迹容易确定。
动点动系选择的常见类型
1. 常接触点(点线接触).
结论:常接触点为动点,另一刚体为动系。
2. 无常接触点(线线接触)
结论:圆心为动点(定系),另一刚体为动系。
平行四边形的 对角线。
矢量性:上式是平面矢量方程,共有 6个要素,知道四个 方能求另外两个,一般用几何法,作出速度平行四边形, 利用三角形求解。
四、加速度分析 牵连运动为平动
牵连运动为定轴转动
ava = ave + avr
ava = ave + avr + avC
最一般的形式
avan + avat = aven + avet + avrn + avrt + avC
解:BC作平面运动,P为速度 瞬心。
ωBC
=
vB BP
=
AB ⋅ω
BP
=
0.5rad/s
vC = ωBC ⋅CP = 50 2 mm/s
ω1
=
vC CD
=
理论力学复习题(答案)

理论力学复习题一、填空题1、力对物体的作用效果一般分为力的外效应和力的内效应。
2、作用在刚体上的力可沿其作用线任意移动,而不改变该力对刚体的作用效果。
3、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律4、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
5、一对等值、反向、不共线的平行力组成的特殊力系,称为力偶6、两个或两个以上力偶的组合称为力偶系。
7、力矩与矩心的位置有关,力偶矩与矩心的位置无关。
8、物体质量的改变与发生这种改变所用合外力的比值叫做加速度。
9、力的三要素为大小、方向和作用点。
10、物体相对于地球静止或作匀速直线运动称为平衡状态。
11、作用在一个物体上的两个力使物体平衡,这两个力一定是大小相等、方向相反、作用在同一条直线上。
12、平面运动的速度分析法有三种方法基点法、速度瞬心法和速度投影法。
13、在刚体的平面运动中,刚体的平移和转动是两种最基本运动。
14、动力学的三个基本定律:动量定理、动量矩定理、动能定理。
15、空间力系分为空间汇交力系和空间力偶。
16、带传动中,带所产生的约束力属于柔性约束,带只能承受拉约束。
17、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律18、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
19、当力为零或力的作用线过矩心时,力矩为零,物体不产生效果。
二、判断题1实际位移和虚位移是位移的两种叫法(×)2.作用力和反作用力等值、反向、共线、异体、且同时存在。
(√)3.力偶无合力。
(×)4.运动物体的加速度大,它的速度也一定大。
(×)5.平面任意力系的合力对作用面内任一点之矩等于力系中各分力对于同一点之矩的代数和。
(√)6.若力偶有使物体顺时针旋转的趋势,力偶矩取正号;反之,取负号。
(×)7.既不完全平行,也不完全相交的力系称为平面一般力系(√)8.二力构件是指两端用铰链连接并且只受两个力作用的构件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学复习例1-1,例1-2,例1-3,例1-4,例1-5例2-3,例2-4,例2-6,例2-8,例2-9,例2-10,例2-11,例2-12, 例2-13,例2-14,例2-15, 例3-1,例3-9,例4-1,例4-2,例4-3,例7-4,例7-5,例7-6,例7-8,例7-9,例8-1,例8-3,例8-5,例8-6,例8-7,例8-8, 例12-3,例12-4,例12-5, 例13-4,例13-5,例13-6,例13-7 补充练习: 一.填空:1. 图示构架不计自重,受力偶M =10kN.m 作用,且a =2m ,则支座A 的反力F A = 10KN 。
2.已知力F 的大小,角度φ和θ,以及长方体的边长a ,b ,c ,则力F 在轴z 和y 上的投影:Fz= ;Fy= ; F 对轴x 的矩mx()= 。
答案:Fz=F ·sin φ;Fy=-F ·cos φ·cos θ;Mx ()=F (b ·sin φ+c ·cos φ·cos θ)。
3. 半径为r 的圆轮在水平面上作纯滚,角速度为ω,角加速度为α,则轮心;加速度为 αr 。
4.均质杆AB ,质量为m ,长为l ,则它的动能T=2216ml w ;它对A 轴的动量矩A L =213ml w 。
5.下图所示曲柄导杆机构,曲柄OA 绕O 轴转动,滑块A 可在水平滑槽中运动;与滑槽固结在一起的导杆BD 在固定的滑道中运动。
则可选择:动点为 滑块A; 动系固结于 导杆CDB ; 绝对运动为 圆周运动 ;相对运动为 水平直线运动 ; 牵连运动为 上下直线运动 。
6.如下图所示,已知力P 沿长方体对角线BA 作用,且P =1000N 。
则该力对y 轴的矩为 86.6 N ·m ,对z 轴的矩为 -43.3 N ·m 。
7.试求下图中力矢F 对O 点的矩: -F ·sin α·(l 1+ l 3)- F ·cos α·l 2 。
8.已知动点的运动方程为23221t t x -=,t t y 2212-=,式中y x ,以米计,t 以秒计。
则s t 3=时动点的速度大小为=ν 1.8 m/s ,加速度大小为=a 5.1 m/s 2 。
9.如图所示,均质直角弯杆AOB 的AO 和OB 质量各为m ,长为 L ,以角速度ω绕固定轴O 转动,图示位置系统动量的大小为 0.707m L ω;系统对O 轴转动惯量的大小为 0.667mL 2 ;系统对O 轴的动量矩大小为 0.667m L 2ω ;系统的动能大小为 0.334 m L 2ω2 。
10.已知A (1,0,1),B (0,1,2)(长度单位为米),F =3kN 。
则力F 对x 轴的矩为-1kN.m , 对y 轴的矩为-2kN.m , 对z 轴的矩为1kN.m 。
11.如右图示凸轮机构,半圆形凸轮C 水平向右平动,挺杆AB 沿垂直槽滑动,则可选择:动点为 AB 杆上的A 点; 动系固结于 凸轮C ;绝对运动为 A 点作垂直直线运动 ; 相对运动为 A 点沿凸轮做圆周运动 ; 牵连运动为 凸轮直线平动 。
12.均质细长杆OA ,长L ,重P ,某瞬时以角速度ω、角加速度ε绕水平轴O 转动;则惯性力系向O 点的简化结果:主矢为213I P M L ge e =鬃?(转向与反向);主矩为 1(2I PF L O gt e e =?作用于点,垂直于OA杆,指向与反方向), 21(2n I PF L O gw =?作用于点,由O指向A)。
13.通过A (3,0,0),B (0,4,5)两点(长度单位为米),且由A 指向B 的力,在z 轴上投影为z 轴的矩的大小为14.指出图示机构中各构件作何种运动, 轮A (只滚不滑) 平面运动 ; 杆BC 作平面运动;杆CD 作平面运动; 杆DE 作定轴转动。
15、均质杆AB 长为L ,质量为m ,绕z 轴转动的角速度和角加速度分别为ω,ε,如图所示。
则此杆上各点惯性力向A 点简化的结果: 主矢的大小是211(,()22n I I F mL AB F mL A B t e e w =??垂直于指向与反向),方向由指向主矩的大小是21(3I M mL e e =鬃转向与反向)。
二.选择填空:1. 图(a)、(b)为两种结构,则( C )。
A 图(a)、(b)都是静定的B 图(a)、(b)都是静不定的C 仅图(a)是静定的D 仅图(b)是静定的 C2. 杆AB 作平面运动,某瞬时B 点的速度B υ=2m/s ,方向如图所示,且α=45°,则此时A 点所有可能的最小速度为( B )。
A A υ=0 B A υ=1m/s C A υ=2m/s D A υ=2m/s3.一重为P 的均质圆柱体。
被置于粗糙的V 型槽内,其上作用一矩为M 的力偶而处于平衡,则A 、B 两处正压力大小( 3 ) (1)NB NA F F = (2)NB NA F F < (3)NB NA F F > (4)无法确定4.在正立方体的ABCD 面上沿BD 方向作用一力F ,则该力( 2 ) (1) 对x 、y 轴之矩相等 (2) 对y 、z 轴之矩相等 (3) 对x 、y 、z 轴之矩全不等 (4) 对x 、y 、z 轴之矩全相等5.物块与水平面间的摩擦角 15=m ϕ,物块上作用有力P 和Q ,且P=Q ,若30=θ,则物块的状态为( 1 )(1) 临界平衡状态(2) 静止(非临界平衡状态) (3) 滑动状态 (4) 无法确定6.图示机构中,OA 杆以匀角速度ω绕O 轴转动,若选OA 上的A 点为动点,动系固结在BC 杆上,则在图示瞬时,动点的相对加速度r a 与牵连加速度e a ,它们的方向是( 3 ) (1)r a 铅垂向上,e a 向下 (2)r a 铅垂向下,e a 向上 (3)r a 水平向左,e a 向下 (4)r a 水平向右,e a 向上7.若刚体作瞬时平动,则该瞬时刚体的角速度ω,角加速度α分别为( 3 ) (1)00==αω, (2)00=≠αω, (3)00≠=αω, (4)00≠≠αω,8.一均质杆AB ,长为L ,质量为m ,以角速度ω绕O 轴转动,则杆对过O 点的Z 轴的动量矩Z L 大小为( 3 )(1)ω2121mL L Z =(2)ω231mL L Z =(3)ω2487mL L Z =(4)ω241mL L Z =9.在上面第8小题中,其动量的大小为( 1 ) (1)ωmL p 41= (2)p=0(3)ωmL p 21=(4)ωmL p 31=10. 质量为m 、半径为R 的均质飞轮绕O 轴转动。
图示瞬时,轮缘上的A 点的加速度a 的大小、方向已知,则此轮对O 轴的动量矩O L 的大小为( C )。
A O L mR =B 2O L mR =C 12O L = D12O L mR =。
11. 质量为m 、长为l 的均质杆放置如图,已知A 端的速度为υ,则杆AB 的动量p 的大小为( B )。
A p m υ=;Bp υ=;Cp υ=; D 2p m υ=。
12. 质量为m 、长为l 的均质杆AB ,其A 端置于光滑水平面上,B 端则用绳BD 悬吊而处于静止状态。
今将绳BD 突然剪断,则杆的质心C 对选定坐标系Oxy 将如何运动( C )。
A 沿过C 点的水平直线向右运动;B 沿过C 点的水平直线向左运动;C 沿过C 点的铅直线向下运动;D 沿过C 点的某一曲线运动。
13.一平面任意力系向O 点简化后得到一个力R F 和一个矩为M 0的力偶,则该力系最后合成的结果是( 3 ) (1) 作用于O 点的一个力(2) 作用在O 点右边某点的一个合力 (3) 作用在O 点左边某点的一个合力 (4) 合力偶14.右图圆盘绕O 点作定轴转动,取盘内相同半径的两点A 、B ,则下列结论正确是( 4 )。
(1)ωA ≠ωB ,A υ ≠B υ; (2)ωA =ωB ,A υ ≠B υ ; (3)ωA ≠ωB ,A υ=B υ; (4)ωA =ωB ,A υ =B υ。
15.杆AB 作平面运动,已知某瞬时B 点的速度大小为m/s 6=B ν,方向如图所示,则在该瞬时A 点的速度最小值为=min A ν( 3 )。
(1)1.5m/s ; (2)5.1m/s ; (3)4.2m/s ;BABR 'ω(4)3m/s ;16.质点系动量守恒的条件是( 1 )。
(1)作用于质点系的外力主矢恒等于零; (2)作用于质点系的内力主矢恒等于零; (3)作用于质点系的约束反力主矢恒等于零; (4)作用于质点系的主动力主矢恒等于零。
17.如图所示,半径为R 、质量为m 1的均质轮上,作用一常力矩M ,吊升一质量为m 2的重物,当重物上升高度为h 时,力矩M 的功为( 1 )。
(1)RhM; (2)gh m 2 ; (3)gh m RhM2 ; (4)0 。
18. 图(a )、(b )两种结构,则( C ) A. 图(a )为静定的,图(b )为静不定的 B .图(a )、(b )都是静定的 C .图(a )、(b )都是静不定的D .图(a )是静不定的,图(b )是静定的19.如图所示,放在一斜面上的物块A ,重G ,物块与斜面间的接触面的静摩擦系数为f=1/3,则A 与斜面间的摩擦力为( A )。
A .G sin25°B .G cos25°/3C .G cos25°D .G sin25°/3图320.通过A (3,0,5),B (0,0,9)两点(长度单位为m ),且由A 指向B的力矢F,在x 轴上的投影、z 轴上的投影分别为( A )。
A .F F ,0.80.6-;B .F F 0.8,6.0;C .F F ,0.60.8-;D .F F 0.6,0.8。
21.某瞬时,刚体上任两点A 、B 的速度分别为A υ 和B υ,则下列结论正确的是( A )。
A .当刚体平动时,必有A υ =B υB .当A υ =B υ,刚体必作平动C .当刚体平动时,必|A υ |=|B υ |,但A υ 和B υ的方向可能不同 D .当刚体平动时,A υ 和B υ 方向必相同,但可能|A υ |≠|B υ| 22.若刚体作瞬时平动,则该瞬时刚体的角速度ω,角加速度α分别为( C )A. 00==αω,;B. 00=≠αω,;C. 00≠=αω,;D. 00≠≠αω,。
23.刚体作平面运动时,其动能等于( B )。
A .随质心平动动能;B .随质心平动动能加上绕质心转动动能C .相对某动点的相对动能;D .绕质心转动动能24、一重W 的物体置于倾角为α的斜面上,若摩擦因数为f ,且tg α<f ,则物体( A )。