用分式方程解决实际问题
分式方程与实际问题的技巧

分式方程与实际问题的技巧分式方程在实际问题中的应用非常广泛,例如在物理学、化学、工程学等领域中都有广泛的应用。
解决分式方程的问题需要一定的技巧和方法,本文将从以下几个方面介绍分式方程与实际问题的技巧。
一、理解分式方程的基本概念分式方程是指含有分式的方程,即等号两边至少有一个项是分式。
分式方程的一般形式为:A/B = C/D,其中A、B、C、D 均为整式,且B≠0。
二、分式方程的解法1. 消去分母法消去分母法是将分式方程转化为整式方程求解的方法。
具体步骤如下:(1)将分式方程转化为整式方程;(2)解整式方程;(3)检验所得解是否为原分式方程的解。
2. 换元法换元法是将原分式方程中的未知数用另一个变量表示,从而将原分式方程转化为一个新的整式方程求解的方法。
具体步骤如下:(1)设一个新的变量u,使得原分式方程可以表示为关于u的整式方程;(2)解关于u的整式方程;(3)将所得解代入原分式方程,求出原未知数的值。
3. 分离变量法分离变量法是将原分式方程中的未知数与常数分离,从而将原分式方程转化为一个关于未知数的一元一次方程求解的方法。
具体步骤如下:(1)将原分式方程中的未知数与常数分离;(2)对分离后的一元一次方程进行求解;(3)将所得解代入原分式方程,求出原未知数的值。
三、实际问题中的分式方程技巧1. 确定未知数和已知条件在解决实际问题时,首先要明确题目中的未知数和已知条件。
未知数通常是需要求解的量,而已知条件则是题目给出的关于未知数的信息。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c,其中a、b、c为已知常数,v、t为未知数。
2. 建立分式方程模型根据题目中的已知条件,建立相应的分式方程模型。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c/t,其中a、b、c为已知常数,v、t为未知数。
3. 选择合适的解法求解分式方程根据所建立的分式方程模型,选择合适的解法求解分式方程。
用分式方程解决实际问题

用分式方程解决实际问题
假设我们要解决以下问题,甲乙两人合作做某件工作,如果甲独立做需要5个小时,乙独立做需要6个小时。
问他们合作做需要多长时间?
首先,我们可以设甲、乙合作做这件工作需要x个小时。
根据工作的性质,我们知道甲、乙合作做一小时的工作量分别是1/5和
1/6。
因此,他们合作做一小时的工作量就是1/5 + 1/6,即5/30 + 6/30,等于11/30。
根据工作量与时间的关系,工作量等于工作量与时间的乘积。
因此,甲、乙合作做x个小时的工作量就是x 11/30。
而这个工作量又等于1,因为他们最终完成了整个工作。
因此,我们可以得到方程式,x 11/30 = 1。
通过解这个分式方程,我们可以得到x的值,从而知道甲、乙合作做这件工作需要的时间。
通过这个例子,我们可以看到分式方程是解决实际问题的有力
工具。
在实际应用中,我们可以根据具体情况建立分式方程,然后通过代数运算来解决问题。
这种方法在解决配比、速度、工作效率等实际问题时非常有效。
希望这个例子可以帮助你更好地理解如何用分式方程解决实际问题。
《用分式方程解决实际问题》教案的教学目标和重点是什么?

本教案的主题是“用分式方程解决实际问题”,旨在通过讲解相关知识,指导学生正确理解和运用分式方程解决实际问题。
一、教学目标1、知识目标:(1)了解什么是分式方程并掌握其基本概念和性质;(2)理解分式方程在解决实际问题中的应用含义;(3)掌握解决实际问题的分式方程的建立方法和解决技巧;(4)通过案例分析提高学生解决实际问题的能力和应用能力。
2、能力目标:(1)培养学生的分析问题和解决问题的能力;(2)提高学生的数学建模能力和实际应用能力。
3、情感目标:(1)培养学生对数学的兴趣和热爱;(2)增强学生学习数学的信心和动力;(3)培养学生对分式方程在实际生活中的重要性的认识和理解。
二、教学重点1、分式方程的基本概念和性质;2、分式方程在解决实际问题中的应用含义;3、解决实际问题的分式方程的建立方法和解决技巧;4、案例分析,提高学生解决实际问题的能力和应用能力。
三、教学具体安排本教案的授课方式主要包括讲授和案例分析两个环节,针对教学目标和重点设计具体的教学步骤和内容。
1、讲授环节(120分钟)(1)介绍分式方程的基本含义、概念和性质;(2)举例分式方程在实际生活中的应用,并分析其解决实际问题的方法和技巧;(3)带领学生通过练习提高解决实际问题的能力和应用能力。
2、案例分析环节(80分钟)(1)提供实际生活中的案例,引导学生建立相应的分式方程;(2)分析实际问题的特点和难点,引导学生采用适当的方法解决问题;(3)鼓励学生讨论解决问题的方法,展示解决问题的思路和过程。
四、教学方法1、课堂教学法通过讲授和案例分析,向学生介绍分式方程的相关知识,引导学生分析实际问题,培养学生解决实际问题的能力和应用能力。
2、探究式学习法鼓励学生探究分式方程在实际问题中的应用和解决方法,提高学生学习数学的积极性和热情。
3、启发式教学法通过启发性问题引导学生探究分式方程在实际问题中的应用,培养学生独立思考和解决问题的能力。
分式方程实际问题步骤

分式方程实际问题步骤分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
分式方程是数学中描述两个或多个变量之间关系的方程,其中至少有一个变量出现在分母中。
解决分式方程的实际问题通常需要遵循一系列步骤,以确保问题的准确性和完整性。
以下是解决分式方程实际问题的常见步骤:1.理解问题:首先,需要仔细阅读问题,理解其背景和要求。
明确问题中涉及的变量、已知条件和未知数,以及它们之间的关系。
2.建立数学模型:根据问题的描述,将实际问题转化为数学模型。
这通常涉及将问题中的文字描述转换为数学表达式或方程。
在这个过程中,分式方程是描述问题的重要工具。
3.去分母:在分式方程中,分母的存在可能导致方程难以解决。
因此,去分母是解决分式方程的重要步骤。
通过找到所有分母的最小公倍数,并将方程两边都乘以这个最小公倍数,可以消除分母。
4.解方程:在去分母后,方程变为一个更简单的形式,可以更容易地求解。
可以使用代数方法(如移项、合并同类项、因式分解等)来解方程。
5.检验解的合理性:在找到方程的解之后,需要回到实际问题中,检查这些解是否符合实际情况和逻辑。
有时候,某些解可能不符合实际情况或导致矛盾,因此需要进行筛选或调整。
6.得出结论:最后,根据解的合理性和实际问题的需求,得出结论并解释结果。
这可能包括提供数值答案、绘制图表或进行进一步的推理和分析。
这些步骤是解决分式方程实际问题的常见方法,但并非一成不变。
根据具体问题的性质和要求,可能需要进行适当的调整和修改。
重要的是保持逻辑清晰和推理准确,以确保最终的解决方案能够满足实际问题的需求。
总结来说,分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
这些步骤包括理解问题、建立数学模型、去分母、解方程、检验解的合理性和得出结论等。
通过遵循这些步骤,可以更准确地解决实际问题并得出可靠的结论。
分式方程的应用问题

分式方程的应用问题分式方程是包含了分数形式的方程,可以用来解决很多与比例、比率和分数有关的实际问题。
在本文中,将探讨分式方程在不同应用问题中的实际应用。
1. 比例问题比例问题是分式方程的一种常见应用。
比如,假设小明每小时跑步的速度是x米,而小红每小时跑步的速度是y米,我们可以得到以下方程:x / y = 4 / 5其中4 / 5是两者速度的比例。
通过解这个分式方程,我们可以计算出小明和小红的速度。
这种应用问题通常涉及到多个变量之间的比例关系。
2. 比率问题比率问题是另一种使用分式方程的应用。
比如,假设一个容器中有3升柠檬汁和2升橙汁,我们可以得到以下方程:3 / 2 = x / 10其中3 / 2是柠檬汁和橙汁的比率,而10是容器中液体的总量。
通过解这个分式方程,我们可以计算出柠檬汁的数量x。
这种应用问题通常涉及到比率和总量之间的关系。
3. 速度、时间和距离问题在许多速度、时间和距离相关的问题中,分式方程也经常被使用。
假设小华以每小时60公里的速度行驶,并且需要2个小时到达目的地。
我们可以得到以下方程:60 * 2 / x = 1其中60 * 2是小华总共行驶的距离,而x是小华的速度。
通过解这个分式方程,我们可以计算出小华的速度。
这种应用问题通常涉及到速度、时间和距离之间的关系。
4. 货币兑换问题货币兑换问题也可以使用分式方程进行建模和解决。
假设1美元可以兑换85日元,而小明用400美元兑换了多少日元。
我们可以得到以下方程:1 / 85 = 400 / x其中1 / 85是兑换比率,而400是小明用来兑换的美元数量。
通过解这个分式方程,我们可以计算出小明兑换的日元数量。
这种应用问题通常涉及到不同货币之间的比率关系。
通过以上几个例子,我们可以看到分式方程在比例、比率、速度、时间、距离以及货币兑换等方面的广泛应用。
通过建立适当的数学模型,并解决相应的分式方程,我们能够更好地理解和解决各种实际问题。
分式方程的应用问题不仅能够提高学生的数学能力,还能够加深对实际问题的理解和分析能力。
八年级数学上册《列分式方程解决工程实际问题》教案、教学设计

2.学生分享自己的学习心得,提出在学习和练习过程中遇到的问题和困惑,教师给予解答。
3.教师对本节课的教学进行反思,针对学生的反馈,调整教学方法,为下一节课做好准备。
3.小组合作完成一道拓展题(见附件),要求运用本节课所学的分式方程知识,并结合其他相关知识点进行解答。此题旨在培养同学们的团队合作精神和综合运用知识的能力。
4.请同学们撰写一篇学习心得,总结自己在学习分式方程解决实际问题过程中的收获和困惑。心得体会不少于300字,要求真实、具体、有深度。
5.预习下一节课的内容,提前了解涉及到的知识点,为课堂学习做好准备。
2.培养学生敢于面对困难、勇于挑战的精神,通过解决实际问题,增强学生的自信心。
3.培养学生的团队合作意识,让学生学会倾听、表达、沟通、协作,提高人际交往能力。
4.培养学生具有责任感和使命感,明确学习数学的目的不仅是为了解决实际问题,更是为了服务社会、为国家的发展做出贡献。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算和方程求解方法。在此基础上,学生对分式方程的学习将更具挑战性。他们对实际问题有一定的认知,但将实际问题抽象为数学模型的能力还有待提高。此外,学生在解决实际问题时,往往对数据的处理和分析存在困难,需要教师在教学中加以引导和培养。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个实际问题,讨论如何将其转化为分式方程,并求解。
师:“现在请同学们分组讨论,每组选择一个实际问题,试着将其转化为分式方程,并求解。注意,在讨论过程中,要明确等量关系,列出正确的方程。”
八下数学课件: 分式方程( 利用解分式方程解决实际问题)

3
=2
解得: = 100
经检验: = 100是原方程的解,
∴高铁的平均速度是每小时3×100=300千米.
答:高铁的平均速度是每小时300千米.
情景引入(销售问题)
某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购
进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是
解得a=
检验,由S、v都是正数,当a=
所以,原分式方程的解为a=
≠0
。答:略
练一练(距离问题)
小刚家(点A)、王老师家(点B)、学校(点C)在同一条路上,小刚家到王老师家的
路程为3千米,王老师家到学校的路程为1千米。为了使小刚能按时到校,王老师每天
骑自行车接小刚上学。已知王老师骑自行车的速度是步行的3倍,每天比平时步行上
1)本题等量关系为_______________________________________;
2)设提速前平均速度为a km/h。
S
3)提速前行驶距离___________,提速前时间表示为____________;
+
S+50
4)提速后行驶距离___________,提速后时间表示为____________;
解:设第一次该干果的进货价是每千克x元,
则第二次购进干果的进货价是每千克(x+5)元,
9000
5000
1.5
根据题意得: × = +5
,
解得:x=25,
经检验,x=25是所列方程的解.
答:该种干果的第一次进价是每千克25元.
课后回顾
分式方程解决生活中的实际问题

设此商品进价为 元,
根据题意,得: 。
解之, .
经检验之 是原方程的根.
所以 (件).
答:此商品进价是 元,第二个月共销售 件.
四、翻译效率问题
例4翻译一份文稿,用某种电脑软件翻译的效率相当于人工翻译的效率的75倍,电脑翻译3300个字的文稿比人工翻译少用2小时28分.求用人工翻译与电脑翻译每分钟各翻译多少个字
析解:基本关系式:耗用时间= 。
设人工翻译每分钟翻译 个字,则电脑翻译每分钟翻译75x个字,依题意,得
.
解之,得 .
经检验, 是原方程的解.
翻译22个字,电脑翻译每分钟翻译1 650个字.
设B城市每立方米水的水费为x元,则A城市为元,依题意得
解得x= 2。
经检验x= 2是原方程的解,所以=(元)。
答:B城市每立方米水费2元,A城市每立方米元。
二、玩具加工效率问题
例2甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具
分式方程的实际应用
用分式方程解决实际问题一直是中考的重要考点,解题的关键是仔细审题,认真分析,探索出题中的基本关系式.
一、收水费问题
例1A城市每立方米水的水费是B城市的倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元
析解:本题的基本关系式是:用水量= 。
析解:等量关系式:甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等。
设每天加工 个玩具,那么乙每天加工( )个玩具,由题意得:
解得:
经检验: 是原方程的根,所以 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、解分式方程应用题的步骤
分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。
一般地,列分式方程(组)解应用题的一般步骤:
1.审清题意;
2.设未知数;
3.根据题意找等量关系,列出分式方程;
4.解分式方程,并验根;
5.检验分式方程的根是否符合题意,并根据检验结果写出答案.
2、常见的实际问题中等量关系
1.工程问题
1.工作量=工作效率×工作时间,,;
2.完成某项任务的各工作量的和=总工作量=1.
基础练习:
1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
例:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的
3
2,厂家需付甲、丙两队共5500元.
⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.
分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.
练习1:某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此 项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队
至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超
过64万元?
练习2:某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案一:甲队单独完成这项工程刚好如期完成;
方案二:乙队单独完成这项工程要比规定日期多用5天;
方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
拓展:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10
天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.
⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.
举一反三:
【变式1】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
【【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?
2.营销问题
1.商品利润=商品售价一商品成本价;
2.;
3.商品销售额=商品销售价×商品销售量;
4.商品的销售利润=(销售价一成本价)×销售量.
例:某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg少3元,比乙种原料每0.5kg多1元,问混合后的单价每0.5kg是多少元?
例:某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
练习:A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?
3.行程问题
1.路程=速度×时间,,;
2.在航行问题中,其中数量关系是:
顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度;
3.航空问题类似于航行问题.
例:甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.
4、货物运输应用性问题
例:一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t.
问:(1)乙车每次所运货物量是甲车每次所运货物量的几倍;
(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t付运费20元计算)
分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n倍,列出分式方程.
课内练习与训练
1、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?
2、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
⑴试销时该品种苹果的进价是每千克多少元?
⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?
3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
4、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
5、某广告公司将一块广告牌任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的3
2,现由徒弟先做一天,师徒再合作2天完成。
(1)师、徒两人单独完成任务各需几天?
(2)若完成后得到报酬540元,你若是部门经理,按个人完成的工作量计算报酬,该如何分配?
6、为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现在甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍。
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
7、近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速公路要招标.现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:
(1)甲、乙两队单独完成此项工程,各需多少天?
(2)甲、乙两队单独完成此项工程,各需多少万元?
8、周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一路程所用时间之比为2:3.
(1)直接写出甲、乙两组行进速度之比.
(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2 km,试求山脚到山顶的路程.
(3)在第(2)题所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的间题,再给予解答.
(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有
..己知条件).。