分式方程应用题分类讲解与训练(很全面)
分式方程解应用题讲解

分式方程解应用题例1某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经1/2时后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度。
分析:这是一个行程问题中的追及问题,其基本关系式为:(1)追者(乘车的学生)所行的路程=被追者(骑自行车的学生)所行的路程(因为他们是从同地但不同时出发的)。
(2)骑自行车的学生所需要的时间—先行时间=乘车者全程所需时间。
如果设自行车的速度是x千米/时,那么汽车的速度是3x千米/时,自行车和汽车行驶12千米所需要时间分别是2/x时和12/3x时,代入上述(2)中就要列出方程。
解:设自行车的速度是xkm/时,那么汽车的速度是3xkm/时,它们行驶12千米所用的时间分别是12/x时和12/3x时,由题意得:12/3x=12/x―1/2∵4/x=12/x―1/2,∴x=16经检验x=16是原方程的根,且符合题意,当x=16时,3x=48。
答:自行车的速度是16千米/时,汽车的速度是48千米/时。
注意:(1)本例属于行程问题,基本等量关系有:①路程(s)=速度(v)×时间(t)②相遇问题:速度和×时间=总路程甲走的路程+乙走的路程=总路程③追及问题:快走所走的路程―慢走所走的路程=路程差;速度差×追及时间=路程差(2)本例还可以设汽车到达目的地时间为t,则自行车到达目的地时间为(t+1/2),那么根据汽车的速度是自行车速度的3倍,可得方程:12/t=3×12/(t+1/2)(3)巩固练习(课本p.154练3,投影片)解:设乙骑车的速度是x千米/时,则甲骑车的速度为(3+x)千米/时,由题意得:30/x-30/(x+3)=1/2整理得:x2+3x-180=0,∴x1=12,x2=―15经检验x1=12,x2=―15均是原方程解,但x2=―15不合题意,舍去∴x=12,此时x+3=15答:甲、乙两人骑车的速度分别为15千米/时、12千米/时注意:本题方程根求出来后先要检验它们是否是原方程根(若有增根舍去),然后再检验它们是否符合题意,不合题意的应舍去例2:一项工作,甲独做比乙独做少用5天,若甲、乙两人合做,6天完成,问甲、乙单独做,各需几天完成?分析:(1)这是一类工程问题,基本关系有:工作量=工作时间×工作效率;工作总效率=各效率之和工作总量=各分量之和(2)设甲独做这项工作需x天完成,那么乙独做需(x+5)天完成,甲每天可完成工作的1/x,乙每天可完成这项工作的1/(x+5),设该项工作总量为1,根据两人合做6天完成可列出方程解:设甲独做这项工作要x天完成,那么乙独做要(x+5)天完成,根据题意,得[1/x+1/(x+5)]×6=1整理得x27x30=0,x1=10,x2=―3经检验,x1=10,x2=―3都是原方程的根,但完成工作天数为负数,不合题意,故x2=―3应舍去∴X=10,此时X+5=15答:甲、乙单独完成这件工作分别需10天、15天一个水池有甲、乙两个进水管,单独开放甲管比单独开放乙管注满水池少用10个小时;两管同时开放,12时可把水池注满,若单独开放一个水管,各需多少时能把水池注满?说明:这一类应用题亦属于“工程问题”,关键在于确定单们时间的工作量。
分式方程应用题及解题技巧

分式方程应用题及解题技巧分式方程是代数中的重要内容之一,它的应用广泛而且深远。
分式方程常常出现在实际生活中的各种问题中,比如物体的速度、加速度、浓度、比例关系等等。
学习分式方程的应用,不仅可以帮助我们解决实际生活中的问题,还可以提高我们的数学分析和解决问题的能力。
在本文中,我们将介绍分式方程的应用题,并给出解题技巧,希望能够帮助大家更好地掌握这一部分知识。
一、分式方程的应用题1.速度问题小明骑自行车以每小时10公里的速度向前行驶,小李以每小时8公里的速度向前追赶小明,问小李追上小明需要多长时间?解:设小李追上小明需要t小时,那么小明与小李的相对速度为10-8=2公里/小时,根据速度=路程/时间,可得速度的分式方程为:10t = 8t + 8解得t=4,所以小李追上小明需要4小时。
2.浓度问题一瓶含有30%酒精的溶液200毫升,现在加了一些蒸馏水,使得酒精浓度变为20%,问加了多少蒸馏水?解:设加了x毫升的蒸馏水,那么酒精的量为0.3*200,水的量为x,根据浓度=溶质的量/溶液的总量,可得浓度的分式方程为:0.3*200 / (200+x) = 0.2解得x=100,所以加了100毫升的蒸馏水。
二、分式方程的解题技巧1.设未知数在应用题中,需要根据实际情况设立未知数,一般来说,设立一个未知数是最为合适的。
比如速度问题中,可以设小明与小李相对速度t小时后能相遇;浓度问题中,可以设加了x毫升的蒸馏水。
2.建立方程根据实际情况,可以建立出分式方程,一般是根据速度=路程/时间,浓度=溶质的量/溶液的总量等公式建立分式方程。
3.求解方程利用分式方程的性质,将方程化简为一元方程,然后求解,得到未知数的值。
4.检验解将求得的未知数代入原方程中,检验是否符合实际情况,如果符合则说明解是正确的。
通过以上的介绍,相信大家对分式方程的应用题及解题技巧有了一定的了解。
在解决实际问题时,我们可以根据问题中的实际情况设立未知数,建立分式方程,并通过求解方程来得到问题的解。
分式方程及其应用精讲精练

1.分式方程的概念
分母中含有未知数的方程叫做分式方程.
2.分式方程的解法
解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.
3.分式方程的增根问题
验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
(2)请从出现错误的步骤开始继续进行该分式的化简;
(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.
A. = B. +80=C. = ﹣ Nhomakorabea0 D. =
1.解分式方程注意事项
(1)去分母化成整式方程时不要与通分运算混淆;
(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
2.列分式方程解应用题的基本步骤
(1)审——仔细审题,找出等量关系;
A. B. C. D.
4.分式方程 =1的解是( )
A.x=1B.x=﹣1C.x=3D.x=﹣3
5.关于x的方程 有增根,则a的值为( )
A.-4B.-6C.0D.3
6.已知实数 , 满足 ,那么 的值为( )
A. B. C.1D.2
7.已知关于x的方程 无解,则m的值是___.
8.已知关于 的分式方程 的解为非负数,则 的取值范围为______.
(2)设——合理设未知数;
(3)列——根据等量关系列出方程;
(4)解——解出方程;
(5)验——检验增根;
(6)答——答题.
课后练习
第十六章_分式方程应用题分类解析

分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
资料分式方程应用题归类及常见题型(最新整理)

列分式方程解应用题的常见类型分析列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的根;第二,检验得到的根是不是使实际问题有意义。
一、路程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度×时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
相等关系:二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率×工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?相等关系:三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。
例3 某超市销售一种钢笔,每枝售价为12元。
后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。
这种钢笔原来每枝进价是多少元?本题中的主要等量关系:练习:1.某地为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?2.甲乙两车在A、B两城间连续往返行驶,甲车从A城出发,乙车从B城出发,且比甲车早出发1小时,两车在途中分别距离200千米和240千米的C处第一次相遇。
人教版八年级上册:分式方程应用题分类练习

分式方程应用题分类练习一、行程问题1、某校学生利用春假时间去距离学校10km的静园参观。
一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达。
已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度。
2、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
3、全国铁路实施第六次大面积提速,从A站到B站的某次列车提速前的运行时km刻表如下,该次列车现在提速后,每小时比提速前7快20,那么按现在的速度终到时刻是多少?4、甲、乙两队同时分别从A、B两地沿同一条公路骑自行车到C地,已知A、C 两地间的距离为110千米,B、C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度.5、中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为 1 352 km,高铁列车比普快列车行驶的路程少52 km,高铁列车比普快列车行驶的时间少8 h.已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速6、初二一班在军训时举行了登山活动,已经知道此山的高度是450米,于是教练员选择较平缓的南面开始登山,他首先把全班学生分成两组,已知第一组的攀登速度是第二组的1.2倍,他们比第二组早15分钟到达山顶.求这两个小组的攀登速度各是多少?二、工程问题1、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.求原计划平均每天生产多少台机器?2、某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工多少套运动服?3、为了维修某高速公路需开凿一条长为1300米的隧道,为了提高工作效率,高速公路建设指挥部决定由甲、乙两个工程队从两端同时开工.已知甲工程队比乙工程队每天能多开凿10米,且甲工程队开凿300米所用的天数与乙工程队开凿200米所用的天数相同,则甲、乙两个工程队每天各能开凿多少米4、甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?5、某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.6、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?7、有一段6000米的道路由甲、乙两个工程队负责完成,已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费700元,乙工程队每天需工程费500元,若甲队先单独工作若干天,再由甲、乙两工程队合作完成剩余的任务,支付工程队总费用不大于7600元,则两工程队最多可合作施工多少天?8、为治理太湖,某市决定铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设多长管道?三、盈利问题1、夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.2、夏天到了,欣欣服装店老板用4500元购进一批卡通团T桖衫,由于深受顾客喜爱,很快售完,老板又用5000元购进第二批该款式T恤杉,所购数量与第一批相同,但每件进价比第一批多了10元.求第二批衣服售价该定为多少元?3、某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的54倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?4、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.5、某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?6、今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?7、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?8、某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?9、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?四、水流问题1、轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,求轮船在静水中的速度为多少?2、轮船顺水航行75千米所需时间于逆水航行50千米所需要的时间一致,已知水流速度是3.5千米每小时,求轮船在静水中的速度是多少?五、耕地问题1、有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,求第一块试验田每公顷的产量为多少千克?2、有两块面积相同的试验田,其中分别收获小麦10000千克和9500千克,已知第一块试验田比第二块试验田的产量每公顷多3000千克,求两块试验田的产量为每公顷多少千克?六、其他问题1、小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.则设他上月买了多少本笔记本?.小丽家去年2、某市从今年1月1日起调整居民用水价格,每立方米水费上涨1312月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.3、母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?4、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?5、某城建部门计划在城市道路两旁栽1500棵树,原计划每天栽若干棵,考虑到季节、人员安排等因素,决定每天比原计划多栽50棵,最后提前5天完成任务,求原计划每天栽树多少棵?6、我国是一个水资源贫乏的国家,第每一个公民都应自觉养成节约用水的意识和习惯。
分式方程应用题分类解

分式方程应用题分类解析工程类应用性问题1、在引水工程中,某段工程由甲队单独做了6天后,为加快施工进度,又调乙队与甲队一起合做4天完成了任务.如果甲队单独完成这项任务需20天,求乙队单独完成这项任务需多少天?2、为迎接“2010年上海世博会”,甲、乙两个施工队共同完成“阳光”小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程比甲队单独完成此项工程少用5天,求甲、乙两个施工队单独完成此项工程各需多少天?3、某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,则原计划每天铺()A.70平方米B.65平方米C.75平方米D.85平方米4、一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为多少天?5、岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?行程中的应用性问题1、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,则骑车同学的速度为多少?2、A、B两地相距340千米,甲、乙两车分别从A、B两地同时出发,相向而行,匀速行驶.在距离A、B两地的中点10千米处两车相遇,设甲车速度为V1千米/时,乙车的速度为V2千米/时,则V1:V2等于()A.8:7 B.8:9 C.8:7或7:8 D.8:9或9:83、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.4、小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.2、水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?3、“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?货物运输应用性问题1、今年入夏以来,河北部分地区旱情严重,为了缓解甲、乙两地旱情,某水库计划向甲、乙两地送水.甲地需水量为180万立方米,乙地需水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水84万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米.问:完成往甲地、乙地送水任务还各需多少天?为了支援云南人民抗旱救灾,某品牌矿泉水有限公司主动承担了为灾区生产300吨矿泉水的任务.(1)由于任务紧急,实际加工时每天的工作效率比原计划提高了20%,结果提前2天完成任问:这400间板房最多能安置多少灾民?浓度应用性问题1、在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?2、有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水多少千克.。
分式方程应用题的常见类型汇总(含答案)

分式方程应用题的常见类型汇总类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________________.2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?3.(扬州中考)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.求原来每天制作多少件?4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?类型2 行程问题5.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回.出租车的平均速度比公共汽车多20千米/时,回来时路上所花的时间比去时节省了14.设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )A.40x+20=34×40xB.40x=34×40x+20C.40x+20+14=40xD.40x=40x+20-146.(贵阳中考)2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州高速铁路将开始试运行.从贵阳到广州,乘特快列车的行程约为1 800 km,高铁开通后,高铁列车的行程约为860 km,运行时间比特快列车所用的时间减少了16 h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?8.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B品牌足球?9.某商场销售的一款空调机,每台的标价是1 635元.在一次促销活动中,按标价的8折销售,仍有9%的利润率.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台.问:共盈利多少元?参考答案1.520+45x=12.设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得1 000x+5=900x,解得x=45.经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.设原来每天制作x件,由题意,得480x-480(1+50%)x=10,解得x=16.检验:x=16时,1.5x≠0,所以x=16是原分式方程的解.答:原来每天制作16件.4.(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验x=20是方程的解且符合题意.1.5x=30.故甲,乙两公司单独完成此项工程,各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意得12(y+y-1 500)=102 000,解得y=5 000,甲公司单独完成此项工程所需的施工费为:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为:30×(5 000-1 500)=105 000(元).故甲公司的施工费较少.5.A6.设特快列车的平均速度为x km/h,根据题意可列出方程为1 800x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的根.答:特快列车的平均速度为91 km/h.7.设九年级学生有x人,根据题意,列方程得:1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验x=352是原方程的解.答:这个学校九年级学生有352人.8.(1)设购买一个A品牌足球x元,则购买一个B品牌足球(x+30)元,根据题意得2 500x=2 000x+30×2,解得x=50.经检验,x=50是原方程的解.x+30=80.答:购买一个A品牌足球需50元,购买一个B品牌足球80元.(2)设本次购买a个B品牌足球,则购进A品牌足球(50-a)个,根据题意得50×(1+8%)(50-a)+80×0.9a≤3 260,解得a≤3119 .∵a取正整数,∴a最大值为31.答:此次华昌中学最多可购买31个B品牌足球.9.(1)设这款空调机每台的进价为x元,则根据利润率公式有:9%=1 635×0.8-xx.解这个方程,得x=1 200.检验略.答:这款空调机每台的进价为1 200元.(2)1 200×0.09×100=10 800.答:商场盈利10 800元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题分类讲解与训练一、【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1。
5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得xx 6828-=x 5.1828,解得46x =, 经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,即普通快车车的平均速度为46km /h,直达快车的平均速度为69km /h .评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.4060例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度.分析:等量关系:甲用时间=乙用时间+ (小时)例4 一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?解: 设步行速度为x 千米/时,骑车速度为2x 千米/时,依题意,得:方程两边都乘以2x ,去分母,得 30—15=x , 所以,x =15. 检验:当x =15时,2x =2×15≠0,所以x =15是原分式方程的根,并且符合题意.∵,∴骑车追上队伍所用的时间为30分钟.所行距离 速度 时间甲(87-45)千米x 千米/小时乙45千米(x+4)千米/小时30608745x-454x +例5 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得:解得x=15.经检验x=15是这个方程的解.当x=15时,3x=45.即自行车的速度是15千米/小时,汽车的速度为45千米/小时.例6 甲乙两人同时从一个地点相背而行,1小时后分别到达各自的终点A与B;若从原地出发,但是互换彼此的目的地,则甲将在乙到达A之后35分钟到达B,求甲与乙的速度之比。
分析:等量关系:甲走OB的时间-乙走OA的时间=35分钟1.、电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达。
已知抢修车的速度是摩托车的1.5倍,求这两种车的速度。
2.乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城。
求两车的速度.3.某人往返于A、B两地,去时先步行2千米,再乘汽车行10千米,回来时骑自行车,来回所用时间恰好相等。
已知汽车每小时比这人步行多走16千米,步行又比骑车每小时少走8千米。
若来回完全乘汽车能节约多少时间?4.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场—-“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解.5.。
2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1。
5倍,求两种车的速度。
6.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1。
2倍”.根据图文信息,请问哪位同学获胜?7、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路.又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.8、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
9、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
10、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
二、【工程类应用性问题】例1 甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
已知乙队单独做所需天数是甲队单独做所需天数的 倍,问甲乙单独做各需多少天?分析:等量关系:甲队单独做的工作量+乙队单独做的工作量=1例2 甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?分析:等量关系:甲用时间=乙用时间+20(分钟) 112例3 某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务,试求原计划一天的工作量及原计划的天数。
分析1:等量关系:原计划天数=实际天数+4(天)分析2:等量关系:原计划每天工作量=实际每天工作量—40(公顷)例4 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由. 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.解:⑴设甲队单独做需x 天完成,乙队单独做需y 天完成,丙队单独做需z 天完成,依题意可得:116()11110()11125()3x y y z x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,①,②.③①×61+②×101+③×51,得x 1+y 1+z 1=51.④④-①×61,得z 1=301,即z = 30, ④-②×101,得x 1=101,即x = 10,④-③×51,得y 1=151,即y = 15.经检验,x = 10,y = 15,z = 30是原方程组的解.⑵设甲队做一天厂家需付a 元,乙队做一天厂家需付b 元,丙队做一天厂家需付c 元,根据题意,得6()870010()95005()5500a b b c c a +=⎧⎪+=⎨⎪+=⎩,,.⇒800650300a b c =⎧⎪=⎨⎪=⎩,,.由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱108000a =元;此工程由乙队单独完成需花钱159750b =元. 所以,由甲队单独完成此工程花钱最少. 评析:在求解时,把x 1,y 1,z1分别看成一个整体,就可把分式方程组转化为整式方程组来解.例5 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?解:工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天。
设工程总量为1,甲的工作效率就是,乙的工作效率是,依题意,得,解得.即规定日期是6天.例6 今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?解:设教师乙每分钟能输入x名学生的成绩,则教师甲每分钟能输入2x名学生的成绩, 依题意,得:,解得 x=11经检验,x=11是原方程的解,且当x=11时,2x=22,符合题意.即教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入11名学生的成绩.例7 甲乙两人做某种机器零件。
已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做多少个?分析:甲每小时做x个零件,做90个零件所用的时间是(90 ÷x) 小时,还可用式子90x小时来表示。
乙每小时做(x—6)个零件,做60个零件所用的时间是[60÷(x—6)] 小时,还可用式子606x小时来表示。
等量关系:甲所用时间=乙所用时间1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半.乙型拖拉机单独耕这块地需要几天?2、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。