用分式方程解决实际问题
分式方程的应用

分式方程的应用在我们的日常生活中,分式方程是一个非常重要的数学工具,它经常被用于解决各种实际问题。
比如在做商业贸易时,我们需要计算进价和售价之间的关系,这时我们就可以利用分式方程来解决问题,从而达到更加有效的管理和经营。
首先,我们来看一个简单的分式方程应用例子。
比如一个工人每小时可以生产60个产品,而工厂需要生产300个产品,那么需要多少小时才能完成任务呢?我们可以根据生产速度和需要数量,列出一个方程:60x=300,其中x代表需要的小时数。
将方程化简,我们可以得出x=5,也就是需要5个小时才能完成任务。
除此之外,分式方程还可以被用于解决更复杂的问题。
比如在一次城市规划中,设计师需要确定一个公园的面积,而这个面积既不能太大也不能太小。
假设经过测量,现在已知路的宽度为20米,而公园的面积为x平方米。
同时,设计师还规定了公园面积和路的宽度之间的关系:路宽和公园面积的和等于整个区域的面积,也就是(20+x)^2。
将这些信息融合在一起,我们可以得到一个分式方程:x/(20+x)^2=0.3,其中0.3是一个比例系数。
将方程化简,我们可以得出x=48.96平方米,也就是设计师需要将公园的面积设置为48.96平方米。
另外,分式方程还可以应用于比例问题。
比如一个水箱中有60升水,而每分钟从进水口进入3.5升水,每分钟从出水口排出2.5升水。
问需要多长时间才能将水箱充满?我们可以设需要x分钟才能充满,那么在x分钟内进水口进入的水量为3.5x升,出水口排出的水量为2.5x升,充满水箱的水量是60升。
通过列出比例方程,我们可以得到一个分式方程:3.5x/(3.5-2.5)x=60,其中分子是进水口的水量,分母则是进水口和出水口的水量差。
将方程化简,我们可以得出x=24分钟,也就是需要24分钟才能将水箱充满。
总的来说,分式方程是一个非常实用的数学工具,它可以帮助我们解决各种实际问题。
在应用分式方程时,我们需要清楚地理解问题的情境和要求,并且根据这些信息合理地选择方程的形式和化简方式。
分式方程的应用知识点

分式方程的应用知识点分式方程主要涉及到有关比例、百分比和利率的应用问题。
在实际生活中,分式方程可以帮助我们解决各种与比例相关的问题,例如货币兑换、混合液体的配制、百分比的计算等。
以下是一些分式方程应用的知识点:1.货币兑换问题在国际贸易中,经常需要将一种货币兑换成另一种货币。
如果已知兑换比例和要兑换的数量,我们可以使用分式方程来计算兑换后的货币数量。
例如,如果1美元兑换为5人民币,那么用x美元可以换成多少人民币可以表示为:5/1=y/x,其中y表示兑换后的人民币数量。
2.比例问题比例问题是分式方程应用的常见场景,比如:种植的草地数量与所需耕地数量之间的关系、两个不同容器中液体的比例、不同材料的配比等。
比例可以表示为a/b=c/d,其中a、b、c、d分别表示不同元素或数量之间的关系。
3.百分比问题百分比是分式方程应用中的另一个重要知识点。
百分比表示一个数相对于另一个数的比例。
通常用百分号表示,例如60%表示60/100。
在解决百分比问题时,我们常常需要找到未知数的百分数或一部分,并通过解分式方程来计算。
例如,如果商品价格上涨了20%,现在的价格是120元,那么原来的价格可以表示为x,方程为:x*(1+20/100)=120。
4.利率问题5.代数表达式的分式有时候我们还需要将代数表达式视为分式,并在求解方程时运用分式的性质。
例如,对于表达式(a+b)/c,我们可以通过分数的加法和乘法性质来合并分式、约分,从而求解方程。
6.比例和个体数量问题综上所述,分式方程主要应用于与比例、百分比和利率相关的问题。
熟练掌握这些知识点,可以帮助我们解决各种实际生活中的应用问题。
分式方程应用题及解题技巧

分式方程应用题及解题技巧分式方程是代数中的重要内容之一,它的应用广泛而且深远。
分式方程常常出现在实际生活中的各种问题中,比如物体的速度、加速度、浓度、比例关系等等。
学习分式方程的应用,不仅可以帮助我们解决实际生活中的问题,还可以提高我们的数学分析和解决问题的能力。
在本文中,我们将介绍分式方程的应用题,并给出解题技巧,希望能够帮助大家更好地掌握这一部分知识。
一、分式方程的应用题1.速度问题小明骑自行车以每小时10公里的速度向前行驶,小李以每小时8公里的速度向前追赶小明,问小李追上小明需要多长时间?解:设小李追上小明需要t小时,那么小明与小李的相对速度为10-8=2公里/小时,根据速度=路程/时间,可得速度的分式方程为:10t = 8t + 8解得t=4,所以小李追上小明需要4小时。
2.浓度问题一瓶含有30%酒精的溶液200毫升,现在加了一些蒸馏水,使得酒精浓度变为20%,问加了多少蒸馏水?解:设加了x毫升的蒸馏水,那么酒精的量为0.3*200,水的量为x,根据浓度=溶质的量/溶液的总量,可得浓度的分式方程为:0.3*200 / (200+x) = 0.2解得x=100,所以加了100毫升的蒸馏水。
二、分式方程的解题技巧1.设未知数在应用题中,需要根据实际情况设立未知数,一般来说,设立一个未知数是最为合适的。
比如速度问题中,可以设小明与小李相对速度t小时后能相遇;浓度问题中,可以设加了x毫升的蒸馏水。
2.建立方程根据实际情况,可以建立出分式方程,一般是根据速度=路程/时间,浓度=溶质的量/溶液的总量等公式建立分式方程。
3.求解方程利用分式方程的性质,将方程化简为一元方程,然后求解,得到未知数的值。
4.检验解将求得的未知数代入原方程中,检验是否符合实际情况,如果符合则说明解是正确的。
通过以上的介绍,相信大家对分式方程的应用题及解题技巧有了一定的了解。
在解决实际问题时,我们可以根据问题中的实际情况设立未知数,建立分式方程,并通过求解方程来得到问题的解。
用分式方程解决实际问题

用分式方程解决实际问题
假设我们要解决以下问题,甲乙两人合作做某件工作,如果甲独立做需要5个小时,乙独立做需要6个小时。
问他们合作做需要多长时间?
首先,我们可以设甲、乙合作做这件工作需要x个小时。
根据工作的性质,我们知道甲、乙合作做一小时的工作量分别是1/5和
1/6。
因此,他们合作做一小时的工作量就是1/5 + 1/6,即5/30 + 6/30,等于11/30。
根据工作量与时间的关系,工作量等于工作量与时间的乘积。
因此,甲、乙合作做x个小时的工作量就是x 11/30。
而这个工作量又等于1,因为他们最终完成了整个工作。
因此,我们可以得到方程式,x 11/30 = 1。
通过解这个分式方程,我们可以得到x的值,从而知道甲、乙合作做这件工作需要的时间。
通过这个例子,我们可以看到分式方程是解决实际问题的有力
工具。
在实际应用中,我们可以根据具体情况建立分式方程,然后通过代数运算来解决问题。
这种方法在解决配比、速度、工作效率等实际问题时非常有效。
希望这个例子可以帮助你更好地理解如何用分式方程解决实际问题。
《用分式方程解决实际问题》教案的教学目标和重点是什么?

本教案的主题是“用分式方程解决实际问题”,旨在通过讲解相关知识,指导学生正确理解和运用分式方程解决实际问题。
一、教学目标1、知识目标:(1)了解什么是分式方程并掌握其基本概念和性质;(2)理解分式方程在解决实际问题中的应用含义;(3)掌握解决实际问题的分式方程的建立方法和解决技巧;(4)通过案例分析提高学生解决实际问题的能力和应用能力。
2、能力目标:(1)培养学生的分析问题和解决问题的能力;(2)提高学生的数学建模能力和实际应用能力。
3、情感目标:(1)培养学生对数学的兴趣和热爱;(2)增强学生学习数学的信心和动力;(3)培养学生对分式方程在实际生活中的重要性的认识和理解。
二、教学重点1、分式方程的基本概念和性质;2、分式方程在解决实际问题中的应用含义;3、解决实际问题的分式方程的建立方法和解决技巧;4、案例分析,提高学生解决实际问题的能力和应用能力。
三、教学具体安排本教案的授课方式主要包括讲授和案例分析两个环节,针对教学目标和重点设计具体的教学步骤和内容。
1、讲授环节(120分钟)(1)介绍分式方程的基本含义、概念和性质;(2)举例分式方程在实际生活中的应用,并分析其解决实际问题的方法和技巧;(3)带领学生通过练习提高解决实际问题的能力和应用能力。
2、案例分析环节(80分钟)(1)提供实际生活中的案例,引导学生建立相应的分式方程;(2)分析实际问题的特点和难点,引导学生采用适当的方法解决问题;(3)鼓励学生讨论解决问题的方法,展示解决问题的思路和过程。
四、教学方法1、课堂教学法通过讲授和案例分析,向学生介绍分式方程的相关知识,引导学生分析实际问题,培养学生解决实际问题的能力和应用能力。
2、探究式学习法鼓励学生探究分式方程在实际问题中的应用和解决方法,提高学生学习数学的积极性和热情。
3、启发式教学法通过启发性问题引导学生探究分式方程在实际问题中的应用,培养学生独立思考和解决问题的能力。
分式方程实际问题步骤

分式方程实际问题步骤分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
分式方程是数学中描述两个或多个变量之间关系的方程,其中至少有一个变量出现在分母中。
解决分式方程的实际问题通常需要遵循一系列步骤,以确保问题的准确性和完整性。
以下是解决分式方程实际问题的常见步骤:1.理解问题:首先,需要仔细阅读问题,理解其背景和要求。
明确问题中涉及的变量、已知条件和未知数,以及它们之间的关系。
2.建立数学模型:根据问题的描述,将实际问题转化为数学模型。
这通常涉及将问题中的文字描述转换为数学表达式或方程。
在这个过程中,分式方程是描述问题的重要工具。
3.去分母:在分式方程中,分母的存在可能导致方程难以解决。
因此,去分母是解决分式方程的重要步骤。
通过找到所有分母的最小公倍数,并将方程两边都乘以这个最小公倍数,可以消除分母。
4.解方程:在去分母后,方程变为一个更简单的形式,可以更容易地求解。
可以使用代数方法(如移项、合并同类项、因式分解等)来解方程。
5.检验解的合理性:在找到方程的解之后,需要回到实际问题中,检查这些解是否符合实际情况和逻辑。
有时候,某些解可能不符合实际情况或导致矛盾,因此需要进行筛选或调整。
6.得出结论:最后,根据解的合理性和实际问题的需求,得出结论并解释结果。
这可能包括提供数值答案、绘制图表或进行进一步的推理和分析。
这些步骤是解决分式方程实际问题的常见方法,但并非一成不变。
根据具体问题的性质和要求,可能需要进行适当的调整和修改。
重要的是保持逻辑清晰和推理准确,以确保最终的解决方案能够满足实际问题的需求。
总结来说,分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
这些步骤包括理解问题、建立数学模型、去分母、解方程、检验解的合理性和得出结论等。
通过遵循这些步骤,可以更准确地解决实际问题并得出可靠的结论。
分式方程应用题

分式方程应用题分式方程是数学中常见的一种类型,通过分式方程我们可以解决许多实际问题。
在日常生活中,我们会遇到各种各样的应用问题,而分式方程正是解决这些问题的有效工具之一。
下面将通过一些具体的例子来说明分式方程在实际问题中的应用。
假设有一个水池,水池里有两个进水管和一个出水管。
其中一个进水管每小时进水100升,另一个进水管每小时进水80升,而出水管每小时将水池里的水排出30升。
如果水池一开始是空的,问多长时间可以将水池装满?设装满水池所需的时间为x小时,则根据进水和出水的关系,可以列出如下的分式方程:\[100x + 80x - 30x = 1\]简化方程得到:\[150x = 1\]解方程得到:\[x = \frac{1}{150}\]所以,装满水池所需的时间为\(\frac{1}{150}\)小时。
另外,分式方程还可以应用在物体速度、工作人员效率等方面。
比如,如果两辆列车分别从A地和B地同时出发,相向而行,如果其中一列列车的速度是60km/h,另一列列车的速度是80km/h,问他们相遇需要多长时间?设相遇所需的时间为t小时,则根据运动的关系,可以列出如下的分式方程:\[\frac{60}{t} + \frac{80}{t} = 1\]简化方程得到:\[\frac{140}{t} = 1\]解方程得到:\[t = \frac{140}{1}\]所以,两列列车相遇需要1小时。
综上所述,分式方程在实际问题中有着广泛的应用,通过建立适当的分式方程,可以有效解决各种实际问题,帮助我们更好地理解和解决日常生活中的困难和挑战。
希望通过这些具体的例子,读者能对分式方程的应用有更深入的理解和掌握。
分式方程的应用问题

分式方程的应用问题分式方程是包含了分数形式的方程,可以用来解决很多与比例、比率和分数有关的实际问题。
在本文中,将探讨分式方程在不同应用问题中的实际应用。
1. 比例问题比例问题是分式方程的一种常见应用。
比如,假设小明每小时跑步的速度是x米,而小红每小时跑步的速度是y米,我们可以得到以下方程:x / y = 4 / 5其中4 / 5是两者速度的比例。
通过解这个分式方程,我们可以计算出小明和小红的速度。
这种应用问题通常涉及到多个变量之间的比例关系。
2. 比率问题比率问题是另一种使用分式方程的应用。
比如,假设一个容器中有3升柠檬汁和2升橙汁,我们可以得到以下方程:3 / 2 = x / 10其中3 / 2是柠檬汁和橙汁的比率,而10是容器中液体的总量。
通过解这个分式方程,我们可以计算出柠檬汁的数量x。
这种应用问题通常涉及到比率和总量之间的关系。
3. 速度、时间和距离问题在许多速度、时间和距离相关的问题中,分式方程也经常被使用。
假设小华以每小时60公里的速度行驶,并且需要2个小时到达目的地。
我们可以得到以下方程:60 * 2 / x = 1其中60 * 2是小华总共行驶的距离,而x是小华的速度。
通过解这个分式方程,我们可以计算出小华的速度。
这种应用问题通常涉及到速度、时间和距离之间的关系。
4. 货币兑换问题货币兑换问题也可以使用分式方程进行建模和解决。
假设1美元可以兑换85日元,而小明用400美元兑换了多少日元。
我们可以得到以下方程:1 / 85 = 400 / x其中1 / 85是兑换比率,而400是小明用来兑换的美元数量。
通过解这个分式方程,我们可以计算出小明兑换的日元数量。
这种应用问题通常涉及到不同货币之间的比率关系。
通过以上几个例子,我们可以看到分式方程在比例、比率、速度、时间、距离以及货币兑换等方面的广泛应用。
通过建立适当的数学模型,并解决相应的分式方程,我们能够更好地理解和解决各种实际问题。
分式方程的应用问题不仅能够提高学生的数学能力,还能够加深对实际问题的理解和分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学科导学案(第—次课)教师:_ 学生:—年级:八日期: ___________ 星期: _____ 时段: ____乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%结果提前30天完成了任务,实际每天铺设多长管道?例:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的2 ,厂家需付甲、丙两队共55003元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量•对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为X天,y天,Z天,可列出分式方程组.练习1:某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作 ___________ 天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费 2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?练习2:某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款 1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
拓展:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共29500元,甲、丙两队合做5天完成全部工程的匚,厂家需付甲、根据题意,得 6⅛+⅛=8700, U0(⅛+c) = 9500, 5(c÷^) = 5500. z >由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱 山-:川…元;此工程由乙队单独完成需花钱 「二元.所以,由甲队单独完成此工程花钱最少.O I - 800,*、b =650*]]]总结升华:在求解时,把.:,「’,二分别看成一个整体,就可把分式方程组转化为整式方程组来解. 举一反三: 【变式1】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日 期三天完成•现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多 少天? 【答案】工程规定日期就是甲单独完成工程所需天数,设为 X 天,那么乙单独完成工程所需的天数就是(X + 3)天.1 1设工程总量为1甲的工作效率就是二,乙的工作效率是.「」,依题意,得√1 1 ^-2 I 2 — + ------ H ------- -- 1-χ+?丿χ+弓,解得 I = O .即规定日期是6天.【变式2】今年某大学在招生录取时,为了防止数据输入出错, 2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致•已知教师甲的输入速度是教师乙的 2倍,结 果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?【答案】设教师乙每分钟能输入X 名学生的成绩,则教师甲每分钟能输入 2x 名学生的成绩,依题意,得:经检验,X = 11是原方程的解,且当X = 11时,2x = 22,符合题意.即教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入 11名学生的成绩.2■营销问题1. 商品利润=商品售价一商品成本价;3. 商品销售额=商品销售价×商品销售量;4. 商品的销售利润=(销售价一成本价)×销售量.例:某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲 种原料每0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元? 例:某书店老板去图书批发市场购买某种图书•第一次用1200元购书若干本,并按该书定价7元出售,很快售完•由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本•当按定价售出200本时,出现滞销,便以定价的 4折售完剩余的书•试问 该老板这两次售2640 2x≡-60x2解得X = 11商品利润率=2.商品利润商品成本价xlOO%书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?总结升华:营销类应用性问题,涉及进货价、售货价、禾U润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解•同时,要掌握好基本公式,巧妙建立关系式•随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考的热点问题.练习:A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同•其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?3■行程问题速度=蹩时间=蟹1.路程=速度×时间,:,• 工二;2.在航行冋题中,其中数量关系是:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度;3.航空问题类似于航行问题.例:甲、乙两地相距828km, 一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度×时间, 应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度× 时间,应根据题意,找出追击问题中的等量关系.解析:设普通快车的平均速度为:km /h ,则直达快车的平均速度为1.5」km /h ,依题意,得:经检验,二’「「是方程的根,且符合题意.•••当二’「「时,二】—2;即普通快车的平均速度为46km ∕ h ,直达快车的平均速度为69km ∕ h .总结升华:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方 程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,还要检验是 否符合题意,即满足实际意义.举一反三:【变式1】一队学生去校外参观.他们出发 30分钟时,学校要把一个紧急通知传给带队老师,派一名解得..-l -练习1:轮船顺流航行120km所用时间是逆流航行50km所用时间的2倍,如果水流速度为2km∕h,求轮船在静水中的速度。
练习2:某人沿一条河顺流游泳I米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s水流速度为nm∕s,求他来回一趟所需的时间t。
(1)小芳在一条水流速度是0.01m∕s的河中游泳,她在静水中游泳的速度是0.39m∕s而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。
(2)志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了 2.5min,假设当时水流的速度是0.015m∕s,而志勇在静水中的游泳速度是0.585m∕s,那么出发点与柳树间的距离大约是多少?4、货物运输应用性问题例:一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用•已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运 2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t.问:(1)乙车每次所运货物量是甲车每次所运货物量的几倍;(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运It付运费20元计算)分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n倍,列出分式方程•课内练习与训练1、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?2、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
⑴ 试销时该品种苹果的进价是每千克多少元?⑵ 如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/ 时,求轮船在静水中的速度。
4、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120 元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?5、某广告公司将一块广告牌任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的2 ,现3由徒弟先做一天,师徒再合作2天完成。
(1)师、徒两人单独完成任务各需几天?(2)若完成后得到报酬540元,你若是部门经理,按个人完成的工作量计算报酬,该如何分配?6、为了提高产品的附加值,某公司计划将研发生产的 1 200件新产品进行精加工后再投放市场•现在甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的 1.5倍根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?7、近几年高速公路建设有较大的发展,有力地促进了经济建设•欲修建的某高速公路要招标•现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需多少万元?8周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发•设甲、乙两组行进同一路程所用时间之比为2: 3.(1)直接写出甲、乙两组行进速度之比.(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1. 2 km ,试求山脚到山顶的路程.(3)在第(2)题所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的间题,再给予解答.(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有..己知条件)•审阅签字:_______________ 时间: _______________ 教务主任签字:___________ 时间: _______________。