求解共点力平衡问题的常见方法(经典归纳附详细答案)
解答共点力平衡问题的常用方法

解答共点力平衡问题的常用方法物体的平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。
一、共点力平衡问题的数学解法1、相似三角形法:如果在对力利用平行四边形定则运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解。
2、拉密定理若在共点的三个力作用下,物体处于平衡状态,则各力的大小分别与另外两个力夹角的正弦成正比。
3、正交分解法:共点力平衡条件F合=0是矢量方程,通常用正交分解法把矢量运算转化为标量运算,给解题带来方便。
4、函数图象法:利用函数图象分析和解答问题,关键是分析图象的物理意义,进行推理判断和计算。
二、共点力平衡问题的物理方法1、离法与整体法通常在分析外力对系统的作用时,用整体法:在分析系统内各物体间的相互作用时,用隔离法。
二者常需交叉运用,从而优化解题思路和方法,使解题简洁明了。
2、动态平衡问题———图解法利用图解法解决此类问题的基本方法是:对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在平衡状态下的平衡力图(力的平行四边形),再由动态的力的四边形各边长度变化及角度变化,确定力的大小及方向的变化情况,3、临界法:从量变到质变的转变状态,叫临界状态。
分析和解决临界问题,有两种基本方法:一是演绎法———从一般到特殊的推理方法;二是临界法———从特殊到一般的推理方法。
因为临界状态总是比一般状态简单,所以解决临界问题,临界法比演绎法简单。
一般,只要分清物理过程抓住临界状态,确定临界状态,建立临界方程,问题就迎刃而解了。
物理高一共点力平衡解题方法

物理高一共点力平衡解题方法
解决共点力平衡问题的基本方法
1. 明确研究对象,亦即是确定我们是要分析哪个物体的受力情况。
2. 对物体进行正确的受力分析。
在分析各力时,要注意不要“漏力”和“添力”。
受力分析的顺序一般是:重力、弹力、摩擦力。
3. 根据力的平衡条件或牛顿第二定律,列方程求解未知量。
【解题方法】
1. 合成法
物体受三个共点力作用而平衡时,将这三个力首尾相接,若能构成三角形,且合力等于零,就可以用三力合成的平行四边形定则求解,此方法称为合成法。
2. 正交分解法
物体受三个以上共点力作用而平衡时,将各个力正交分解,则有:
$F_{合x} = 0$
$F_{合y} = 0$
3. 整体法与隔离法
整体法是指对物理问题的某些部分或全部进行整体分析的方法;隔离法是指把要分析的物体从相关的物体系统中隔离出来的思维方法。
【注意事项】
1. 平衡状态是指静止或匀速直线运动状态,平衡条件是合力为零。
2. 受力分析时,不要多力或漏力,作出的两个力和第三个力的关系的平行四边形是表示物体处于平衡状态的特殊情况。
3. 求解平衡问题时,先对物体进行受力分析,画出受力分析图,再根据物体处于平衡状态,列平衡方程求解。
4. 解决三力平衡问题时,一般采用正交分解法处理比较方便。
处理共点力平衡问题得常见方法与技巧

处理共点力平衡问题得常见方法与技巧物体所受各力得作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体得平衡。
它就是静力学中最常见得问题,下面主要介绍处理共点力作用下物体平衡问题得一些思维方法。
1、解三个共点力作用下物体平衡问题得方法解三个共点力作用下物体平衡问题得常用方法有以下五种:(1)力得合成、分解法:对于三力平衡问题,一般可根据“任意两个力得合成与第三个力等大反向”得关系,即利用平衡条件得“等值、反向”原理解答。
例1、如图1所示,一小球在纸面内来回振动,当绳OA与OB拉力相等时,摆线与竖直方向得夹角为:( )图1A、 15°B、 30°C、 45°D、 60°解析:对O点进行受力分析,O点受到OA绳与OB绳得拉力F A与F B及小球通过绳子对O 点得拉力F三个力得作用,在这三个力得作用下O点处于平衡状态,由“等值、反向”原理得,F A 与F B得合力F合与F就是等值反向得,由平行四边形定则,作出F A与F B得合力F合,如图2所示,由图可知,故答案就是A。
图2(2)矢量三角形法:物体受同一平面内三个互不平行得力作用平衡时,这三个力得矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力得合成必为零,因此可利用三角形法,求得未知力。
例2、图3中重物得质量为m,轻细线AO与BO得A、B端就是固定得。
平衡时AO就是水平得,BO与水平面得夹角为。
AO得拉力与BO得拉力得大小就是:( )图3A、B、C、D、解析:因结点O受三力作用而平衡,且与mg垂直,所以三力应组成一个封闭得直角三角形,如图4所示,由直角三角形知识得:,所以选项B、D正确。
图4(3)正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。
例3、如图5(a)所示,质量为m得物体用一轻绳挂在水平轻杆BC得C端,B端用铰链连接,C点由轻绳AC系住,已知AC、BC夹角为,则轻绳AC上得张力与轻杆BC上得压力大小分别为多少?图5解析:选C点为研究对象,受力情况如图5(b)所示,由平衡条件与正弦定理可得即得与所以由牛顿第三定律知,轻绳AC上得张力大小为,轻杆BC上得压力大小为。
求解共点力作用下物体平衡的方法

求解共点力作用下物体平衡的方法(1)解三角形法:这种方法主要用来解决三力平衡问题,是根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化为三角形的三条边,然后通过解这个三角形求解平衡问题,解三角形多数情况是解直角三角形,如果力的三角形并不是直角三角形,能转化为直角三角形的尽量转化为直角三角形,如利用菱形的对角线相互垂直的特点就得到了直角三角形,确实不能转化为直角三角形时,可利用力的三角形与空间几何三角形的相似等规律求解。
(2)正交分解法:正交分解法在处理四力或四力以上的平衡问题时非常方便,将物体所受各个力均在两互相垂直的方向上分解,然后分别在这两个方向上列方程。
此时平衡条件可表示为说明:应用正交分解法解题的优点:①将矢量运算转变为代数运算,使难度降低;②将求合力的复杂的解三角形问题,转化为正交分解后的直角三角形问题,使运算简便易行;③当所求问题有两个未知条件时,这种表达形式可列出两个方程,通过对方程组求解,使得求解更方便。
4. 解共点力平衡问题的一般步骤(1)选取研究对象。
(2)对所选取的研究对象进行受力分析,并画出受力图。
(3)对研究对象所受的力进行处理。
一般情况下需要建立合适的直角坐标系,对各力按坐标轴进行正交分解。
(4)建立平衡方程。
若各力作用在同一直线上,可直接用的代数式列出方程;若几个力不在同一直线上,可用与联立列出方程组。
(5)对方程求解,必要时需对解进行讨论。
注意:建立直角坐标系时,一般尽量使更多的力落在坐标轴上,以减少分解力的个数,从而达到简化计算的目的。
5. 整体法与隔离法整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法。
整体法的思维特点:整体法是从局部到全局的思维过程;是系统论中的整体原理在物理学中的运用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
2020届高考物理必考经典专题 专题02 共点力的平衡(含解析)

2020届高考物理必考经典专题专题2: 共点力的平衡考点一平衡条件的应用1.解决平衡问题的常用方法合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平效果分解法衡条件物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足正交分解法平衡条件对受三力作用而平衡的物体,将表示力的矢量平移使三力组成一个首尾依次相接的矢量三角力的三角形法形,然后根据数学知识求解未知力考点二“死结”与“活结”“动杆”与“定杆”问题1.“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等.2.“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.3.“动杆”:轻杆用转轴或铰链连接,可以绕轴自由转动.当杆处于平衡时,杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.4.“定杆”:轻杆被固定不发生转动.则杆所受到的弹力方向不一定沿杆的方向.杆所受到的弹力方向可以沿着杆,也可以不沿杆.考点三动态平衡问题1.动态平衡平衡物体所受某力发生变化,使得其他力也发生变化的平衡问题.2.基本思路化“动”为“静”,“静”中求“动”.3.分析动态平衡问题的两种方法方法步骤解析法(1)列平衡方程求出未知量与已知量的关系表达式(2)根据已知量的变化情况来确定未知量的变化情况图解法(1)根据已知量的变化情况,画出力的平行四边形(或三角形)边、角的变化(2)确定未知量大小、方向的变化考点四平衡中的临界极值问题1.“临界状态”:可理解为“恰好出现”和“恰好不出现”某种现象的状态.2.三种临界条件(1)两接触物体脱离与不脱离的临界条件:相互作用力为0(主要体现为两物体间的弹力为0).(2)绳子断与不断的临界条件:绳中的张力达到最大值;绳子绷紧与松弛的临界条件为绳中的张力为0.(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件:静摩擦力达到最大静摩擦力. 3.突破临界和极值问题的三种方法解析法根据物体的平衡条件列方程,在解方程时采用数学知识求极值.通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等图解法根据物体的平衡条件作出力的矢量关系图,作出平行四边形或者矢量三角形进行动态分析,确定最大值或最小值极限法是指通过恰当选取某个变化的物理量将问题推向极端(“极大”“极小”“极右”“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解.典例精析★考点一:平衡条件的应用◆典例一:【2019·新课标全国Ⅲ卷】用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示。
共点力的平衡方法

共点力作用下物体的平衡的解题方法总结解题途径(1).整体法与隔离法:正确地确定研究对象或研究过程,分清内力和外力. (2).平行四边形定则和三角形定则;确定合矢量与分矢量的关系. (3).正交分解法:物体受多个力的平衡情况.(4).力的合成法: 特别适合三个力平衡时,运用其中两力之和等于三个力列方程求解(5).图解法:常用于处理三个共点力的平衡问题,且其中一个力为恒力、一个力的方向不变情形.(6).相似三角形法:在共点力的平衡问题中,已知某力的大小及绳、杆等模型的长度、高度等,常用力的三角形与几何三角形相似的比例关系求解. (7).正弦定理:如果物体受三个不平行力而处于平衡状态,如图所示,则1.合成分解法利用力的合成与分解能解决三力平衡的问题,具体求解时有两种思路:一是将某力沿另两力的反方向进行分解,将三力转化为四力,构成两对平衡力。
二是某二力进行合成,将三力转化为二力,构成一对平衡力 【例1】如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?2.三角形相似法“相似三角形”的主要性质是对应边成比例,对应角相等。
在物理中,一般地,当涉及到矢量运算,又构建了三角形时,可考虑用相似三角形。
【例题2】如图所示,支架ABC ,其中m AB 7.2=,m AC 8.1=,m BC 6.3=,在B 点挂一重物,N G 500=,求AB 、BC 上的受力。
“相似三角形”的主要性质是对应边成比例,对应角相等。
在物理中,一般地,当涉及到矢量运算,又构建了三角形时,可考虑用相似三角形。
【练习1】如图所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F 缓慢拉动细绳时,小球所受支持力为N ,则N ,F 的变化情况是:( )A .都变大;B .N 不变,F 变小;C .都变小;D .N 变小, F 不变。
解共点力平衡问题的 常见方法

解共点力平衡问题的常见方法解答共点力平衡问题,是高中物理学习的基础环节,这一知识掌握得好坏,将直接影到整个高中阶段物理的学习.下面就共点力的平衡问题,介绍几种常用的解题方法.一、力的合成与分解法对于三力平衡,一般根据任意两个力的合力与第三个力等大反向关系,或将一个力分解到另外两力的反方向上,得到的这两个分力与另外两个力等大、反向.例作用于0点的三力平衡,设其中一个力大小为F1,沿轴正方向;力F2大小未知。
与轴负方向夹角为,如图1所示.下列关于第三个力的判断中正确的是( )(A)力F3只能在第四象限(B)力F3与F2夹角越小,则F2和的合力越小(C)F 的最小值为F1 cos0(D)力F3可能在第一象限的任意区域解析由共点力的平衡条件可知,F3与F1和F2的合力等值、反向,所以F3的范围应在Fl、F2的反向延长线的区域内,不包括F1、F2的反向延长线方向,所以F3既可以在第四象限,也可以在第一象限.由于与F2的合力与F1的大小相等、相反,而F1大小方向确定,故力F3与F2的夹角变小,F2与F3的合力也不变.由于力F2大小未知,方向一定,可作图求出F3的最小值为F】cos0.综上所述本题正确答案为(C).二、正交分解法所谓正交分解法就是把力沿着两个经选定的互相垂直的方向分解,将矢量运算转化为直线上的代数运算.由F厶=0推出=0、Z =0的关系.例图2所示为一遵从胡克定律的弹性轻绳,其一端固定在天花板上的0点。
另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连.当绳子沿竖直位置时,滑块A对地面有压力作用.B为紧挨绳的一光滑水平小钉,它到天花板的距离BO等于弹性绳的自然长度.现用一水平力F作用于A。
使它向右做匀速直线运动.问在运动过程中,作用于A 的摩擦力( )图2(A)逐渐增大(B)逐渐减少(C)保持不变(D)条件不足,无法判断三、整体与隔离法整体法和隔离法既互相对立又互相统一,在具体解题中,常常需交互运用,发挥各自特点,从而优化解题的思路和方法,使解题简捷、明了.例将均匀长方形木块锯成如图4所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右的力F作用在木块上时。
共点力平衡问题处理技巧

共点力平衡问题处理技巧
1、合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反。
2、分解法:物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件。
3、正交分解法:物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件。
4、力的三角形法:对受三力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力。
扩展资料:
注意事项:
三个不平行的力作用下的物体平衡问题,是静力学中最基本的问题之一,当物体在三个共点力作用下平衡时,任意两个力的合力与第三个
力等大反向,三个力始终组成封闭的矢量三角形。
通常是用合成法画好力的合成的平行四边形后,选定半个四边形———三角形,进行解三角形的数学分析和计算。
物体受三个以上共点力平衡的问题,通常是用正交分解法,将各力分别分解到直角坐标系的x轴上和y轴上,运用两坐标轴上的合力分别等于零的条件,列两个方程进行求解(因为F合=0,则一定有Fx=0,Fy=0),这种方法常用于三个以上共点力作用下的物体的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解共点力平衡问题的常见方法共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。
对于刚入学的高一新生来说,这个部分是一大难点。
一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;1.(2008年·广东卷)如图所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向的夹角为θ(A、B点可以自由转动)。
设水平横梁OA和斜梁OB作用于O点的弹力分别为F1和F2,以下结果正确的是()A.F1=mgsinθB.F1= sinmgC.F2=mgcosθD.F2=cosmg二、力的分解法在实际问题中,一般根据力产生的实际作用效果分解。
2、如图所示,在倾角为θ的斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?3.如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受压力最小。
三、正交分解法解多个共点力作用下物体平衡问题的方法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:x F=合,y F=合.为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则.θ4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60°角时,物体静止。
不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解.5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( )A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C ,N F 不变、T F 变小 D. N F 变大、T F 变小6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。
已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。
五、用图解法处理动态平衡问题对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断.7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。
三角形三边的长度对应三个力的大小,夹角确定各力的方向。
8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况下小球对斜面和挡板的压力?(1)、挡板竖直放置(2)、挡板与斜面垂直七、对称法研究对象所受力若具有对称性,则求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性. 9、如图10甲所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成 角,试求; (1)链条两端的张力大小. (2)链条最低处的张力大小.八、整体法与隔离法通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
10、有一直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图所示,现将P 环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N F 和细绳拉力T F 的变化情况是:( ) A 、N F 不变、T F 变大 B 、N F 不变、T F 变小 C 、N F 变大、T F 变大D 、N F 变大、T F 变小11、在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m 1和m 2的两个木块b 和c ,如图所示,已知m 1>m 2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用bc am 1 m 2θθ九、正弦定理法 正弦定理:在同一个三角形中,三角形的边长与所对角的正弦比值相等;在中有sin sin sin AB BC CA CAB==同样,在力的三角形中也满足上述关系,即力的大小与所对角的正弦比值相等.12、不可伸长的轻细绳AO 、BO 的结点为0,在0点悬吊电灯L ,OA 绳处于水平,电灯L 静止,如图所示,保持0点位置不变,改变OA 的长度使A 点逐渐上升至C 点,在此过程中绳OA 的拉力大小如何变化?十.拉密原理法拉密原理:如果在三个共点力作用下物体处于平衡状态,那么各力的大小分别与另外两个力所夹角的正弦成正比.在图8所示情况下,原理表达式为312123sin sin sin F F F θθθ==13、 如图9甲所示装置,两根细绳拉住一个小球,保持两绳之间夹角θ不变;若把整个装置顺时针缓慢转动090,则在转动过程中,CA 绳拉力1T F 大小的变化情况是 ,CB 绳拉力2T F 大小的变化情况是 .十一.解析法:求共点力作用下物体平衡的极值问题的方法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。
通常我们会用到的数学知识有:二次函数极值、均分定理求极值、讨论分式极值、三角函数极值以及几何法求极值 14、重为G 的木块与水平地面间的动摩擦因数为μ,一人欲用最小的力F 使得木块做匀速运动,则此最小作用力的大小和方向如何?N 1N 2,θN 2N 1,mg第三章 相互作用专题练习(一)参考答案求解共点力平衡问题的常见方法1.【解析】根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出如图所示矢量图,由三角形知识可得F 1=mgtanθ,F 2=mg/cosθ,故D 正确,A 、B 、C 错误。
2.【解析】小球受到重力mg 、斜面的支持力N 1、竖直木板的支持力N 2的作用.将重力mg 沿N 1、N 2反方向进行分解,分解为N 1,、N 2,,如图所示. 由平衡条件得:N 1= N 1,=mg/cosθ N 2= N 2,=mgtanθ.3. 【解析】当挡板与斜面的夹角β由图示位置变化时,F N1大小改变,但方向不变,始终与斜面垂直;F N2的大小、方向均改变(图中画出一系列虚线表示变化的F N2)。
由图可看出,当F N2与F N1垂直即β=90°时,挡板AO 所受压力最小,最小压力F N2min=mgsinα。
4、【解析】人和重物静止,所受合力皆为零,对物分析得到,绳拉力F 等于物重200N ;人受四个力作用,将绳的拉力分解,即可求解。
如图所示,将绳的拉力分解得水平分力:Fx=Fcos60°=200×N=100N竖直分力:Fy=Fsin60°=200×N =100N在x 轴上,F′与Fx 二力平衡,所以静摩擦力F′=Fx =100N在y 轴上,三力平衡得地面对人支持力 F N =G -Fy =(500-100)N=100(5-)N5、解析 小球受力如图5乙所示,根据平衡条件知,小球所受支持力'N F 和Gθ N 2N 1GN 2N 1GN 1N 2GN 2N 1θ细线拉力T F 的合力F 跟重力是一对平衡力,即F G =.根据几何关系知,力三角形'N FAF 与几何三角形COA 相似.设滑轮到半球顶点B 的距离为h,线长AC 为L ,则有'N T F F G RR hL==+,由于小球从A 点移向B 点的过程中,G R h 、、均不变,L 减小,故'N F 大小不变,T F 减小.所以正确答案为C 选项.6、分析:绳子越短,两条绳夹角越大,绳子张力越大。
对图3作辅助线OE ⊥MN ,对D 点受力分析如图所示,∵ △DBC ∽△ONE ,有,其中,,则7、解析 选0点为研究对象,受F 、A F 、B F 三力作用而平衡,此三力构成一封闭的动态三角形如图4乙.容易看出,当B F 与A F 垂直即090αβ+=时,B F 取最小值,所以D 选项正确.8、分析与解答:小球受力如图所示,小球在重力、斜面的支持力和挡板的支持力三个力共同的作用下处于平衡状态,因其中两力之和恰好与第三力大小相等方向相反,故这三个力可构成力的三角形,由矢量三角形的边角关系可知:当挡板竖直放置时: N 1=Gtg θ N 2=G/cos θ 当挡板与斜面垂直放置时:N 1=Gsin θ N 2=Gcos θ这样比我们建立直角坐标,再利用正交分解法来求解就简单多了。
9、解析 (1)在求链条两端的张力时,可把链条当做一个质点处理.两边受力具有对称性使两端点的张力F 大小相等,受力分析如图10乙所示.取链条整体为质点研究对象.由平衡条件得竖直方向2Fsin =G θ,所以端点张力为GF=2sin θ(2)在求链条最低点张力时,可将链条一分为二,取一半研究,受力分析如图10丙所示,由平衡条件得水平方向所受力为'cos cos cot 2sin 2G G F F θθθθ===即为所求.10、解析 采取先“整体”后“隔离”的方法.以P 、Q 、绳为整体研究对象,受重力、AO 给的向上弹力、OB 给的水平向左弹力.由整体处于平衡状态知AO 给P 向右静摩擦力与OB 给的水平向左弹力大小相等;AO 给的竖直向上弹力与整体重力大小相等.当P 环左移一段距离后,整体重力不变,AO 给的竖直向上弹力也不变.再以Q 环为隔离研究对象,受力如图3乙所示,Q 环所受重力G 、OB 给Q 弹力F 、绳的拉力T F 处于平衡,P 环向左移动一小段距离的同时T F 移至'T F 位置,仍能平衡,即T F 竖直分量与G 大小相等,T F 应变小,所以正确答案为B 选项.11、【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .12、解析 取0点为研究对象,0点受灯的拉力F(大小等于电灯重力G)、OA 绳的拉力1T 、OB 绳的拉力2T ,如图7乙所示.因为三力平衡,所以1T 、2T 的合力'G 与G 等大反向.由正弦定理得1sin sin T G θα=,即1sin sin G T θα=,由图知θ不变,α由小变大, α增大到090后再减小,所以据1T 式知1T 先变小后变大,当090α=时,1T 有最小值.13、解析 在整个装置缓慢转动的过程中,可以认为小球在每一位置都是平衡的.小球受到三个力的作用,如图9乙所示,根据拉密原理有12sin sin sin T T F F G βαθ==,由于θ不变, α由090逐渐变为0180,sin α会逐渐变小直到为零,所以2T F 逐渐变小直到为零;由于β由钝角变为锐角,sin β先变大后变小,所以1T F 先变大后变小.14、【解析】:解析法。