圆锥曲线的第三定义精讲
圆锥曲线地第三定义

圆锥曲线的第三定义及运用一、 椭圆和双曲线的第三定义1. 椭圆在椭圆()2222C 10x y a b a b +=f f :中,A 、B 是关于原点对称的两点,P 是椭圆上异于A 、B 的一点,若PA PB k k 、存在,则有:222=1=PA PB b k k e a•--证明:构造△PAB 的PA 边所对的中位线MO ,PA MO k k =,由点差法结论:222=1=MO PB b k k e a•--知此结论成立。
2. 双曲线在双曲线2222C 1x y a b -=:中,A 、B 是关于原点对称的两点,P 是椭圆上异于A 、B 的一点,若PA PBk k 、存在,则有:222=1=PA PB b k k e a •-证明:只需将椭圆中的2b 全部换成2b -就能将椭圆结论转换成双曲线的结论。
二、 与角度有关的问题例题一:已知椭圆()2222C 10x y a b a b+=f f :的离心率2e =,A 、B 是椭圆的左右顶点,为椭圆与双曲线22178x y -=的一个交点,令PAB=APB=αβ∠∠,,则()cos =cos 2βαβ+.解答:令=PBx γ∠,由椭圆第三定义可知:21tan tan =1=4e αγ•--()()()cos cos cos cos sin sin 1tan tan 3===cos 2cos cos cos sin sin 1tan tan 5γαβγαγααγαβγαγαγααγ-++•=+++-•点评:其实所谓的双曲线方程只是一个障眼法,并不影响题目的解答。
两顶点一动点的模型要很快的联想到第三定义,那么剩下的任务就是把题目中的角转化为两直线的倾斜角,把正余弦转化为正切。
题目中的正余弦化正切是三角函数的常见考点☆。
变式1-1:(石室中学2015级高二下4月18日周末作业)已知双曲线22C 2015x y -=:的左右顶点分别为A 、B ,P 为双曲线右支一点,且=4PAB APB ∠∠,求=PAB ∠.解答:令=02PAB πα⎡⎤∠∈⎢⎥⎣⎦,,=02PBA πβ⎡⎤∠∈⎢⎥⎣⎦,,则=5βα,由双曲线的第三定义知:2tan tan =tan tan5=1=1e αβαα••-则:1tan ==tan 5=5=tan52212πππαααααα⎛⎫-⇒-⇒ ⎪⎝⎭点评:与例题1采取同样的思路转化角,但对于正切转换的要求较高。
高三数学圆锥曲线详细知识点

高三数学圆锥曲线详细知识点在高中数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
这些曲线在数学和物理学中都有广泛的应用,因此掌握圆锥曲线的知识对于学生来说非常重要。
1. 椭圆椭圆是圆锥曲线中的一种,它由一个动点P和两个定点F1和F2确定。
椭圆的定义是动点P到两个定点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
这个常数2a称为椭圆的长轴长度。
椭圆的形状由参数e = PF1 / 2a来确定,其中e称为离心率。
当e=0时,椭圆退化成一个圆。
椭圆有许多重要性质和公式,比如它的离心率范围是0<e<1,长轴和短轴的长度之间有关系a^2 = b^2(1 - e^2)。
此外,椭圆还有焦点、准线、主轴等概念,对于理解椭圆的性质和应用非常有帮助。
2. 双曲线双曲线是圆锥曲线中的另一种形式。
它由一个动点P和两个定点F1和F2确定,类似于椭圆。
但不同的是,双曲线的定义是动点P到两个定点F1和F2的距离之差的绝对值等于常数2a,即|PF1 - PF2| = 2a。
与椭圆不同的是,双曲线的离心率e>1,因此它的形状更加扁平。
双曲线也有许多重要的性质和公式。
比如,它的离心率范围是e>1,焦点与曲线的准线之间的距离等于常数2a。
双曲线还有渐近线,指的是双曲线两个分支无限远处趋于平行的直线。
3. 抛物线抛物线是圆锥曲线中的第三种形式。
它由一个定点F和一条直线l确定,定点F称为焦点,直线l称为准线。
抛物线的定义是动点P到焦点F的距离等于点P到直线l的距离,即PF = PD。
抛物线的形状是开口向上或向下的U形曲线。
抛物线也有许多特殊的性质和公式。
比如,抛物线的焦半径等于准线与焦点之间的垂直距离,焦半径的长度等于焦距的两倍。
抛物线还有焦平面和直径等概念,对于解决实际问题非常有帮助。
总结:在高三数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
圆锥曲线的三种定义

圆锥曲线的三种定义
圆锥曲线可以通过多种定义来描述,下面我将从三种不同的角度来回答你的问题。
1. 几何定义:
圆锥曲线是通过圆锥和平面的交点集合而成的曲线。
当平面与圆锥的两个母线夹角小于圆锥的夹角时,交点为椭圆;当平面与圆锥的两个母线夹角等于圆锥的夹角时,交点为圆;当平面与圆锥的两个母线夹角大于圆锥的夹角时,交点为双曲线。
2. 代数定义:
圆锥曲线也可以通过代数方程来定义。
例如,椭圆的代数方程为x^2/a^2 + y^2/b^2 = 1,圆的代数方程为x^2 + y^2 = r^2,双曲线的代数方程为x^2/a^2 y^2/b^2 = 1。
这些方程描述了平面上的点满足的条件,从而定义了不同类型的圆锥曲线。
3. 参数方程定义:
圆锥曲线还可以通过参数方程来定义。
以椭圆为例,其参数方程可以写为x = acos(t),y = bsin(t),其中t为参数,a和b分别为椭圆在x轴和y轴上的半轴长。
通过不同的参数取值,可以得到椭圆上的各个点的坐标,从而描述了整个椭圆曲线。
综上所述,圆锥曲线可以通过几何、代数和参数方程三种不同的方式来定义,每种定义方式都能够全面而准确地描述圆锥曲线的特性和性质。
圆锥曲线的第三定义讲课稿

心率
.
解答:连接 MB,由椭圆的第三定义可知: kAM
kBM
=e2
1=
b2 a2
,而 kBM
kBN
b2 k1k2 = a2
4b b 1
15
2 k1 2 2 k2 4 k1 k2 = =1 = e=
a
a4
4
x2 y2
2
变式 2-2:已知 A、B 是椭圆 a2 b2
1a b 0 长轴的两个端点,若椭圆上存在 Q,使 AQB
1/6
2015.1.23 JZX
二、 与角度有关的问题
x2 y2
3
例题一:已知椭圆 C: a2
b2
1a b 0 的离心率 e
2
,A、B 是椭圆的左右顶点,为椭圆与双曲
x2 y2
cos
线 1的一个交点,令 PAB=,APB= ,则
=
78
cos2
.
解答:令 PBx= ,由椭圆第三定义可知: tan tan =e2 1= 1 4
2
为直径的圆内部,AQB 直径所对的圆周角 90°),由此可猜测当 Q 为短轴端点(对称性)时 AQB 。 m ax
2
2
由于椭圆上存在 Q,使 AQB ,那么 Q 为短轴端点时 AQB 。取临界情况,即 Q 为短
3
max 3
2
a
6
轴端点时 AQB ,此时 3 e ;当椭圆趋于饱满( e 0 )时,椭圆趋近于圆,圆的直
在
2
,
单增,则
Q
为上顶点时
AQB max
,所以此时
AQB
2 3
,故
e
6
3
,1
圆锥曲线第三定义及扩展

-1( a ―0)的长轴长为 例、已知椭圆—2 a ―1直线l 与椭圆相交与 M 、N 两点,记直线 PM 、PN 的斜率分别为kl 、k2。
若k1 k2= - ,4则椭圆的方程为。
变式:1、设点A ,B 的坐标为(-2,0),( 2,0),点P 是曲线C 上任意一点,且直线 PA 与PB 的1斜率之积为-,则曲线C 的方程为。
42、设点P 是曲线C 上任意一点,坐标原点是 0,曲线C 与X 轴相交于两点 M (-2,0),3N (2,0),直线PM ,PN 的斜率之积为-,贝U OP 的最小值是。
4-8,0),( 8,0 ),且AC, BC 所在直线斜率之积为 m ( m ≠0 ),求顶点C 的轨迹。
2 24、P 是双曲线 仔-占=1(a 0,b 0)上一点,M,N 分别是双曲线的左右顶点,直线PM ,a b 1PN 的斜率之积为一,则双曲线离心率为。
X 2 2圆锥曲线第三定义在椭圆—2 1(a ― 0)中,A , B 两点关于原点对称,P 是椭圆上异于 A , B 两 ― 点的任意一点, k pA , k pB 存在,则 k pA * k PB―2r 。
(反之亦成立) a 在双曲线 2爲=1(a 0, ― ■ 0)中,A ,B 两点关于原点对称, ―2 P 是椭圆上异于A , B 两点的任意一点,若 k PA , k PB 存在,则 kPA *k PB b=。
(反之亦成立)a ★焦点在Y 轴上时,椭圆满足 k PA *k PB —a 2双曲线满足k p A ∙k pBa 2b 2X 2 3、已知 ABC 的两个顶点坐标分别是(4,若点P 是椭圆上任意一点,过原点的2 255、已知椭圆——=1的左右顶点分别是A、B, M是椭圆上异于A、B的动点,求证:3 2k MA *k MB为定值。
6、平面内与两定点A i(-a,0),A2(a,0) (a 0)连续的斜率之积等于非零常数m的点的轨迹,加上A、A2两点所成的曲线C可以是圆、椭圆成双曲线.求曲线C的方程,并讨论C 的形状与m值得关系;第三定义的应用2例、椭圆y2=1的左右顶点分别是A, B,点S是椭圆上位于X轴上方的动点,直线AS,410BS与直线l : X 分别交于点M、N,求线段MN长度的最小值。
第3章圆锥曲线的方程知识点汇总

p 2
x p 2
x p 2
y p 2
y p 2
过抛物线的焦点且垂直于对称轴的弦称为通径: HH 2 p
AB x1 x2 p 参数 p 表示焦点到准线的距离, p 越大,开口越阔
谢谢观看!
A1 a,0 、 A2 a,0
A1 0, a 、 A2 0,a
实轴的长 2a
虚轴的长 2b
关于 x 轴、 y 轴对称,关于原点中心对称
F1 c,0 、 F2 c,0
F1 0, c 、 F2 0,c
F1F2 2c (c2 a2 b2)
3.2 双曲线
a,b, c 关系
离心率
渐近线方程 焦点到渐近线
图形
标准方程
顶点 离心率 对称轴
y2 2 px
y2 2 px
x2 2 py
x2 2 py
p 0
p 0
p 0
p 0
0, 0
e 1
x轴
y轴
3.3 抛物线
范围
焦点
准线方程
通径 焦点弦长
公式
参数 p 的
几何意义
x0
x0
y0
y0
F
p 2
,
0
F
p 2
,
0
F
0,
p 2ቤተ መጻሕፍቲ ባይዱ
F
0,
第3章 圆锥曲线的方程知识点汇总
3.1 椭圆
定义 焦点的位置
平面内与两个定点 F1 、 F2 的距离的和等于常数 2a (大于| F1F2 | 2 c )的点的
轨迹叫椭圆,两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
焦点在 x 轴上
焦点在 y 轴上
图形
圆锥曲线“第三定义”的拓展与延伸

圆锥曲线“第三定义”的拓展与延伸
发布时间:2023-03-06T08:40:39.308Z 来源:《教学与研究》2022年56卷20期作者:王承超
[导读] (新课标人教社选择性必修一P108例3)如图,已知,A,B两点的坐标分别为,直线相交于点,且它们的斜率之积是,求点的轨迹方程。
王承超
湖北省恩施高中 445000
课本这道题中A,B两点的坐标恰好是椭圆方程中长轴两个端点,这究竟是偶然还是一种必然?能否推广到一般?这道题如果条件中点的位置发生变化,改成短轴的两个端点是否还有类似结论?再变成关于原点对称的两个点是否有相同结论?如果焦点位置在轴上结论有何变化?
为了方便同学记忆和理解,我们习惯性把例1这种求椭圆轨迹的方法叫做椭圆的“第三定义”(不是严格定义,因为椭圆要去掉两个点)。
一道课本例题,通过逻辑推理,拓展出四个结论,题目千千万,编者为什么把这道例题选入教材,有其深刻的道理和原因,因此我
们一定要重视教材和课本习题的研究,只有吃透教材,才能在遇到陌生和创新性、情境性试题时能够胸有成竹、从容应对,解题能够举一反三、游刃有余。
点差法与圆锥曲线第三定义的应用举例

点差法与圆锥曲线第三定义的应用举例尹伟云(贵州省仁怀市周林高中ꎬ贵州仁怀564599)摘㊀要:点差法是解决圆锥曲线中点弦问题的有效工具ꎬ亦是高考的常考对象.本文从点差法入手ꎬ探究点差法与圆锥曲线第三定义的联系ꎬ给出5个经典结论及其证明ꎬ并以实例阐述其应用.关键词:点差法ꎻ中点弦ꎻ圆锥曲线第三定义中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0086-05收稿日期:2023-04-05作者简介:严伟云ꎬ从事高中数学教学研究.㊀㊀圆锥曲线中的中点弦和直径问题是高考经常考查的对象.在某些与中点及直径有关的相交弦问题中ꎬ利用点差法或圆锥曲线第三定义可快速得到两直线的斜率之积ꎬ尤其是在小题中ꎬ直接利用结论求解ꎬ可大大地节省解题时间.下面就这些问题进行探讨.1点差法的原理1.1点差法在椭圆中点弦问题中的应用结论1㊀设直线l(不与坐标轴垂直且不过原点)与椭圆x2a2+y2b2=1(a>b>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图1ꎬ则kOP kAB=y0x0 kAB=-b2a2=e2-1ꎻ若椭圆方程为y2a2+x2b2=1(a>b>0)ꎬ如图2ꎬ则kOP kAB=y0x0 kAB=-a2b2=1e2-1.证明㊀由x21a2+y21b2=1ꎬx22a2+y22b2=1ꎬìîíïïïï两式相减ꎬ得图1㊀椭圆焦点在x轴㊀㊀㊀㊀㊀图2㊀椭圆焦点在y轴x21-x22a2+y21-y22b2=0.即(x1+x2)(x1-x2)a2+(y1+y2)(y1-y2)b2=0.化为(y1+y2)/2(x1+x2)/2 y1-y2x1-x2=-b2a2.所以y0x0 kAB=-b2a2.故kOP kAB=-b2a2=-a2-c2a2=e2-1.如图2ꎬ当椭圆的焦点在y轴上时ꎬ同理得kOP kAB=y0x0 kAB=-a2b2=1e2-1.1.2点差法在双曲线中点弦问题中的应用结论2㊀设直线l(不与坐标轴垂直且不过原点)与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图3和图4ꎬ仿照结论1的证明方法ꎬ容易得到kOP kAB=y0x0 kAB=b2a2=e2-1.若双曲线方程为y2a2-x2b2=1(a>0ꎬb>0)ꎬ则kOP kAB=y0x0 kAB=a2b2=1e2-1.图3㊀双曲线中点弦问题㊀㊀㊀㊀图4㊀双曲线中点弦问题根据结论1和结论2ꎬ容易知道椭圆㊁双曲线中点差法的统一公式:设曲线C:x2m+y2n=1ꎬ其中mnʂ0ꎬ直线l(不与坐标轴垂直且不过原点)与曲线C相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ则kOP kAB=-nm.①当m=n>0时ꎬ方程x2m+y2n=1表示圆ꎬ由垂径定理可知ꎬkPA kPB=-1ꎻ②当mʂn且m>0ꎬn>0时ꎬ方程x2m+y2n=1表示椭圆ꎻ③当mn<0时ꎬ方程x2m+y2n=1表示双曲线ꎻ④当m<0ꎬn<0时ꎬ方程x2m+y2n=1不表示任何曲线.1.3点差法在抛物线中点弦问题中的应用结论3㊀设直线l(不与抛物线对称轴垂直)与抛物线y2=2px(p>0)相交于A(x1ꎬy1)ꎬB(x2 y2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图5ꎬ则y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ则x0kAB=p.图5㊀抛物线中点弦问题证明㊀由y21=2px1ꎬy22=2px2ꎬ{两式相减ꎬ得y21-y22=2p(x1-x2).化简为y1+y22 y1-y2x1-x2=p.即得y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ同理可证x0kAB=p.2圆锥曲线的第三定义已知AꎬB是x轴上关于原点O对称的两点ꎬ设|AB|=2a.若平面内异于AꎬB的动点P满足kPA kPB为定值λꎬ则当-1<λ<0时ꎬ点P的轨迹为椭圆(不含长轴端点AꎬB)ꎬ设短轴长为2bꎬ则λ=-b2a2ꎻ当λ>0时ꎬ点P的轨迹为双曲线(不含实轴端点AꎬB)ꎬ设虚轴长为2bꎬ则λ=b2a2.由上知ꎬλ=e2-1ꎬ其中e为对应轨迹的离心率.将圆锥曲线第三定义进行推广ꎬ得到如下结论:结论4㊀如图6ꎬ过原点的直线与椭圆x2a2+y2b2=1(a>b>0)相交于AꎬB两点ꎬP为椭圆上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ有kPA kPB=1e2-1=-a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ图6㊀结论4图-y1)ꎬ从而直线PAꎬPB的斜率之积为kPA kPB=y0-y1x0-x1y0+y1x0+x1=y20-y21x20-x21=b21-(x20/a2)[]-b21-(x21/a2)[]x20-x21=-b2a2.证法2㊀取AP的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=-a2b2.结论5㊀如图7ꎬ过原点的直线与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于AꎬB两点ꎬP为双曲线上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=b2a2.图7㊀结论5图当双曲线的焦点在y轴上时ꎬ有kPA kPB=1e2-1=a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ-y1)ꎬ则kPA kPB=y0-y1x0-x1y0+y1x0+x1=b2(x20/a2)-1[]-b2(x21/a2)-1[]x20-x21=b2a2.证法2㊀取PA的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=a2b2.3实例分析例1㊀已知椭圆C:x24+y2=1上存在两点AꎬB关于直线l:x=my+1对称ꎬ则实数m的取值范围是.解析㊀由题意知ꎬ直线AB与l互相垂直ꎬ所以kAB kl=-1ꎬ得kAB=-m.设线段AB的中点为M(x0ꎬy0)ꎬ由点差法ꎬ得kAB kOM=-b2a2.即(-m)y0x0=-14.与x0=my0+1联立ꎬ得x0=43ꎬy0=13m.ìîíïïïï因为点M43ꎬ13mæèçöø÷在椭圆C的内部ꎬ所以164ˑ9+13mæèçöø÷2<1.解得m>55ꎬ或m<-55.所以实数m的取值范围是-¥ꎬ-55æèçöø÷ɣ55ꎬ+¥æèçöø÷.评注㊀在椭圆中ꎬ由点差法得到的式子 kABkOM=-b2a2 是相交弦中点与原点连线的斜率与弦所在直线斜率的一个等量关系.kAB与直线AB直接相关联ꎬ-b2a2与椭圆C相关联ꎬ因此ꎬ点差法搭建了直线与椭圆之间的桥梁.在本题中ꎬ点差法为弦中点的表示创造了重要条件ꎬ从而通过中点与椭圆的位置关系建立不等关系.例2㊀已知F1(-cꎬ0)ꎬF2(cꎬ0)分别为双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的左㊁右焦点ꎬ直线l:xc+yb=1与C交于MꎬN两点ꎬ线段MN的垂直平分线与x轴交于点T(-5cꎬ0)ꎬ则C的离心率为.解析㊀设线段MN与其垂直平分线交于点Pꎬ连接OPꎬ如图8.图8㊀例2解析图则kPT kMN=-1ꎬkOP kMN=b2a2.ìîíïïï①②两式相比ꎬ得kPTkOP=-a2b2.即y0x0+5c x0y0=-a2b2ꎬ解得x0=-5a2c.又由①得y0x0+5c -bcæèçöø÷=y0-5a2/c+5c -bcæèçöø÷=-1.解得y0=5b.将x0=-5a2cꎬy0=5bꎬìîíïïï代入xc+yb=1中ꎬ得-5a2c2+5bb=1.化简为c2a2=54.所以e=ca=52.评注㊀求离心率的关键是找到关于aꎬbꎬc的一个齐次等量关系ꎬ而点差法的结论 kOP kMN=b2a2 中恰好含有a与b的齐二次关系.对于结论中两直线的斜率ꎬ一般有两种转化途径:一是转化为点的坐标ꎬ二是利用几何图形的特征或位置关系进行转化.本题就是通过点的坐标以及两直线的垂直关系与点的共线关系进行转化.例3㊀抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后ꎬ沿平行于抛物线对称轴的方向射出.今有抛物线C:x2=8yꎬ如图9ꎬ一平行于y轴的光线从上方射向抛物线上的点Pꎬ经抛物线2次反射ꎬ最后从抛物线上的点Q沿平行于y轴方向射出.若直线l:y=x+m与抛物线C交于AꎬB两点ꎬ在坐标平面内作әABNꎬ使әABN的外接圆圆心的坐标为I-12ꎬ11æèçöø÷ꎬ求弦AB的长度.图9㊀例3解析图解析㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ线段AB的中点为M(x0ꎬy0)ꎬ则x21=8y1ꎬx22=8y2.两式相减ꎬ得x21-x22=8(y1-y2).化简为x1+x22=4(y1-y2)x1-x2.解得x0=4kAB=4.即得kAB=1ꎬ从而y0=4+m.由垂径定理ꎬ得ABʅMI.所以kAB kMI=-1.即1 4+m-114+1/2=-1ꎬ解得m=52.联立y=x+52与x2=8yꎬ消去yꎬ得x2-8x-20=0.从而|AB|=k2+1 |x1-x2|=k2+1(x1+x2)2-4x1x2=12+1 82-4ˑ(-20)=122.评注㊀抛物线中点差法的结论x0k=p 体现了相交弦中点横坐标与弦所在直线斜率的等量关系.本题中ꎬ求直线l方程中m的值是关键.点差法与垂径定理的联合ꎬ将问题转化为点的坐标运算ꎬ从而求出m的值.应注意ꎬ对于解答题ꎬ需写出点差法的推导过程ꎬ即先将弦的两端点坐标代入曲线方程中ꎬ作差后再利用平方差公式和中点坐标公式化为中点坐标与斜率的关系[1].例4㊀已知椭圆C:x216+y212=1ꎬ点A(-4ꎬ0)ꎬB(4ꎬ0)ꎬ点P和Q分别是椭圆C和圆M:x2+y2=16上不同于AꎬB的两点ꎬ设直线PBꎬQB的斜率分别为k1ꎬk2ꎬ且k1=34k2ꎬ求证:AꎬPꎬQ三点共线.解析㊀在椭圆C中ꎬ由椭圆第三定义ꎬ得kPB kPA=-b2a2.即k1 kPA=-34.又k1=34k2ꎬ所以34k2 kPA=-34ꎬ得kPA=-1k2.在圆M中ꎬ由kQA kQB=-1ꎬ即kQA k2=-1ꎬ得kQA=-1k2.所以kPA=kQA.又直线PA与QA共点Aꎬ所以AꎬPꎬQ三点共线.评注㊀如果圆的弦经过该圆圆心ꎬ则称该弦为该圆的直径ꎬ类似地ꎬ椭圆的弦经过该椭圆的中心ꎬ则称该弦为该椭圆的直径.本题中ꎬ线段AB是椭圆的直径ꎬ通过椭圆第三定义得到椭圆上一点与另两点连线的两斜率之积.如果把圆看作是特殊的椭圆ꎬ那么在圆中 kQB kQA=-1 可看作是椭圆中kPB kPA=-b2a2 的特殊情形ꎬ由这两组斜率关系和条件中的斜率关系推出的新的斜率关系ꎬ恰好达到证明的目的.例5㊀在平面直角坐标系xOy中ꎬ已知直线l:3x+y+m=0与双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的右支交于MꎬN两点(点M在第一象限).若点Q满足OMң+OQң=0ꎬ且øMNQ=30ʎꎬ则双曲线C的渐近线方程为.解析㊀由3x+y+m=0ꎬ得l的斜率为-3ꎬ故l的倾斜角为120ʎ.又øMNQ=30ʎꎬ所以直线QN的倾斜角为120ʎ+30ʎ=150ʎꎬ如图10.图10㊀例5解析图由OMң+OQң=0知ꎬO为线段MQ的中点.由双曲线第三定义得kMN kQN=b2a2.即b2a2=-3 tan150ʎ=1ꎬ即ba=1.所以双曲线C的渐近线方程为y=ʃx.评注㊀本题由双曲线第三定义快速得到关于aꎬb的齐次分式与kMNꎬkQN的等量关系ꎬ再由直线MN的倾斜角及条件中的已知角求得kQNꎬ从而得到关于aꎬb的齐次方程ꎬ即得双曲线的渐近线方程.利用双曲线第三定义解题ꎬ首先要寻找过双曲线中心的相交弦ꎬ其次在双曲线上另找一点ꎬ向弦两端点引直线ꎬ再将这两直线的斜率转化为可求的量.参考文献:[1]任栋.圆锥曲线第三定义及点差法的应用[J].中学数学ꎬ2019(15):48-49.[责任编辑:李㊀璟]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的第三定义及运用成都石室中学 蒋宗汛一、 椭圆和双曲线的第三定义1. 椭圆在椭圆()2222C 10x y a b a b += :中,A、B 是关于原点对称的两点,P 是椭圆上异于A、B 的一点,若PA PB k k 、存在,则有:222=1=PA PB b k k e a∙--证明:构造△PAB 的PA 边所对的中位线MO,PA MO k k =,由点差法结论:222=1=MO PB b k k e a∙--知此结论成立。
2. 双曲线在双曲线2222C 1x y a b -=:中,A、B 是关于原点对称的两点,P 是椭圆上异于A、B 的一点,若PA PBk k 、存在,则有:222=1=PA PB b k k e a ∙-证明:只需将椭圆中的2b 全部换成2b -就能将椭圆结论转换成双曲线的结论。
二、 与角度有关的问题例题一:已知椭圆()2222C 10x y a b a b += :的离心率e =是椭圆的左右顶点,为椭圆与双曲线22178x y -=的一个交点,令PAB=APB=αβ∠∠,,则()cos =cos 2βαβ+ .解答:令=PBx γ∠,由椭圆第三定义可知:21tan tan =1=4e αγ∙--()()()cos cos cos cos sin sin 1tan tan 3===cos 2cos cos cos sin sin 1tan tan 5γαβγαγααγαβγαγαγααγ-++∙=+++-∙点评:其实所谓的双曲线方程只是一个障眼法,并不影响题目的解答。
两顶点一动点的模型要很快的联想到第三定义,那么剩下的任务就是把题目中的角转化为两直线的倾斜角,把正余弦转化为正切。
题目中的正余弦化正切是三角函数的常见考点☆。
变式1-1:(石室中学2015级高二下4月18日周末作业) 已知双曲线22C 2015x y -=:的左右顶点分别为A、B,P 为双曲线右支一点,且=4PAB APB ∠∠,求=PAB ∠ .解答:令=02PAB πα⎡⎤∠∈⎢⎥⎣⎦,,=02PBA πβ⎡⎤∠∈⎢⎥⎣⎦,,则=5βα,由双曲线的第三定义知:2tan tan =tan tan5=1=1e αβαα∙∙-则:1tan ==tan 5=5=tan52212πππαααααα⎛⎫-⇒-⇒ ⎪⎝⎭点评:与例题1采取同样的思路转化角,但对于正切转换的要求较高。
两锐角正切乘积为1即表示sinα=cosβ,cosα=sinβ⇒两角互余☆,则可解出α的值。
当然双曲线的题目较于椭圆和抛物线题目考试概率较小,但既然提到了双曲线的第三定义,不妨做一做。
三、 与均值定理有关的问题例题2:已知A、B 是椭圆()222210x y a b a b+= 长轴的两个端点,M、N 是椭圆上关于x 轴对称的两点,直线AM、BN 的斜率分别为12k k 、,且120k k ≠。
若12k k +的最小值为1,则椭圆的离心率解答一(第三定义+均值):由题意可作图如下:连接MB,由椭圆的第三定义可知:222=1=AMBM b k k e a ∙--,而BM BN k k =-⇒2122=b k k a∴1221=1=2b b k k e a a +≥⇒⇒解答二(特殊值法):这道题由于表达式()12min1k k +=非常对称,则可直接猜特殊点求解。
121==2k k 时可取最值,则M、N 分别为短轴的两端点。
此时:121===2b k k e a ⇒。
点评:对于常规解法,合理利用M、N 的对称关系是解题的关键,这样可以利用椭圆的第三定义将两者斜率的关系联系起来,既构造了“一正”,又构造了“二定”,利用均值定理“三相等”即可用a、b 表示出最值1。
当然将12k k 、前的系数改为不相等的两个数,就不能利用特殊值法猜答案了,但常规解法相同,即变式2-1。
变式2-1:已知A、B 是椭圆()222210x y a b a b+= 长轴的两个端点,M、N 是椭圆上关于x 轴对称的两点,直线AM、BN 的斜率分别为12k k 、,且120k k ≠12+的最小值为1,则椭圆的离心率 .解答:连接MB,由椭圆的第三定义可知:222=1=AM BMbk k ea∙--,而BM BNk k=-⇒2122=bk ka∴1241=1==4b bea a+≥⇒⇒变式2-2:已知A、B是椭圆()222210x ya ba b+= 长轴的两个端点,若椭圆上存在Q,使23AQBπ∠=,则椭圆的离心率的取值范围为 .解答一(正切+均值):令Q在x轴上方,则直线QA的倾斜角为02πα⎡⎤∈⎢⎥⎣⎦,,直线QB的倾斜角为2πβπ⎡⎤∈⎢⎥⎣⎦,。
2AQBππ⎡⎤∠∈⎢⎥⎣⎦,()tan tantan tan1tan tanAQBβαβαβα-∠=-=+由椭圆的第三定义:22tan tan=baαβ-,则22tan=tanbaβα-带入可得:22222222tantan tantan tan tan==1tan tan11bbaab ba aαααβααβα⎛⎫-+⎪---⎝⎭+--2222222=11babab a ba a--≤---(取等条件:tanbaα=,即Q为上顶点)而tanx在2ππ⎡⎤⎢⎥⎣⎦,单增,则Q为上顶点时()maxAQB∠,所以此时23AQBπ∠≥,故1e⎫∈⎪⎪⎣⎭解答二(极限法):当Q趋近于A、B两点时,2AQBπ∠→(此时Q点所在的椭圆弧趋近于以AB为直径的圆的圆弧,AQB∠相当于直径所对的圆周角);当Q在A、B间运动时2AQBπ∠ (Q在以AB为直径的圆内部,AQB∠ 直径所对的圆周角=90°),由椭圆的对称性可猜测当Q为短轴端点时()max AQB ∠。
由于椭圆上存在Q,使23AQB π∠=,那么 Q 为短轴端点时()max 23AQB π∠≥。
取临界情况,即Q 为短轴端点时23AQB π∠=,此时a e b =⇒=当椭圆趋于饱满(0e →)时,椭圆趋近于圆,圆的直径所对的圆周角永远为90°,不满足;当椭圆趋于线段(1e →)时,()max AQB π∠→,满足。
故1e ⎫∈⎪⎪⎣⎭。
当然这些只需要在头脑中一想而过,简洁而有逻辑。
点评:这道题可以增加对于圆周角的理解,在用极限法讨论:“当Q 趋近于A、B 两点时,2AQB π∠→”时能会颠覆“AQB π∠→”的认知,当然这肯定是错的,结合常规解法可以看出此时是角最小的情况,而不是角最大的情况。
要搞清楚,不然会被弄晕的。
对于常规解法选择正切表示角的大小的原因有二:①与第三定义发生联系②tanx 在2ππ⎡⎤⎢⎥⎣⎦,单增便于利用tanx 的大小比较角度的大小。
四、 总结归纳1. 上述部分题目的常规解法较复杂,但做题时一定要能猜答案,而且要猜得有理由。
2. 对于均值不等式,注意取等条件是“三相等”,即相等时取最值。
这可以帮助猜测表达形式是高度对称的式子的最值,如:例题23. 极限法可以刻画出单调变化的某一变量的端点值,如:变式2-2中P 在椭圆上滑动,角度的变化一定是光滑的(无突变,连续), 所以只需考虑边界值。
4. 做几何的选填题时,有时利用圆周角定理可以很快的比较角的大小关系,注意学会恰当运用,如:变式2-2。
5. 常以正切值刻画角度大小。
6. 在做综合性较大的题目时要联系各种知识,灵活转化,以最巧妙的方法致胜。
7. .8. .五、 链接针对上文提到的“圆周角的妙用”与椭圆中另一类奇妙的均值进行拓展补充,各附例题。
例题3:在平面直角坐标系XOY 中,给定两点()1,2M - 和()1,4N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标为 .解答一(正切+均值):已知:()1,2M - 、()1,4N ,:3MN l y x =+与x 轴交于()03,0P - 令(),0P t ,则:21MP k t =--,41NP k t=-,=MPN θ∠ ① 当3t =-时,=0θ ② 当3t - 时,226tan ==17MP NP MP NP k k t k k t θ-++∙+ 令30x t =+ ,则222622tan ===1676166t x t x x x x θ+≤+-++-(tan 0θ ) 此时4x =,1t =,max 4πθ=③ 当3t - 时,226tan ==17NP MP MP NP k k t k k t θ-+-+∙+()30x t =-+,则2226221tan ===16761676t x t x x x x θ+-≤+++++ (tan 0θ )此时4x =,7t =-,()max 1tan 7θ=由于[)0θπ∈,,且tan θ在[)0θπ∈,上单增,[]tan 01θ∈,max 4πθ∴=,此时1t =解答二(圆周角定理):本题中的取极值时的P 点的几何意义为:过M、N 的圆与x 轴切于P 点。
下面给出证明:证明:以与x 轴切于2P 点的圆为例:当半径r 较小时,圆与x 轴无交点。
当半径稍大一点时,圆与x 轴相切,有一个交点。
当半径更大一点时,圆与x 轴有两交点3P 、4P ,此时:根据圆周角定理:34MP N MP N ∠=∠ 2Q =M N MP N ∠∠,可知:圆与x 轴相切时,()max MPN ∠。
所以:过M、N 的圆与x 轴切于3P 、4P 点时,分别有()max MPN ∠⇒只需比较1MP N ∠与2MP N ∠,哪一个更大。
令与x 轴相切的圆的圆心为(),x y ,则切点(),0P x ,半径为y圆满足:()()()()2222222126707114x y y x x x or x y y⎧++-=⎪⇒-+=⇒=-⎨-+-=⎪⎩ (消去y)比较可知:当x=1时,()max MPN ∠点评:常规方法依旧是利用正切度量角的大小,但注意用倾斜角表示所求角时要用大角减去小角,才能得到正角;均值时要注意以分子(一次)为新元构建均值。
用圆周角角的性质解答,只要转化为切点,解一个方程组,比较两个角谁大就行了。
(不比较也行,画图可知右边角大于左边角:弦长相等,半径越大,弦所对的圆周角越小。
)其实两种解法的难度是一样,只是一种要写得多,一种要想得多。
☆变式3-1:若G 为△ABC 的重心,且AG BG ⊥,则sin C 的最大值为 .解答一(余弦定理+均值):令()0,0G ,(),0A a ,()0,b B ,则由()()()13,13G A B CG A B C x x x x C a b y y y y ⎧=++⎪⎪⇒--⎨⎪=++⎪⎩由点间的距离公式:AB =,AC =,BC =由余弦定理:22222222244cos 2a b a b a b AC BC AB C AC BC +++-++-=⨯⨯2222()22522a ba b +≤⇒≤+()max 433cos 0sin sin 555C C C ∴≥⇔≤≤⇔= 解法二(圆周角定理):令()1,0A -,()1,0B ,()G sin ,cos θθ,则()C 3sin ,3cos θθ题目转化为:()1,0A -,()1,0B ,()C ,x y 满足:229x y +=,求sin C 的最大值。