七年级数学 专题15 频数与频率

合集下载

频数与频率典型题解析

频数与频率典型题解析

初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例1 判断以下说法是否正确,并说明理由:小明和小芳分别在各自班级里竞选班长.小明得了25票,小芳得了23票.可以断言,小明在班内受欢迎的程度比小芳高.解 不正确.虽然小明比小芳的得票多,但受欢迎程度不依赖于得票出现的频数,而是依赖于得票出现的频率,由于各班总人数没有给出,因此,无法计算出频率.说明 频数表示的是某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.从本例可知,频率能更好地反映出某一对象出现的频繁程度.2.有关频数与频率的简单计算题.例2 在英语单词frequency (频数)和英语词组relative frequency (频率)中,频数最大的各是哪个字母?它们的频数和频率各是多少?解析 数出各字母在单词或词组中出现的次数即为频数,而字母出现的频率=所有字母的总个数字母出现的频数.在单词frequency 和词组relative frequency 中,频数最大的字母都是e .在单词frequency 中,e 的频数是2,频率是92.在词组relative frequency 中,e 的频数是4,频率是174. 说明 (1)频率是个比值,它可以用小数、百分数、真分数来表示,但当结果不能除尽时,只能选择用真分数来表示.(2)在两组数据中,某两个对象的频数相等,但频率不一定相等,频数大,不一定频率大.在同一组数据中,某两个对象的频数相等,频率也相等;频数大,频率也大.你能举两个具体的例子吗?3.频数与频率在实际问题中的应用.例3 学期结束前,班主任想知道同学们对班长一个学期以来的工作表现的满意程度,特向全班40名学生(除班长外)作问卷调查,其结果如下:(1)请计算每一种反馈意见的频率;(2)你认为本次调查对班长下学期的连任有影响吗?为什么?解析(1)非常满意、较满意、基本满意、不满意、非常不满意的频率分别为0.075,0.5,0.3,0.1,0.025; (2)本次调查对班长下学期的连任没有影响.因为对班长一个学期以来工作表现满意的同学占绝大多数,频率是0.85.说明在下结论时,要根据调查的数据来说话,不能抛弃数据,只顾发表自己的见解,这样只能以偏盖全,最终达不到发现问题、解决问题的目的.本题的解答让我们体会到收集数据的重要性,体会到频数与频率在对数据进行整理、描述和分析中的重要性,让我们体会到“数据也能说话”:班长的工作是负责的,他可以连任.频数及其分布应用举例频数、频率、频数分布表与频数分布图有着广泛地应用,下面举例做一下简单的说明.例1李明和张健站在罚球处进行定点投篮比赛其结果如下表所示:上表数据显示,李明投中的频数是______;投中的频率是______;张健投中的频数是______,投中的频率是______,两人中投中率更优秀的是______.分析:本题已经给出数据,根据该数据可以判断两人在投中率上谁更优秀一些.从频数上看:李明投50个中30个,而张健投40个中25个,还不太容易看出谁的投中率更优秀一些.从频率上看:李明为3050=60%,而张健为2540=62.5%,故高于李明.所以张健的投中率更优秀一些.解:李明投中的频数是30,频率是3050=60%张健投中的频数是25,频率是2540=62.5%所以张健更优秀一些.小结:频数和频率是统计中两个重要的数字特征,它们反映了各个对象出现的频繁程度.例2已知一组数据有40个,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.20,则第六组的频率是().(A)0.10(B)0.12(C)0.15(D)0.18分析:可由已知条件得到第一组到第四组数据的频率分别为0.25,0.125,0.175,0.15,这六组的频率之和是1,因此,第六组的频率为1-0.25-0.125-0.175-0.15-0.20=0.10.解:根据上述分析可知,此题应选(A).小结:此题利用各组的频率之和等于1这个性质.例3某班一次数学测验成绩如下:63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.大部分同学处于哪个分数段?成绩的整体分布情况怎样?先将成绩按10分的距离分段,统计每个分数段学生出现的频数,填入下表.根据上表绘制直方图,如下图.从图中可以清楚地看出79.5分到89.5分这个分数段的学生数最多,90分以上的同学较少,不及格的学生数最少.点击频数分布中考题一、图上获取信息由于落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率,频率能反映各组频数的大小在总数中所占的份量.所以频数分布直方图能直观清楚地反映数据在各个范围内的分布情况,从而更全面、准确、细致地反映事物的属性.例1.如图,根据频数分布直方图回答问题:(1)总共统计了多少名学生的心跳情况?(2)哪些次数段的学生数最多?占多大比例?(3)如果半分钟心跳次数为x,且30≤x<39次属于正常范围,心跳次数属于正常的学生占多大比例?(4)说说你从频数折线图中获得的信息.简析:掌握频数分布直方图的特点是解决问题的关键.从统计图中可以获知各组心跳情况的人数及分布情况.(1)总共统计了2+4+7+5+3+1+2+2+1=27(人)的心跳情况.(2)30≤x<33这个次数段的学生数最多,约占26%.(3)30≤x<39次数段的总人数有7+5+3=15人,15÷27≈56%,故心跳次数属于正常范围的学生约占56%.(4)从折线统计图中可知:折线呈中间高两边低的趋势,就是说心跳正常的人数较多.二、根据信息画图例2 .育才中学为了了解本校学生的身体发育情况,对同年龄的40名女生的身高进行了测量,结果如下(数据均为整数,单位:cm):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据整理后,列出频数分布表,画出频数直方图,并根据所画的直方图说明:大部分同学处于哪个身高段?身高的整体分布情况如何?分析:由于有40个数据,最小的数据为146cm,最大数据为170cm,其差为24cm,可将数据分成5组,整理数据列出分布表,画出频数直方图,可从总体上把握数据的分布情况。

初中数学频数与频率教案

初中数学频数与频率教案

一、教学目标1. 让学生理解频数和频率的概念,掌握频数和频率的计算方法。

2. 培养学生运用统计方法解决实际问题的能力,提高学生的数感和统计观念。

3. 培养学生合作交流、积极参与课堂的学习习惯。

二、教学内容1. 频数和频率的定义及计算方法。

2. 频数和频率在实际问题中的应用。

三、教学重点与难点1. 教学重点:频数和频率的概念、计算方法及应用。

2. 教学难点:频数和频率的计算方法,以及在实际问题中的应用。

四、教学过程1. 导入:通过一个简单的问题引出频数和频率的概念。

问题:在一组数据中,数字3出现的次数是多少?这组数据中3出现的频率是多少?2. 新课讲解:a. 频数的定义:某个对象出现的次数。

b. 频率的定义:频数与总次数的比值。

c. 频数和频率的计算方法:频数 = 某个对象出现的次数;频率 = 频数÷ 总次数。

3. 实例分析:通过具体实例让学生理解频数和频率的概念及计算方法。

实例1:调查50位同学喜欢的篮球明星,统计各个篮球明星的频数和频率。

实例2:一组数据中,数字3出现的频数和频率。

4. 小组讨论:让学生分组讨论,思考频数和频率在实际问题中的应用。

问题:如何利用频数和频率来解决实际问题?5. 总结:引导学生总结频数和频率的概念、计算方法及应用。

6. 课堂练习:布置一些有关频数和频率的练习题,让学生巩固所学知识。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对频数和频率的理解和应用能力。

六、课后作业1. 巩固频数和频率的概念、计算方法。

2. 运用频数和频率解决实际问题。

通过以上教学设计,教师可以有效地帮助学生掌握频数和频率的知识,提高学生在实际问题中运用统计方法的能力。

同时,教师还需关注学生的学习反馈,不断调整教学方法,以确保教学效果。

七年级数学频数与频率

七年级数学频数与频率

名产,蝶宵华,嗯,还有最近很受欢迎的小大夫,刘晨寂,我瞅着那大夫比起蝶老板来也不遑多让,再说最近很有些人打他主意,他能有个王 爷作靠山也不会不愿意的吧——嗯,有这两位珠玉在前,轩儿应该很安全。夫人应该放心了?”太守夫人不知该哭还是该笑。“再则说,就算 王爷垂爱,”唐太守慨然道,“轩儿反正是男孩子,又不是姑娘家,就当如大厕撇个大条崩裂了屁股,有什么大不了!”太守夫人掩耳。感情 唐太守是不开粗口则已,一开起来,压过夫人几个重量级。“再再则说,”唐太守还要继续安慰夫人,“王爷在京里早有这种名声,可都是你 情我愿,也没听说用强的,完了之后,人家该娶媳妇就娶媳妇,王爷也从没霸着。轩儿快成亲了,王爷体恤,绝不会从中作梗的!”太守夫人 没话好辩了,但还是生气道:“要说,你自己去跟轩儿说,我才不去!”“当然是我去,”唐太守道,“不过儿子媳妇面前,还劳烦你怎生找 个说法,支吾过去……”太守夫人哼了一声,转身不语。唐太守晓得照夫人惯常的性子,这就是允了,松口气,正准备蹑足而退,太守夫人狠 狠啐道:“什么名门!狗皮倒灶的混帐窝坑!”唐太守苦笑一声,想回她:“皇家还要混帐哩!”终没敢说出来,闭嘴走了。这便是唐静轩带 着一位陌生公子上振风塔的前因。第七十七章 清心借画来写意(1)唐静轩初见七王爷时,是有点惴惴的。爷爷给他下任务时,用词比较文雅, 没提撇大条崩屁股的话,但也暗示他,养孙千日用孙一时,家荣我荣家败我败,要作好为家族作牺牲的准备。唐静轩给七王爷行礼时,就情不 自禁的某个地方很不得劲儿。“唐公子免礼。”七王爷对唐静轩倒是很客气,赐座看茶,娓娓问些风土人情,忽道,“唐公子有些不自 在?”“啊!这个——”唐静轩想找句场面话来圆一圆,当不得脸已经红了。“看来唐公子也听说了小可的名声。”七王爷感慨道。“小人不 敢!”唐静轩赶紧离席深揖。“坐。”七王爷摆手道,“静轩哪,我看咱们也别客气了——你应该比我小上几岁?我是肖午马的。”“小人肖 酉鸡。”唐静轩忙答。“那末,愚某忝居兄位了——贤弟哪,你当然是好女风的。”“小人……”唐静轩只想找个地缝钻。“贤弟,”七王爷 神色如常,“诸人与你坐在一起,是否必须担心被强暴?”“……”这是什么话?“你与诸人坐在一起,是否立刻想拉她上床?”“……这简 直的不是人话!”“先,圣武王想禁酒,命差人凡见造酒工具的,即行羁押,周公劝谏,与武王行见一男一女,即禀告曰:‘请拘此两人。’ 武王奇问:‘他二人犯何条?’周公告曰:‘私情。’武王更奇:‘何知二者有私情?’周公答曰:‘虽未见私情,然俱藏私具。’武王大笑, 遂废前令。”“……”怎么连

频数与频率课件

频数与频率课件

频率的计算
定义
频率是指某个事件或者数值在总体中所占的比例。
计算
频率的计算公式是:频率 = 频数 / 总样本量。
应用
频率可以帮助我们更好地理解数据的分布情况,具有重要的统计分析应用。
频数与频率的区别
1
频率
2
频数是某个事件或数值在一定时间内 出现的次数。
商榷
在处理和分析数据时,需要根据统计 目的和数据性质进行选择。
频数与频率的综合应用
统计图表
条形图是表示频数和频率的常 用图形,可以更直观地展现数 据。
饼图
饼图也可以用来表示频率的分 布情况,清晰明了。
变形
在实际分析和应用过程中,需 要根据数据性质来选择采用何 种分析方法。
频数和频率的注意事项
1 度量单位
频数与频率ppt课件
频数和频率是统计学中常用的概念,可以帮助我们更好地理解和分析数据的 分布情况。本课程将介绍频数和频率的概念、计算方法以及应用。
频数的定义
定义
频数是指某个事件或者数值在 一定时间内出现的次数。
计算
频数可以用统计图表来表示其 变化,如直方图、折线图等。
应用
频数可以描述个体或群体的特 征,有助于预测和分析。
结论
应注意单位,实际情况和 数据性质,在选择分析方 法时要灵活运用,以得出 正确的结论。
2 综合分析
应该注意频数和频率的度量单位相同,否 则计算结果可能有误。
在分析数据时,应该结合实际情况进行综 合分析,以便更准确地得出结论。
总结
概念
频数和频率是统计学中常 用的概念,分别用于描述 某个事件或者数值在一定 时间内出现的次数和总体 中所占比例。
应用
频数和频率在统计学中有 广泛的应用,可以用来描 述群体的特征,进行预测 和分析等。

浙教版数学七年级下《频数与频率》精品教案

浙教版数学七年级下《频数与频率》精品教案

教案一:掌握频数和频率的概念【教学目标】1.知道频数和频率的含义。

2.能够计算数据中各项的频数和频率。

3.能够对数据进行简单的分析和比较。

【教学重点】1.频数的概念和计算。

2.频率的概念和计算。

【教学难点】2.如何利用频数和频率进行数据的分析和比较。

【教学过程】Step 1 导入新课通过举例的方式向学生介绍频数和频率的概念。

例如,学生在一周内上网的时间如下:3小时、5小时、7小时、4小时、6小时、3小时、4小时。

请问上网3小时的频数是多少?5小时的频数是多少?然后引导学生思考频数的含义。

Step 2 频数的计算告诉学生,频数是指数据中一些数值出现的次数。

对于上述例子中的数据,学生可以统计每个数值出现的次数,并填写到表格中。

数值频数3小时24小时25小时16小时17小时1Step 3 频率的概念告诉学生,频率是指一些数值在数据中出现的概率。

频率的计算公式是:频率=频数/总次数。

引导学生思考频数和频率的区别。

Step 4 频率的计算告诉学生,要计算频率,首先需要知道总次数。

在上述例子中,总次数是7、然后计算每个数值的频率,并填写到表格中。

数值频数频率3小时22/74小时22/75小时11/76小时11/77小时11/7Step 5 数据的分析和比较引导学生观察表格中的数据,思考以下问题:1.出现频率最高的是哪个数值?2.出现频率最低的是哪个数值?3.频率最高的数值和最低的数值之间有什么差别?4.7小时上网的频率和3小时上网的频率之间有什么差别?【教学延伸】可以通过更多实例来巩固学生对频数和频率的理解和计算。

同时,可以引导学生从不同的角度分析和解读数据,培养学生的数据分析能力。

【教学反思】本节课通过引导学生观察和分析实际数据,深入浅出地介绍了频数和频率的概念。

通过手工计算频数和频率,培养了学生的计算能力和数据分析能力。

同时,通过对数据的比较和分析,培养了学生的思维能力和判断能力。

初中数学教案理解统计中的频数与频率

初中数学教案理解统计中的频数与频率

初中数学教案理解统计中的频数与频率统计学是数学中一门重要的分支,它研究数据的收集、整理、分析和解释。

在统计学中,频数与频率是两个重要的概念。

本文将介绍频数与频率的定义、计算方法以及在统计分析中的应用。

一、频数的定义和计算方法频数指的是某一特定数值在一组数据中出现的次数,通常用符号n 表示。

在统计学中,频数常用于描述某一现象、性质或特征在给定数据集中的表现。

计算频数的方法很简单,只需要统计某个数值在数据中出现的频率即可。

例如,我们有以下一组数据:5,2,3,6,5,4,5,1,3,5。

这组数据中,数字5出现了4次,所以其频数为4。

二、频率的定义和计算方法频率指的是某一特定数值在一组数据中出现的相对次数,通常用符号f表示。

频率是指频数与总数据量之间的比值,可以用来衡量某一现象在数据中的相对重要性或普遍性。

频率的计算方法是将频数除以总数据量,并将结果以百分比形式表示。

以前述的数据为例,总数据量为10,数字5的频率为4/10=0.4,即40%。

三、频数与频率的应用频数和频率在统计学中有着广泛的应用,特别是在描述和分析数据分布方面。

1. 数据描述频数和频率可用于统计描述数据的集中趋势和离散程度。

通过计算各个数值的频数和频率,我们可以了解数据中哪些数值出现的次数较多,哪些数值出现的次数较少,从而对数据的分布进行初步了解。

2. 数据比较比较不同数据集中的频数和频率可以帮助我们找出数据之间的差异和共性。

通过比较不同组的频数和频率,我们可以判断某一特定现象在不同数据集中的表现是否有所不同,进而推断其影响因素或规律。

3. 数据预测频数和频率还可以用于预测未来的趋势或结果。

通过对历史数据中特定数值的频数和频率进行分析,可以辅助我们预测未来的发展趋势,为决策提供参考依据。

在实际应用中,频数和频率经常与统计图表结合起来使用,以更直观地展示数据的特征和趋势。

常见的统计图表有柱状图、饼图、折线图等,通过这些图表可以更清晰地呈现数据的分布情况,使结果更易理解。

初中数学知识点精讲精析 频数与频率 (2)

初中数学知识点精讲精析 频数与频率 (2)

第1节 频数与频率要点精讲1. 收集数据的过程第一步:明确调查问题第二步:确定调查对象第三步:选择调查方法第四步:展开调查第五步:记录结果第六步:得出结论2. 统计活动(1)统计活动就是对调查的结果进行登记、汇总,得出结论的过程,它是数据收集的一个重要的步骤。

(2)统计活动的过程一般可分为分组登记、分组汇总、总体汇总、得出结论四个基本过程。

3. 频数与频率的定义(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数。

(2)频率:是频数与数据组中所含数据的个数的比。

(3)频数与频率的联系:频数具体地反映了数据分布的情况,频率反映了不同的数据或在不同的范围内出现的数据在整个数据组中所占的比例。

它们都反映了一组数据的分布情况。

(4)频数与频率的关系:①各试验结果的频数之和等于试验的总次数。

②各试验结果的频率之和等于1③频数/总次数=频率4. 频率的意义在一定程度上,频率的大小反映了事件发生的可能性的大小。

频率大,发生的可能性就大;反之频率小,发生的可能性小。

5. 频率与权数的关系:在用加权平均数计算平均数时,频率就是权数。

6. 频数的应用通过统计活动所获得的一些数据,能根据稳定变化的数据作简单的判断和预测。

典型例题【例1】有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08”,和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励,假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( ).(A )16 (B ) 14 (C ) 13 (D ) 12【答案】C【解析】本题以2008年奥运和父母对子女的早期智力开发为素材编拟的一道概率试题.因为“20”,“08”,和“北京”共可以排出“2008北京”.“20北京08”.‘08北京20“.“0820北京”.“北%100京2008”和“北京0280”六种情况,而2008北京和北京2008占其中的两种,所以这个婴儿能得到奖励的概率是3162=,选(C ). 【例2】某电视台的娱乐节目《周末大放送》有这样的翻浆牌游戏,数字的背面写有祝福或奖金数,游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨的祝福.计算:(1)翻到奖金1000元的概率.(2)“翻到奖金”的概率.(3)“翻不到奖金”的概率.【答案】 (1)91 (2)13(3)23 【解析】(1)因为翻牌共可得到9种情况,得到1000元只有一种,所以P (翻到奖金100元)=91. (2)因为在9种情况中,有三种可以得到奖金,所以P(得到奖金)=3193=. (3)P(翻不到奖金)=1-3231=。

频数与频率典型题解析

频数与频率典型题解析

频数与频率典型题解析频数、频率是初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例 1 判断以下说法是否正确,并说明理由:小明和小芳分别在各自班级里竞选班长.小明得了25票,小芳得了23票.可以断言,小明在班内受欢迎的程度比小芳高.解不正确.虽然小明比小芳的得票多,但受欢迎程度不依赖于得票出现的频数,而是依赖于得票出现的频率,由于各班总人数没有给出,因此,无法计算出频率.说明频数表示的是某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.从本例可知,频率能更好地反映出某一对象出现的频繁程度.2.有关频数与频率的简单计算题.例2在英语单词frequency(频数)和英语词组relative frequency(频率)中,频数最大的各是哪个字母?它们的频数和频率各是多少?解析数出各字母在单词或词组中出现的次数即为频数,而字母出现的频率字母出现的频数.在单词frequency和词组relative frequency中,频数最大的字母都=所有字母的总个数2.在词组relative frequency中,e的频数是e.在单词frequency中,e的频数是2,频率是94.是4,频率是17说明(1)频率是个比值,它可以用小数、百分数、真分数来表示,但当结果不能除尽时,只能选择用真分数来表示.(2)在两组数据中,某两个对象的频数相等,但频率不一定相等,频数大,不一定频率大.在同一组数据中,某两个对象的频数相等,频率也相等;频数大,频率也大.你能举两个具体的例子吗?3.频数与频率在实际问题中的应用.例3学期结束前,班主任想知道同学们对班长一个学期以来的工作表现的满意程度,特向全班40名学生(除班长外)作问卷调查,其结果如下:(1)请计算每一种反馈意见的频率;(2)你认为本次调查对班长下学期的连任有影响吗?为什么?解析(1)非常满意、较满意、基本满意、不满意、非常不满意的频率分别为0.075,0.5,0.3,0.1,0.025; (2)本次调查对班长下学期的连任没有影响.因为对班长一个学期以来工作表现满意的同学占绝大多数,频率是0.85.说明在下结论时,要根据调查的数据来说话,不能抛弃数据,只顾发表自己的见解,这样只能以偏盖全,最终达不到发现问题、解决问题的目的.本题的解答让我们体会到收集数据的重要性,体会到频数与频率在对数据进行整理、描述和分析中的重要性,让我们体会到“数据也能说话”:班长的工作是负责的,他可以连任.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数与频率一.选择题1.(2015•江苏苏州,第5题3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x/min0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数) 20 16 9 5则通话时间不超过15min 的频率为A .0.1B .0.4C .0.5D .0.9【难度】★【考点分析】考察概率,是中考必考题型,难度很小。

【解析】不超过15 分钟的通话次数共:20+16+9=45(次),总共通过次数为:45+5=50(次), 所以通过不超过15 分钟的频率为:故选:D 。

2.(2015·深圳,第6题 分)在一下数据90,85,80,80,75中,众数、中位数分别是( ) A 、8075, B 、80,80 C 、85,80 D 、90,80【答案】B .【解析】80出现两次,其它数字只出现一次,故众数为80,数据90,85,80,80,75的中位数为80,故选B 。

3.(2015·南宁,第4题3分)某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众数是( ).(A )12 (B )13 (C )14 (D )15图2考点:众数;条形统计图..分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数.解答:解:观察条形统计图知:为14岁的最多,有8人,故众数为14岁,故选C .点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.4.(2015·贵州六盘水,第7题3分)“魅力凉都六盘水”某周连续7天的最高气温(单位°C )是26,24,23,18,22,22,25,则这组数据的中位数是( )A .18B .22C .23D .24考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.故选:C .点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5. (2015·河南,第6题3分)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分C 【解析】本题考查加权平均数的应用.根据题意得86532590380285=++⨯+⨯+⨯=x —,∴小王成绩为86分.二.填空题1.(2015·黑龙江绥化,第17题分)在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.考点:中位数;折线统计图..分析:根据中位数的定义,即可解答.解答:解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).2.(2015•甘肃兰州,第18题,4分)在一个不透明的袋子中装有除颜色外其余均相同的个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。

以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出的值是________【答案】10【考点解剖】本题考查概率和频率【知识准备】当独立随机实验的次数足够大时,某现象发生的频率总在概率附近波动【解答过程】由列表知:摸出黑球的频率约为0.500,所以所有小球的数量约10个【题目星级】★★三.解答题1. (2015•四川广安,第21题6分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为4.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.考点:列表法与树状图法;频数(率)分布直方图..分析:(1)观察直方图可得:a=80﹣8﹣40﹣28=4;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽取到的选手A1和A2的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4;(2)画树状图得:∵共有12种等可能的结果,恰好抽取到的选手A1和A2的有2种情况,∴恰好抽取到的选手A1和A2的概率为:=.点评:此题考查了列表法或树状图法求概率以及直方图的知识.用到的知识点为:概率=所求情况数与总情况数之比.2 . (2015山东省德州市,19,8分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小明为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小明发现每月每户的用水量在5m2-35m2之间,有8户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小明绘制的图表和发现的信息,完成下列问题:(1)n= ,小明调查了户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在的小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?【答案】(1)210 96考点:频数分布直方图3.(2015湖南邵阳第22题8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B 0.5<t≤120C 1<t≤1.5 aD 1.5<t≤230E t>2 10请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.考点:条形统计图;用样本估计总体;频数(率)分布表;中位数..分析:(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.解答:解:(1)a=100﹣(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;(4)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.点评:本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.4.(2015湖南岳阳第21题8分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)频率篮球30 0.25羽毛球m 0.20乒乓球36 n跳绳18 0.15其它12 0.10请根据以上图表信息解答下列问题:(1)频数分布表中的m=24,n=0.3;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是.考点:频数(率)分布表;扇形统计图;概率公式..分析:(1)根据篮球的人数和所占的百分比求出总人数,再用总人数乘以羽毛球所占的百分比,求出m的值;再用乒乓球的人数除以总人数,求出n的值;(2)由于已知喜欢乒乓球的百分比,故可用360°×n的值,即可求出对应的扇形圆心角的度数;用总人数乘以最喜爱篮球的学生人数所占的百分比即可得出答案;(3)用随机抽取学生人数除以选择“篮球”选项的学生人数,列式计算即可得出答案.解答:解:(1)30÷0.25=120(人)120×0.2=24(人)36÷120=0.3故频数分布表中的m=24,n=0.3;(2)360°×0.3=108°.故在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;(3)3÷30=.故其中某位学生被选中的概率是.故答案为:24,0.3;108°;.点评:此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,概率公式,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.。

相关文档
最新文档