水下定位与导航技术声学多普勒测速技术概述

合集下载

对水下目标的多普勒直接定位

对水下目标的多普勒直接定位

比值 代 入式 ( ) 则又 可 以分别 得 到 1 , 1 A 一 )=r ( ( / 1—1 u /)
A/ / ( 一 )=r ( 2 u一1 )
的径 向距 离
简化 为仅基 于 多普 勒频 移或 实 测频 率值 的计 算 。
内 , 普 勒变化 率 可 由相邻 测 量 节 点之 间 的多 普 勒 多
裂1 . . o . l 0
. .
}囹 .! =
0 詈 2 [ 】 …s
即可解 出
D :' i0 /s 2 2n
标 速度和 航路捷 径 的精 确 计 算 公式 , 其 仍 需 要 在 但
测量 得到航 路捷 径 点处 的频 率 和 时 间之后 , 能 获 才 得 目标 的速度和距 离 , 这就 意 味 着 其 实质 上 和 老方 法一样 , 并不 是一 种实 时 的探 测方 法 。
收稿 日期 :0 01 -2 2 1 .1 0 修 订 日期 :0 01 — 2 1.12 9
1 定 位 公 式
1 1 测 量 模 型 .
如图 1 示 , 所 当水 下 目标 以速度 从 左 向右匀 速移 动 时 , 浮标 定周 期 的至 少 连续 三 次 检 测 目标 的 多普勒 频移 :

频 率值 , 用 径 向速度 近似 代 替 真实 速 度 来 计算 目 并
标 的航路 捷径 距 离 , 仅是 一 种 近 似 的方 法 。文 献 故 [] 2 通过 引人 任 意两个 测 量 点 的时 问信 息 导 出 了 目





式中, A=c o 信 号 的波 长 ; /r为 角 速 度 ; l 为 i 0 =v 9
为径 向距 离 ; =viO 分以得 到 勒频 移 方程 和多 普勒 变化 率 比值 代 = (s = s V 2 。) 0 n 0 t ) 可 别将 多普

海底地形地貌调查导航定位技术要求

海底地形地貌调查导航定位技术要求

海底地形地貌调查导航定位技术要求是一项重要的技术工作,它涉及到海底地形地貌的调查和导航定位系统的使用。

以下是一份海底地形地貌调查导航定位技术要求的参考内容,约800字:一、技术概述海底地形地貌调查导航定位技术是用于确定海底地形地貌位置、形态、大小等信息的测量技术。

它通过使用各种导航定位设备和方法,实现对海底地形地貌的精确测量和定位。

二、设备要求1. 导航定位设备:包括GPS接收机、北斗卫星接收机、水下声呐定位仪等,用于获取海底地形地貌的地理位置信息。

2. 测量设备:包括水下摄影设备、水下激光扫描仪、水下地形测量仪等,用于获取海底地形地貌的形态、大小等信息。

3. 数据传输设备:包括数据传输线缆、无线通信设备等,用于将测量数据传输到岸上或船上进行处理和分析。

三、操作流程1. 准备工作:包括设备检查、水下环境评估、测量方案制定等。

2. 测量实施:根据测量方案,使用相应的测量设备对海底地形地貌进行测量,记录数据。

3. 数据处理:将测量数据传输到岸上或船上,进行数据处理和分析,生成海底地形地貌的三维模型或图像。

4. 质量控制:确保测量数据的准确性和可靠性,对测量过程进行质量控制。

四、技术难点与解决方案1. 水下环境复杂:海底地形地貌复杂,水下环境不稳定,容易受到水流、洋流等影响,导致测量数据不准确。

解决方案包括使用稳定的水下定位仪、加强水下环境评估、提高测量设备的稳定性等。

2. 设备易受腐蚀:海底环境潮湿、盐分高,容易导致测量设备腐蚀损坏。

解决方案包括选择耐腐蚀的测量设备、定期对设备进行维护保养、使用防腐材料等。

3. 数据传输不稳定:水下环境复杂,容易导致数据传输不稳定或中断。

解决方案包括使用高质量的数据传输设备、加强数据传输过程中的信号监测、采用多种数据传输方式等。

五、安全要求1. 遵守相关安全规定,确保人员和设备安全。

2. 穿戴专业潜水装备或船只设备,确保在水下或船上作业时的安全。

3. 定期进行安全培训和演练,提高人员安全意识。

海底地形测量的关键技术与方法

海底地形测量的关键技术与方法

海底地形测量的关键技术与方法海底地形测量是一项对海洋科学和海洋工程领域至关重要的任务。

准确测量海底地形的关键技术和方法无疑对于海洋研究和资源开发具有重要意义。

本文将探讨几种重要的海底地形测量技术和方法。

1.声纳测深技术声纳测深技术是最常用的海底地形测量技术之一。

它利用声纳波束在水下传播的原理来获得海底地形的信息。

测深仪通过发送声波信号,根据声波信号的往返时间来计算海底的深度。

这种技术不仅可以精确测量海底的深度,还可以获取地形特征如海底峡谷、山脉等的描述。

声纳测深技术的主要优点是非侵入性,且适用于大范围的海域。

然而,由于声波的传播速度受到多种因素的影响,如水温、盐度和压力等,因此在进行声纳测深时需要进行校正和补偿。

2.多波束测深技术多波束测深技术是声纳测深技术的一种改进方法。

该技术利用多个声波发射器和接收器,并通过计算声波波束的散射点来推断海底地形。

相比传统的单波束测深技术,多波束测深技术能够提供更加精确和详细的海底地形信息。

多波束测深技术的应用领域广泛,包括海洋测绘、海底管道敷设和海底地质研究等。

然而,在复杂的海底地形条件下,多波束测深技术的应用可能存在一定的局限性。

3.定位技术准确的位置信息对于海底地形测量也是至关重要的。

全球定位系统(GPS)和LORAN(低频无线导航系统)是两种常用的海底定位技术。

GPS通过卫星定位技术精确测量探测器的位置,从而提供准确的海底地形测量数据。

而LORAN则利用地面和海底基站之间的时间延迟来确定探测器的位置。

这些定位技术可以与声纳测深技术结合使用,以提供更加准确和可靠的海底地形数据。

4.激光扫描技术激光扫描技术是一种近年来得到广泛应用的海底地形测量技术。

这种技术利用激光束测量海底地形的高程信息。

激光扫描技术具有高精度、高分辨率和高效率的特点,可以获取精确的海底地形数据。

通过激光扫描技术,可以获取海底地形的地形线图和三维模型,为海洋研究和工程提供重要参考。

然而,激光扫描技术在应用中需要考虑光线在海水中的传播和散射问题,因此在复杂的海底环境中可能存在一定的挑战。

水下定位系统(USBL)

水下定位系统(USBL)

THANKS
感谢观看
和应用。
数据传输
通过有线或无线方式将定位数据 实时传输到上位机或控制中心,
实现远程监控和管理。
数据接口
提供标准的数据接口,方便与其 他系统进行集成和数据共享。
04
USBL系统性能指标评价方法
定位精度指标分析
均方根误差(RMSE)
衡量定位精度的常用指标,计算预测位置与实际位置之间的欧氏距离的平均值。
USBL定位算法
到达时间差(TDOA)定位算法
通过测量声波到达不同接收阵元的时间差,结合阵列的几何关系和声速信息,解算出目标 的位置。
到达角度(AOA)定位算法
利用阵列信号处理技术估计出声波到达阵列的方位角和俯仰角,进而确定目标的位置。
联合TDOA和AOA定位算法
同时利用TDOA和AOA信息,构建联合定位方程组,提高定位精度和稳定性。
深度学习算法应用
通过深度学习算法对传感器数据进行处理和分析 ,提高水下定位系统的智能化水平。
新型水声通信技术
采用高速、高效的水声通信技术,实现水下定位 系统与水面支持设备之间的实时数据传输。
智能化、自主化发展趋势
自主导航技术
结合惯性导航、地形匹配等自主导航技术,提高水下定位系统的 自主性和适应性。
最大正负差(Max/Min Error)
表示定位结果中最大正偏差和最大负偏差,用于评估系统的极端误差情况。
圆概率误差(CEP)
以50%的概率落在以真实位置为圆心、半径为CEP的圆内的定位误差。
稳定性指标评估
01
重复定位精度
在相同条件下,多次定位结果的 一致性程度,反映系统的稳定性 。
漂移误差
02
03
水下定位系统(USBL)

自主水下航行器导航与定位技术

自主水下航行器导航与定位技术

自主水下航行器导航与定位技术发布时间:2023-02-03T02:36:04.888Z 来源:《科学与技术》2022年第18期作者:杜晓海[导读] 自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,杜晓海海军装备部 710065摘要:自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,在执行任务时需要准确的定位信息。

现有AUV主要采用基于捷联惯性导航系统(SINS),辅以声学导航和地球物理场匹配导航技术。

本文简要介绍了水下导航模式的基本原理、优缺点和适用场景;讨论了各种导航模式中的关键技术,以提高组合导航的精度和稳定性。

通过分析现阶段存在的问题,展望了水下航行的未来发展趋势。

关键词:自主水下航行器;智能导航;智能定位本文综述了目前主流的AUV水下导航关键技术,包括DVL测速技术、LBL/SBL/USBL水声定位导航技术、地形辅助导航技术、地磁辅助导航技术和重力辅助导航技术以及协同导航技术,介绍了相关导航技术的基本原理和发展,分析和总结了水下自主导航中各技术的关键问题和技术难点,最后展望了AUV水下导航技术的未来发展。

1 SINS/DVL定位技术DVL是一种利用声波多普勒效应测量载流子速度的导航仪器。

根据AUV与水底之间的相对距离,DVL有两种模式:水底跟踪和水底跟踪。

当载流子与水底的相对距离在该范围内时,声波可以到达水底,当AUV与水底之间的相对距离超过范围时,声波无法到达水底,DVL采用水跟踪模式。

根据传输波速的多少,可以分为单波束、双波束和四波束。

1.1 SINS/DVL对准技术惯性导航可以为AUV提供实时的姿态、速度、位置等导航信息。

然而,初始对准必须在使用前进行,初始对准的结果在很大程度上决定了最终的集成精度。

通常,AUV在停泊或航行于水面时接收GPS信号进行初始对准。

在特定的任务背景下,AUV需要在水下运动期间完成初始对准,因此,许多学者提出了基于DVL辅助的移动基站对准。

水声定位导航概述

水声定位导航概述

1 传统的导航手段 (1)路标导航 路标导航是利用罗经、测距仪及六分仪测定路 标的方位(船与路标连线与船舶所在子午线的夹 角)、距离或水平夹角等决定船舶位置的导航过 程。 (2)天文导航 天文导航是利用六分仪测定天空中具有一定 规律的天体(星、太阳、月亮)决定船舶位置进 行导航的过程。 (3)传统导航手段的特点 传统的导航手段只能在天气良好的条件下, 物标或天体的能见度良好时才能适用,而且观测 繁杂、速度慢、精度差。
8.4 水声定位与导航技术简介
水声定位与导航技术大体分为三类:水声定位技术、载 体声学测速技术和海底地形地貌测量技术。 8.4.1 水声定位系统 水声定位系统主要指可用于局部区域精确定位与导航的 系统。水声定位系统分为:长基线系统、短基线系统和超 短基线系统。 水声定位系统都有多个基元(接收器或应答器),这些 基元间的连线成为基线。
8.1 定位与导航概述
1 什么是定位与导航 定位与导航可以简单归结为怎样回答下面三个 问题: (1)我在什么地方?(2)我要到哪去?(3) 我怎样去那里?回答这三个问题必须要有一个参 照,也就是一个坐标系统,如以国家大地基准、 WGS-84坐标系统等为参考来回答这三个问题。 2 绝对定位与相对定位 海洋空间定位分为绝对定位和相对定位。以 国家大地基准、ITRF或WGS-84为参考的定位称 为绝对定位,如国家领海的划分等。小范围的海 洋活动需采用相对定位,如寻找石油井口或打捞 沉船等。
定量描述声波传播一定距离后声强度的衰 减变化:
I1 TL 10lg Ir
声纳参数
目标强度TS
定量描述目标反射本领的大小 :
Ir TS 10 lg Ii
Q
C
目 标
r 1
P
Ir
1m

第六章——声学定位及综合导航

第六章——声学定位及综合导航

为水面上或水体中目标定位。 若潜艇、水面船只上安装该设备,则可以为特殊地区(无法 或不能进行GPS定位)情况下运动载体进行定位。 开发出高精度定位的水下DGPS系统,建立水下立体高精度 定位系统,解决深拖、ROV(Remotely Operated Vehicle)、 深海载人潜器以及各种取样器和特殊水下工程的水下高精度 定位问题。
水听器
水声应声器
声信标工作方式(测时差/相差定位方式)
H1
x
bx
H2

z
测量T到H1和H2的时间差为t1=t1-t2, 测量T到H2和H3的时间差为t2=t2-t3 则产生的距离差为vt1和vt2 ,则相 应的角度x、y和z为:

x
P y
T
x
R
x
sin x sin y
水下声学定位目前常采用的系统主要有:
长基线定位系统 短基线定位系统
超短基线定位系统
在实际应用中,由于单一定位系统的缺陷,需要 将几个系统联合起来,保证定位或导航结果的正确性, 即组合导航
§6.2 长基线声学定位系统
通常在海底布设3个以上的应答器Ti,以一定的图形 组成海底基阵,如三角性或四边形。基线长度按照 作业区域确定。运载工具位于基阵内,测量到Ti的 距离而确定点位。 长基线的定位精度比较高,一般可达到5m~20m, 最大测程为5km,定位方式有两种:
响应器工作方式
响应器是通过电缆与测量船相连接的。响应器的发 射是由测量船控制的。触发一次,测量一次。 响应器的工作方式与应答器的工作方式基本相同。 不同之处在于询问应答是声路径,而响应应答是电 路径,因而计算作业船到响应器的距离仅使用单程 传播时间。 与应答器的工作方式相比,该方法的电 路径询问干扰小,可靠性好;缺点在于需要电缆连 接。

水声定位的原理与应用

水声定位的原理与应用

水声定位的原理与应用1. 引言水声定位是一种利用水中传播的声波进行目标定位的技术。

其原理基于声波在水中的传播特性以及目标反射、散射声波的物理效应,因此在海洋科学研究、海洋工程、海洋资源开发等领域有广泛的应用。

本文将介绍水声定位的原理和其在不同领域中的应用。

2. 原理水声定位基于声波在水中传播的特性,通过测量声波的传播时间和方向来确定目标的位置。

主要原理包括声速测量、时间差测量和方位角测量。

2.1 声速测量声速是水声定位的重要参数,它受到水温、盐度和压力等因素的影响。

通过测量声速可以校正和修正声波传播时间,从而提高定位的精度。

2.2 时间差测量时间差测量是水声定位中常用的测距方法。

通过在不同位置接收到声波的时间差来计算目标与接收器之间的距离。

常用的时间差测量方法包括单次时间差测量、双次时间差测量和多次时间差测量。

2.3 方位角测量方位角测量用于确定目标相对于接收器的方向。

通过接收到声波的信号强度和相位差等信息来计算目标的方位角。

常用的方位角测量方法包括声强比较法、相位差法和多基站测量法。

3. 应用水声定位在海洋科学研究、海洋工程和海洋资源开发等领域有广泛的应用。

3.1 海洋科学研究水声定位在海洋科学研究中用于测量海洋中的生物群落、底质和水柱的属性。

通过定位获取的位置信息,科学家可以研究海洋生态系统的动态变化、物种分布和迁徙规律。

3.2 海洋工程水声定位在海洋工程中用于定位和追踪海底设施,如海洋油井、海底电缆和海洋观测设备。

通过精确的定位信息,工程师可以进行维护、修复和调整工程设施,提高工作效率。

3.3 海洋资源开发水声定位在海洋资源开发中用于勘探和开采海底油气资源、矿产资源和生物资源。

通过准确的目标定位,可以提高资源开发的效率和收益,并减少对海洋环境的影响。

4. 总结水声定位是一种利用水中传播的声波进行目标定位的技术,其原理基于声波在水中的传播特性以及目标反射、散射声波的物理效应。

水声定位在海洋科学研究、海洋工程和海洋资源开发等领域有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前后沿所t需1 往返t2时间1不2x同T,x 其差无有值相相是对对运运动动时,t2t前1-后t22变沿L化到/了达1C多的少时x2时间x间应T?当相等,
因此,接收信号的脉宽为
Tr T (t1 t2 ) 接收信号频率变为
T
2xT 1 x
1 1
x T x
结论
fr
1 Tr
1 x 1 1 x T
5.3 影响多普勒测速的主要因素及改 进方法
由解算公式近似引起的误差 船舶摇摆引起的测速误差及摇摆补偿 传播声速引起的测速误差 有限波束宽度的影响 噪声对频率测量的影响 安装角度偏离误差及其校正
12
2020/5/2
船舶摇摆引起的测速误差及摇摆补偿
在有摇摆和上下起伏时
向前的I号波束测得的多普勒频移为
fd
f dI
f dII
4vx C
fT
c os c os
vz vx
sin
在船舶无摇摆及上下起伏时
前后两波束接收信号的频差为
f dr
4vx C
fT cos
相对频率测量误差
fd fd fdr cos vz sin 1
f r1
1 1
x x
fT
fr2
1 x 1 x
fT
前后两波束接收信号的频差为
fd1
的多普勒频移
fd
4x fT
4vx C
fT cos
4x
引入的相对测速误差为 fd 1 x2
4x
f d1
4x
x2
vx
cos
C
2
1 x2
11
2020/5/2
水下定位与导航技术
第五章 声学多普勒测速技术
2020/5/2
1
5.1 引言
舰船导航设备的类型
无线电导航设备,典型的有劳兰-C系统(定位精度 约200米)、系统(精度约1海里)以及台卡系统 (精度25米)等。
卫星导航系统,全球卫星导航系统定位精度可达 5~10m。
惯性导航系统。可长时间连续工作,但是有累积误 差,其量级达到每小时几十米。
(1 x)2
信号频率为:fr 1 x fT 1 x2 fT
f dII
2vx C
fT cos
多普勒频(1移 2x) fT
fT
1
2vx C
cos
fd
f dI
f dII
4vx C
fT cos
为:
f dx
fr
fT
2xfT
2vx C
fT cos
水平速度 :
C
vx 2 fT cos f dx
f dI
2vx C
fT
cos(
)
2vz C
fT ( cos )
2vx C
fT
cos(
)
2vz C
fT sin( )
fd fdI 向fdII后的II号波束测得的多普勒频移为
2vx C
fTf
cdII
os
(2vx
C
fT) c
ocso(s(
))2v2zvzf
CC
TfT(scino(s
)
)
s
in(
)
2vx C
fT
2
cos2Cvxc
ofTscos(2vz
C
fT 2)cos2Cvz
sfiTnsin(
)
前后两波束接收信号的频差为
fd
fdI fdII
4vx C
fT coscos
13
vz vx
sin
2020/5/2
船舶摇摆引起的测速误差及摇摆补偿 利用姿态测量装置对速度进行修正
各个测量误差对总误差的贡献
减小测速误差的方法
相控阵多普勒测速技术
多普勒计程仪在大深度使用时摇摆问题的分析及摇摆补偿
多普勒测速声呐频率测量技术
3
2020/5/2
5.2 舰船多普勒测速原理
多普勒效应的时域分析
脉冲前沿到达时刻
t1
设脉冲经目标反射回到接收点
的时间为t1,
则目标移动的距离为 vt1 / 2 。
传播声速引起的测速误差 有限波束宽度的影响 噪声对频率测量的影响
vx
4
cf d
fT cos
安装角度偏离误差及其校正
9
2020/5/2
由解算公式近似引起的误差 没有近似时的多普勒频移为
fT--发射频率 fr--接收频率 fd--多普勒频移
f d1
fr
fT
1 x 1 x
fT
fT
2x 1 x
1 x 1 x
f
0T
t1 t2+T
在相向运动时,脉冲被压缩;在相离运动时,脉冲被展宽。
6
2020/5/2
5.2 舰船多普勒测速原詹纳斯理(Janus)配置
舰船多普勒测速原理
x v/C
船与被照射 v vx cos
区的相对径 向速度为 :
x vx cos
C
f dI
2vx C
fT cos
接收的回波 1 x
fT
一阶近似后的多普勒频移
f dx
2xfT
2vx C
fT cos
引入的相对测速误差为
2x
fd fd1 fd 1 x 2x x vx cos
f d1
f d1
2x
C
1 x
10
2020/5/2
由解算公式近似引起的误差
詹纳斯配置
fd x vx cos
fd1
C
没有近似时I号波束、II号波束接收的信号频率为
vx
Cf d
4 fT cos
7
2020/5/2
5.2 舰船多普勒测速原理
舰船多普勒测速原理
詹纳斯(Janus)配置
十字形配置和X形配置
船首尾线方向
船首尾线方向
前后左右形配置8
X形波束2配02置0/5/2
5.3 影响多普勒测速的主要因素及改 进方法
由解算公式近似引起的误差
船舶摇摆引起的测速误差及摇摆补偿
计算法定位导航设备
机械式导航设备:水压式测速计、拖曳式旋转流量计等。
电子式导航设备:电磁计程仪、声多普勒计程仪和声相关 计程仪。
2
2020/5/2
5.1 引言
多普勒现象
目标与声源的相对运动(相向、相离)
声源和接收一体的情况
多普勒速度解算公式
舰船的测速原理、方法
测速误差产生的原因
影响多普勒测速的主要因素及改进方法
vt2 / 2 vT
若其往返时间为t2,在t2时间内目标又向声呐靠近 vt2 / 2 。
因此有
1
1
L 2 vt2 vT 2 Ct2
由此得到后沿的往返时间为
x v/c
t2
2L / C 2xT 1 x
5
2020/5/2
5.2 舰船多普勒测速原理
多普勒效应的时域分析 换能器接收到的脉冲宽度
2L / C 2L / C t1 1 v / C 1 x
因此有
L vt1 Ct1 22
因而得到前沿往返时间为
ct1 / 2
vt1 / 2
2L 2L / c 2L / c t1 v c 1 v / c 1 x
4
2020/5/2
5.2 舰船多普勒测速原理
多普勒效应的时域分析
脉冲后沿到达时刻
t2 设发射脉冲宽度为T, 则当脉冲后沿离开换能 器表面时,目标已向声 呐靠近了vT。
相关文档
最新文档