第二十届华罗庚金杯少年数学邀请赛C卷试题及答案

合集下载

第二十届华杯赛解答

第二十届华杯赛解答

(B) 12 分
(24 ´ 60) ´ 66 = 1452 720 分钟,所以比标准 11
时间 24 小时对应的 24 ´ 60 = 1440 分钟多了 1452-1440=12 分钟,即慢了 12 分钟
6. 在右图的 6× 6 方格内, 每个方格中只能填 A, B, C, D, E, F 中的某个字母,要求每行、每列、每个 3 长方形的六个字母均不能重复.那么, 标有粗线的 2× 第四行除了首尾两个方格外, 中间四个方格填入的字母
【答案】630 【题型】几何:一半模型 【解析】
A A ①② F ③ D⑫ ④ ⑪ P ⑤ ⑩ ⑨ ⑧⑦ ⑥ C B E C
D P B E
F
S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ; 过点 P 作 AB , AC , BC 的平行线, 则 S1 = S2 ,
第二十届华罗庚金杯少年数学邀请赛
初赛 A 卷解析(小学高年级组)
总分:150 分时间:60 分钟
一、选择题. (每小题 10 分,共 60 分.以下每题的四个选项中,仅 有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号 内. )
1.
现在从甲、 乙、 丙、 丁四个人中选出两个人参加一项活动. 规定: 如果甲去, 那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去 参加活动的两个人是() . (A)甲、乙 (B)乙、丙 (C)甲、丙 (D)乙、丁
1 1 2 所以 S阴影 =S白 = S△ABC = 2028 = 1014cm ,则 S△PCF = 1014 - 192 2 = 630cm2 2 2
9. 自然数 2015 最多可以表示成________个连续奇数的和.

华杯赛小高近 真题 附详解 C

华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组b卷)

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组b卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)一、填空题(每小题10分,共80分)1.(10分)计算:3752÷(39×2)+5030÷(39×10)=.2.(10分)如图中,∠A+∠B+∠C+∠D+∠F+∠G 等于度.3.(10分)商店以每张2角1分的价格进了一批贺年卡,共卖14.57元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了角.4.(10分)两个班植树,一班每人植3棵,二班每人植5棵,共植树115棵.两班人数之和最多为.5.(10分)某商店第一天卖出一些笔,第二天每支笔降价1元后多卖出100支,第三天每支笔比前一天涨价3元后比前一天少卖出200支.如果这三天每天卖得的钱相同,那么第一天每支笔售价是元.6.(10分)一条河上有A,B两个码头,A在上游,B在下游.甲、乙两人分别从A,B同时出发,划船相向而行,4小时后相遇.如果甲、乙两人分别从A,B同时出发,划船同向而行,乙16小时后追上甲.已知甲在静水中划船的速度为每小时6千米,则乙在静水中划船每小时行驶千米.7.(10分)某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是.8.(10分)在三个给词语“尽心尽力”、“力可拔山”和“山穷水尽”中,每个汉字代表1至8之间的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,如果每个词语的汉字所代表的数字之和都是19,且“尽”>“山”>“力”,则“水”最大等于.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)有一批作业,王老师原计划每小时批改6本,批改了2小时后,他决定每小时批改8本,结果提前3小时批改完,那么这批作业有多少本?10.(15分)用五种不同的颜色涂正方体的六个面.如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的)11.(15分)如图所示,有一个圆圈填了数字1.请在空白圆圈内填上2,3,4,5,6中的一个数字,要求无重复数字,且相邻圆圈内的数字的差至少为2.问共有几种不同的填法?12.(15分)边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG于P,则图中阴影部分APEG的面积是多少?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:3752÷(39×2)+5030÷(39×10)=61 .【分析】根据除法的性质,原式=3752÷2÷39+5030÷10÷39=1876÷39+503÷39=(1876+503)÷39=2379÷39=61,据此解答即可.【解答】解:3752÷(39×2)+5030÷(39×10)=3752÷2÷39+5030÷10÷39=1876÷39+503÷39=(1876+503)÷39=2379÷39=61;故答案为:61.2.(10分)如图中,∠A+∠B+∠C+∠D+∠F+∠G 等于360 度.【分析】连接CD,有∠G+∠F=∠EDC+∠ECD,这样就转化成四边形的内角和了,四边形的内角和是360度.【解答】解:连接CD,有∠G+∠F=∠EDC+∠ECD,所以,∠A+∠B+∠C+∠D+∠F+∠G=∠A+∠B+∠C+∠D+∠EDC+∠ECD=四边形ABCD的内角和,180×(4﹣2)=180×2=360(度)答:∠A+∠B+∠C+∠D+∠F+∠G 等于 360度.故答案为:360.3.(10分)商店以每张2角1分的价格进了一批贺年卡,共卖14.57元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了47 角.【分析】将14.57元化为整数是1457分,售价应是不超过42的奇数,容易试出答案.【解答】1457分解质因数是1457=31×47,47超过了21的2倍,31符合条件,所以售价是31分,进而数量是47张,47×(31﹣21)=470分=47角故答案为:47.4.(10分)两个班植树,一班每人植3棵,二班每人植5棵,共植树115棵.两班人数之和最多为37 .【分析】设一班a人,二班b人,则有3a+5b=115,求两班人数最多,算式转化成:3(a+b)+2b=115,a+b最大,b尽可能的小,b=2时,a+b =37.【解答】解:设一班a人,二班b人,则3a+5b=115,3(a+b)+2b=115,a+b最大,b尽可能的小,b=1时,得出a不是整数,b=2时,3(a+2)+2×2=1153a+6+4=1153a=105a=35a+b=35+2=37(人)答:两班人数之和最多的是37人.故答案为:37.5.(10分)某商店第一天卖出一些笔,第二天每支笔降价1元后多卖出100支,第三天每支笔比前一天涨价3元后比前一天少卖出200支.如果这三天每天卖得的钱相同,那么第一天每支笔售价是 4 元.【分析】设第一天每支笔售价x元,卖出y支,那么根据总价=单价×数量可知:第一天卖出的钱数就是xy元,第二天的单价就是x﹣1元,卖出的支数是y+100支,第二天卖出的总价就是(x﹣1)(y+100);同理得出第三天卖出的总价,再分别根据第一天卖出的钱数与第二天和第三天卖出的钱数分别相等列出方程组,再化简求解.【解答】解:设第一天的单价为x元,数量为y只,那么有:化简得:解得:答:第一天每支笔售价是 4元.故答案为:4.6.(10分)一条河上有A,B两个码头,A在上游,B在下游.甲、乙两人分别从A,B同时出发,划船相向而行,4小时后相遇.如果甲、乙两人分别从A,B同时出发,划船同向而行,乙16小时后追上甲.已知甲在静水中划船的速度为每小时6千米,则乙在静水中划船每小时行驶10 千米.【分析】在流水行船问题中,两船相遇的速度即两船的速度和,两船追及速度即两船的速度差.相向而行两船所行的路程是A、B两个码头之间的距离,同向而行两船的距离差也为A、B两个码头之间的距离,因此根据路程相等,设乙船的速度是x千米/小时,列出方程(x+6)×4=(x﹣6)×16,解决问题.【解答】解:设乙船的速度是每小时x千米,(x+6)×4=(x﹣6)×164x+24=16x﹣9612x=120x=10答:乙在静水中划船每小时行驶10千米.故答案为:10.7.(10分)某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是62 .【分析】根据2、3、5的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数;各位上的数字之和是3的倍数,这个数一定是3的倍数;个位上是0或5的数都是5的倍数;据此解答即可.【解答】解:2、3、4、5的最小公倍数是:2×3×2×5=60,已知这个两位数是偶数,在60~70之间5的倍数是65,又知这个两位数加上3是5的倍数,所以这个两位数是65﹣3=62,答:这个两位数是62.故答案为:62.8.(10分)在三个给词语“尽心尽力”、“力可拔山”和“山穷水尽”中,每个汉字代表1至8之间的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,如果每个词语的汉字所代表的数字之和都是19,且“尽”>“山”>“力”,则“水”最大等于7 .【分析】通过分析可知:由“尽心尽力”、“力可拔山”和“山穷水尽”三个词语中每个词语的汉字所代表的数字之和都是19,可得方程:可得3尽+心+2力+可+拔+2山+穷+水=19×3=57而1~8的和是36,则有2尽+1力+1山=57﹣36=21,与(1)比较得山﹣心=2.“尽”>“山”>“力”,“力”尽可能大,“尽”才最小,假定“力”、“山”、“尽”是连续自然数,有2(力+2)+力+1+力=21 “力”为4,此时山=5,心=3,尽=6;(1)式满足:6+3+6+4=19;(3)式:5+穷+水+6=19穷水,水此时最大为7,穷为1,来推倒2式:(2)式:4+可+拔+5=19可拔,而现在只剩下2和8了,满足条件.此时水最大为7若水最大取8时,有但此时6(尽)、4(山)、5(力),不满足“尽”>“山”>“力”,所以不符合要求.故水最大为7.据此解答即可.【解答】解:由“尽心尽力”、“力可拔山”和“山穷水尽”三个词语中每个词语的汉字所代表的数字之和都是19,可得方程:(1)+(2)+(3)可得:3尽+心+2力+可+拔+2山+穷+水=19×3=57而1~8的和是36,则有2尽+1力+1山=57﹣36=21,与(1)比较得山﹣心=2.“尽”>“山”>“力”,“力”尽可能大,“尽”才最小,假定“力”、“山”、“尽”是连续自然数,有2(力+2)+力+1+力=21 “力”为4,此时山=5,心=3,尽=6;(1)式满足:6+3+6+4=19;(3)式:5+穷+水+6=19穷水,水此时最大为7,穷为1,来推倒2式:(2)式:4+可+拔+5=19可拔,而现在只剩下2和8了,满足条件.此时水最大为7若水最大取8时,有但此时6(尽)、4(山)、5(力),不满足“尽”>“山”>“力”,所以不符合要求.故水最大为7.故答案为:7.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)有一批作业,王老师原计划每小时批改6本,批改了2小时后,他决定每小时批改8本,结果提前3小时批改完,那么这批作业有多少本?【分析】根据题意知道,这批作业的总数本变,即工作总量一定,那么计划与实际的工作效率与工作时间成反比例,据此设出原计划x小时批改完,列出方程先求出原计划用的小时数,再根据工作效率×工作时间=工作量进而得解.【解答】解:设原计划x小时批改完,由题意得:6×2+8(x﹣3﹣2)=6x12+8x﹣40=6x8x﹣6x=282x=28x=14.6×14=84(本);答:这批作业有84本.10.(15分)用五种不同的颜色涂正方体的六个面.如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的)【分析】用五种不同的颜色涂正方体的六个面.先确定1种颜色染一组对面,剩下的4种颜色(用a、b、c、d表示)有abcd、acdb、acbd,3种染色方法,有•3=15种;据此解答即可.【解答】解:根据分析可得,•3=5×3=15(种);答:共有15种不同的涂色方法.11.(15分)如图所示,有一个圆圈填了数字1.请在空白圆圈内填上2,3,4,5,6中的一个数字,要求无重复数字,且相邻圆圈内的数字的差至少为2.问共有几种不同的填法?【分析】可以按照数字找位置来分析,数字2不能在1附近,数字3有不在2附近,可以根据数字的位置枚举出来进行分析即可.【解答】解:相邻两个圆圈内的数字的差至少为2,设如图所示字母为a,b,c,d,e所以2只能填在d和e.(1)d处填2,2的周围不能有3.所以3只能填在a处.3的周围不能填4,4只能填在c和e.,5、6不能在一起,所以5填在b.6和4可以在c 和e交换,此时2种填法;(见中图)(2)e处填2,3填a或者b处.3填a处,4、5、6必有两个相邻,没有满足条件的填法;3填b处,4只能填入c处,5只能填入a处,6填入d处.1种填法;(见右图)故共2+1=3种填法.答:共有3种不同的方法.12.(15分)边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG于P,则图中阴影部分APEG的面积是多少?【分析】首先需要将阴影部分和已知的正方形的边长的关系找到,可根据△APG转换成同底等高的△DPG,然后再根据等积变形的原理与边长为6的正方形联系起来即可解决.【解答】解:依题意可知:将△APG移到△DPG(如上面中图),连接DB,DB与GE平行.△DGE等于△BGE的面积(如上面右图).S阴=6×6÷2=18cm2.答:影部分APEG的面积是18cm2.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:00:15;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

历年华罗庚金杯试题

历年华罗庚金杯试题

历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。

把5个这样的方框放在桌面上,成为这样的图案。

问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。

被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。

晴天每天可以采20个。

有雨的天每天只能采12个。

它一连几天采了112个松籽,平均每天采14个。

问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。

它的高是10米,长、宽都大于高。

问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60公里。

8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。

到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数和的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。

黑暗中想从这些筷子中取出颜色不同的两双筷子。

问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。

2015年第二十届华杯赛决赛C卷详解(高年级组)

2015年第二十届华杯赛决赛C卷详解(高年级组)

1 =336(千米)。 4
3
成都市青羊区金河路 59 号尊城国际 13 楼 1305 10.
68890961
【答案】33 【解析】最简分数的分母只含有 2 或 5,化为小数才为有限小数 分母形式只能是: 2 5 ,且 2 5 2016 ,则 5 2016, b 4
a b a b
【答案】101 【解析】由于∠ADH+∠IDE=90°,则△AHD 与△DIE 完全相同, 则 S△AHD=S△DIE=11×9÷2,可得 AH=DI=9,HB=11-9=2, 得 S 阴影=SABEI-S△DIE-S△ADH-S△HBE= (11+9)×11-11×9÷2-11×9÷2-2×20÷2=101.
5
成都市青羊区金河路 59 号尊城国际 13 楼 1305 14.
68890961
【答案】3 【解析】① 若 48 名学生分到的数量互不相同,则 至少要: 0 1 2 3 47 1128 530 ,不满足条件 ② 若只有 2 名学生分到的书数量相同,则 至少要: (0 1 2 3 23) 2 552 530 ,不满足条件 ③ 若有 3 名学生分到的书的数量相同,则 至少要: (0 1 2 3 15) 3 360 530 ,满足条件 综上所述:至少有 3 名学生分到的书的数量相同。
成都市青羊区金河路 59 号尊城国际 13 楼 1305
68890961
第二十届华罗庚金杯少年数学邀请赛
决赛 C 试卷(小学高年级组) 一、选择题(每小题 10 分,共 80 分.)
1. 科雅数学 电话:68890961,86111521; 科雅小升初 QQ 交流群: 194587786; 科雅 5 年级 QQ 交流群:252737962; 科雅 3,4 年级交流群: 217107180;

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛决赛试题C 参考答案 (小学高年级组)一、填空题(每题10分, 共80分)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9.答案: 336千米解答.设A 和B 两地距离是336千米(1)乙车上午7点从B 出发,10点30分到A 地,说明乙车走完全程需要3小时30分;丙车上午7点从中点C 出发,10点丙车到达A 地,说明丙车走半程需要3小时,走完全程需要6小时,所以, 3.573.5=6 612⨯⨯==丙速乙速丙速,乙速;(2)当甲车和丙车相遇时,乙车恰好走完全程的38,所以,142338+==甲速丙速乙速,结合(1),可知:493=34=-=甲速7乙速1212; (3)当乙车走到A 地时,甲车距离B 地还有84千米,84484336AB AB AB -==⨯=甲的速度,乙的速度(千米).10.答案: 33解答. 注意,可化为有限小数的分数的分母的质因数只能是2和5.2015个分数12,13,14,…,12014,12015,12016中, (1)分母只有质因数2的分数:23101111121024222,,,=,10个;(2)分母只有质因数5的分数:234111115625555,,,=,4个; (3)分母只有质因数2和5的分数:23811111251280252525⨯⨯⨯⨯,,,,=,222326211111160025252525⨯⨯⨯⨯,,,,=,323334311111200025252525⨯⨯⨯⨯,,,=,411125025⨯=,19个. 所以,共有10+4+8+6+4+1=33个有限小数. 11.答案: 9解答. a + b =9.通分,a b a b ++=755735. 由小数点第3位经四舍五入,故有:52.675=..a b ⨯≤+<⨯15053575151535=53.025,既然a ,b 为正整数,a b ≤+≤537553,即:a b +=7553.解出a b ==4,5,故a + b =9. 12.答案: 3015.解答. 四位数abcd 最大值是3015.显然,e d ≠=0,5.并设e f =-10,这里f ≥1,故有:abc aa e =⨯55,abc aa aa f =-⨯5505,所以,bc a aa f =-⨯5505. 上式右端a 50大于aa f ⨯5,所以f =1,50bc a =-55,得到:b =0和a c +=4.所以abcd 最大值是3015.三、解答下列各题(每题15分, 共30分, 要求写出详细过程)13.答案: 35 cm 2.解答.△CDE 的面积是35 cm 2.连接BD ,见图3a ,由共边定理,ABF DBF S S ∆∆==82123. (1)由已知条件ABCD 是平行四边形和三角形面积公式,可知:()ABF DBF ABF S S S ∆∆∆+=+1722,(2) 由(1)和(2),得到,ABF S ∆=18cm 2.所以ABE S 18810∆=-=cm 2.平行四边形ABCD 的面积=(72+18)=90(cm 2),BCE AED ABCD S S S 平行四边形11904522∆∆+=⨯=⨯=,=BCE AED AEF DEF S S S S 45454581225∆∆∆∆=-=--=--.所以,△CDE 的面积=72-25-12=35cm 2.14.答案: 3名解答. 至少有3名学生分到的书的数量相同.如果48名学生分到的书籍的数量不同,则书籍总数是:474801234711282⨯+++++==(本), 1128大于530,显然会有2名以上学生分到的书籍的数量相同.将48名学生分成24组,每组有2名学生,如果允许每组内的两名学生分到相同数量的书籍,但是不同组的学生分到的书籍数量不相同,则书籍的总数是:()20123232324552⨯+++++=⨯=,552仍然大于530,希望最多仅有两名学生分到的书籍的数量相同是做不到的.图3a所以,至少有三名学生分到的书籍的数量相同.现在将530本书分给48名学生,相当于拆分一个自然数530,()530201232224=⨯++++++.上式的含义是有23组共46名学生,同一组内的学生分到相同数量的书籍,但是不同组的的学生分到的书籍数量不同,则一共有()⨯+++++=(本),2012322506余下的24本书分给第24组的2名学生,则至少有一个学生分到的书籍的数量不大于22.所以,一定有3名学生分到相同数量的书籍.。

华杯赛历届试题及答案

华杯赛历届试题及答案

华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。

以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。

答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。

如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。

要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。

2. 一个班级有48名学生,其中1/3是男生,剩下是女生。

问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。

剩下的学生是女生,所以女生人数为48 - 16 = 32名。

四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。

答案:设n为任意正整数。

我们需要证明n^3 + n ≥ n^2 + 2n。

展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。

由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x =.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+= 1 .【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8 种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479 .【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101 平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析故答案是:S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8 种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是224 平方厘米.【分析】长宽高的和是:88÷4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2 .【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569 .【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B 地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.2×S▱ABCD、而S△BDF=0.6×S△ABD=0.3×S▱ABCD;S△BCDF=S△BFD+S△BCD,求出S▱ABCD;由S△ABF=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;S△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;故S△ECD=45.答:S△ECD的面积为45cm2.14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:59:44;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十届华罗庚金杯少年数学邀请赛
决赛试题 C (小学高年级组)
(时间: 2015 年 4 月 11 日 10:00~11:30)
一、 填空题(每小题 10 分, 共 80 分)
1. 计算:
=-+⨯++-5284.11.03.0441225.175.01
2. 将自然数 1 至 8 分为两组,使两组的自然数各自之和的差等于 16,共有( )种不同的分法。

3. 将 2015 的十位、百位和千位的数字相加,得到的和写在 2015 个位数字之后,得到一个自然数 20153;将新数的十位、百位和千位数字相加,得到的和写在 20153 个位数字之后,得到 201536;再次操作 2 次,得到 201536914,如此继续下去,共操作了 2015 次,得到一个很大的自然数,这个自然数所有数字的和等于( )。

4. 图 1 中,四边形 ABCD 是边长为 11 厘米的正方形,G 在 CD 上,四边形 CEFG 是边长为 9 厘米的正方形,H 在 AB 上,∠EDH 是直角,三角形 EDH 的面积是( )平方厘米
.
5.图 2 是网格为 的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出( )种不同类型的卡片。

6.一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是( )平方厘米。

7.53]21[-=-x x ,这里表示不超过[X ]的最大整数,则 X =( )。

8.右边是一个算式,9 个汉字代表数字 1 至 9,不同的汉字代表不同的数字,则该算式可能的最大值是( ). 湛蓝天空翠绿树望盼⨯+⨯+⨯
二、 解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程)
9. 已知 C 地为 A, B 两地的中点. 上午 7 点整,甲车从 A 出发向 B 行进,乙车和丙车分别从 B 和 C 出发向 A
行进. 甲车和丙车相遇时,乙车恰好走完全程的83
,上午 10 点丙车到达 A 地,10 点 30 分当乙车走到 A 地时,甲车距离B 地还有 84 千米,那么 A 和 B 两地距离是多少千米?
10. 将 2015 个分数2016120151201414
13121、、、、、 化成小数,共有多少个有限小数?
11. a, b 为正整数, 小数点后第 3 位经四舍五入后,式子51.175≈+b a 求 a + b =?
12. 已知算式e aad abcd ⨯=式中不同字母代表不同的数码,问四位数abcd 最大值是多少?
三 解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)
13. 在图 3 中,ABCD 是平行四边形,F 在 AD 上,△AEF 的面积=8cm 2,△DEF 的面积=12cm 2,四边形 BCDF
的面积=72cm 2,求出△CDE 的面积?
14. 将 530 本书分给 48 名学生,至少有几名学生分到的书的数量相同?
答案:
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 答案: 336 千米
10. 答案: 33
11. 答案: 9
12. 答案: 3015.
三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)
13. 答案: 35 cm2
14. 答案: 3 名。

相关文档
最新文档