电磁场理论复习题含答案

合集下载

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。

2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。

3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。

4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。

5.已知球坐标系中单位矢量 。

6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。

7.点电荷q 在自由空间任一点r 处电场强度为 。

8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。

9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。

10.已知任意一个矢量场A ,则其旋度的散度为 。

11.真空中静电场的基本方程的微分形式为 、 、 。

12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。

13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。

14.任意一个标量场u ,则其梯度的旋度为 。

15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。

16.介质中静电场的基本方程的积分式为 , , 。

17.介质中恒定磁场的基本方程的微分形式为 、 、 。

18.介质中恒定磁场的基本方程的积分式为 , , 。

19.静电场中两种介质分界面的边界条件是 , 。

20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。

21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。

22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。

答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。

答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题一、填空题(每空*2*分,共30分)1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。

2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。

3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。

4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。

5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的细天线。

6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。

7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。

8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。

9.恒定电场中传导电流连续性方程∮S J.dS=0 。

10.电导是流经导电媒质的电流与导电媒质两端电压之比。

11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。

12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。

13. 电荷的周围,存在的一种特殊形式的物质,称电场。

14.工程上常将电气设备的一部分和大地联接,这就叫接地。

如果是为保护工作人员及电气设备的安全而接地,成为保护接地。

二、回答下列问题1.库伦定律:答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为:这一规律成为库仑定律。

2.有限差分法的基本思想是什么?答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。

3.静电场在导体中有什么特点?答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。

答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。

电磁场理论基础试题集

电磁场理论基础试题集

电磁场理论基础习题集(说明:加重的符号和上标有箭头的符号都表示矢量)一、填空题1.矢量场的散度定理为(1),斯托克斯定理为(2)。

【知识点】:1.2 【难易度】:C 【参考分】:3【答案】:(1)()∫∫⋅=⋅∇SS d A d A v v v ττ (2)()S d A l d A SCvv v v ⋅×∇=⋅∫∫2.矢量场A v满足(1)时,可用一个标量场的梯度表示。

【知识点】:1.4 【难易度】:C 【参考分】:1.5【答案】:(1) 0=×∇A v 3.真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。

【知识点】:3.2 【难易度】:B【参考分】:6【答案】:(1) 0=⋅∫c l d E v v (2) ∑∫=⋅q S d D Sv v 0(3) 0=×∇E v (4)()r D vv ρ=⋅∇04.电位移矢量D v 、极化强度P v 和电场强度E v满足关系(1)。

【知识点】:3.6 【难易度】:B【参考分】:1.5【答案】:(1) P E P D D vv v v v +=+=00ε 5.有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。

【知识点】:3.8 【难易度】:B【参考分】:3【答案】:(1) ()021=−⋅B B n v v v (2) ()s J H H n v v vv =−×21 6.焦耳定律的微分形式为(1)。

【知识点】:3.8 【难易度】:B 【参考分】:1.5【答案】:(1) 2E E J p γ=⋅=v v 7.磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。

【知识点】:5.9 【难易度】:B 【参考分】:3【答案】:(1) 221H μ (2) ∫Vd H τμ2218.理想导体中,时变电磁场的=(1),=(2) 。

【知识点】:6.1 【难易度】:A 【参考分】:3【答案】:(1)0 (2)0 9.理想介质中,电磁波的传播速度由(1)决定,速度=v (2)。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场与电磁波试题含答案

电磁场与电磁波试题含答案


作用下,完全脱离分子的内部束缚力时,我们把这种
二、简述题
(每小题 5 分,共 20 分)
11.简述恒定磁场的性质,并写出其两个基本方程。 12.试写出在理想导体表面电位所满足的边界条件。 13.试简述静电平衡状态下带电导体的性质。 14.什么是色散?色散将对信号产生什么影响?
三、计算题
(每小题 10 分,共 30 分)
2 3 z 15.标量场 x, y, z x y e ,在点 P1,1,0 处
7
(1)求出其梯度的大小 (2)求梯度的方向 16.矢量
ˆ x 2e ˆy Ae

ˆ x 3e ˆ z ,求 B , e
(1) A B (2) A B 17.矢量场 A 的表达式为
(1) 写出电场强度和磁场强度的复数表达式
1 S av E0 H 0 cos( e m ) 2 (2) 证明其坡印廷矢量的平均值为:
五、综合题 (10 分)
21.设沿 z 方向传播的均匀平面电磁波垂直入射到理想导体,如图 2 所示,该电磁波电场
ˆ x E0 e jz Ee 只有 x 分量即
4.在理想导体的表面, 的切向分量等于零。
A 5.矢量场 (r ) 穿过闭合曲面 S 的通量的表达式为:
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的

等于零,则此两个矢量必然相互垂直。 关系。 函
区域 1 图2
区域 2
《电磁场与电磁波》试题(4)
一、填空题(每小题 1 分,共 10 分) ˆ ˆ ˆ A 1.矢量 e x e y e z 的大小为

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度文库

习题5.1 设x0的半空间充满磁导率为的均匀介质,x0的半空间为真空,今有线电流沿z轴方向流动,求磁感应强度和磁化电流分布。

5.2 半径为a的无限长圆柱导体上有恒定电流J均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0,导体外的磁导率为。

5.3 设无限长圆柱体内电流分布,J azrJ0(r a)求矢量磁位A和磁感应B。

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。

试求圆弧中心点处的磁感应强度。

5.5 两根无限长直导线,布置于x1,y0处,并与z轴平行,分别通过电流I 及I,求空间任意一点处的磁感应强度B。

5.6 半径的磁介质球,具有磁化强度为M az(Az2B)求磁化电流和磁荷。

5.7已知两个相互平行,相隔距离为d,共轴圆线圈,其中一个线圈的半径为a(a d),另一个线圈的半径为b,试求两线圈之间的互感系数。

5.8 两平行无限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培力Fm。

5.9 一个薄铁圆盘,半径为a,厚度为b b a,如题5.9图所示。

在平行于z轴方向均匀磁化,磁化强度为M。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

5.10 均匀磁化的无限大导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。

试求两空腔中心处磁场强度的比值。

5.11 两个无限大且平行的等磁位面D、N,相距h,mD10A,mN0。

其间充以两种不同的导磁媒质,其磁导率分别为10,220,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。

题5.11图5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图 a所示。

证明:直导线与矩形回路间的互感为M0aln2R2b R2C22b2R2题5.12图a5.13 一环形螺线管的平均半径r015cm,其圆形截面的半径a2cm,铁芯的相对磁导率r1400,环上绕N1000匝线圈,通过电流I0.7A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A ρ,则M (1,1,1)处 A ρ= ,=⨯∇A ρ 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++=ρ,则在M (1,1,1)处=⋅∇A ρ 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A ρ),则必须同时给定该场矢量的 旋度 及 散度 。

4. 写出线性和各项同性介质中场量D ρ、E ρ、B ρ、H ρ、J ρ所满足的方程(结构方程): 。

5. 电流连续性方程的微分和积分形式分别为 和 。

6. 设理想导体的表面A 的电场强度为E ρ、磁场强度为B ρ,则(a )E ρ、B ρ皆与A 垂直。

(b )E ρ与A 垂直,B ρ与A 平行。

(c )E ρ与A 平行,B ρ与A 垂直。

(d )E ρ 、B ρ皆与A 平行。

答案:B7. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==r r r r(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C8. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=ρ,其中0E 、ω、β为常数。

则空间位移电流密度d J ρ(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y - ˆˆˆ222xyze e e ++Aρ⋅∇Aρ⨯∇EJ H B E D ρρρρρρσ=μ=ε= , ,tqS d J S∂∂-=⋅⎰ρρtJ ∂ρ∂-=⋅∇ρ(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ=ρ,其中0ρ、d 为常数。

则d x =处电荷体密度ρ为:(a )d 04πρ-(b )d 004ρπε- (c )d 02πρ- (d )d02ρπε- 答案:d 10. 已知半径为R 0球面内外为真空,电场强度分布为⎪⎪⎩⎪⎪⎨⎧>θ+θ<θ+θ-=θθ )R ( )sin ˆcos 2ˆ()R ( )sin ˆcos ˆ(20300r e e rB r e e RE r r ρ 求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。

Sol. (1) 球面上由边界条件 t t E E 21=得:sin sin 2300θ=θR BR 202R B =→(2)由边界条件s n n D D ρ=-21得:θε=-ε=-ε=ρcos 6)()(0210210R E E E E r r n n s (3)由ρ=⋅∇D ρ得:⎩⎨⎧><=θ∂θ∂θε+∂∂ε=⋅∇ε=ρθ )R ( 0)R (0)sin (sin 1)(10002200r r E r r E r r E r ρ即空间电荷只分布在球面上。

11. 已知半径为R 0、磁导率为μ 的球体,其内外磁场强度分布为⎪⎩⎪⎨⎧>θ+θ<θ-θ=θθ )R ( )sin ˆcos 2ˆ(A)R ( )sin ˆcos ˆ(2030r e e r r e e H r r ρ且球外为真空。

求(1)常数A ;(2)球面上的面电流密度J S 大小。

Sol. 球面上(r =R 0):r H 为法向分量;θH 为法向分量 (1)球面上由边界条件n n B B 21=得:r r H H 201μ=μ300R A μμ=→ (2)球面上由边界条件s t t J H H =-21得θμμ+-=-==θθsin )2(|)(0210R r s H H J第3章 静电场及其边值问题的解法1. 静电场中电位φ 与电场强度E ρ的关系为 ;在两种不同的电介质(介电常数分别为1ε和2ε)的分界面上,电位满足的边界条件为 。

2. 设无限大真空区域自由电荷体密度为ρ,则静电场:=⨯∇E ρ0 ,E ρ⋅∇= -ρ / ε0 。

3. 电位φ 和电场强度E ρ满足的泊松方程分别为 、 。

4. 介电常数为ε 的线性、各向同性的媒质中的静电场储能密度为 。

5. 对于两种不同电介质的分界面,电场强度的 切向 分量及电位移的 法向 分量总是连续的。

6. 如图,1E ρ、2E ρ分别为两种电介质内静电场在界面上的电场强度,ε2 = 3ε1 ,θ1 = 30°,则θ2 = 60° ,=||||21E E ρρ 。

7. 理想导体与电介质的界面上,表面自由电荷面密度s ρ与电位沿其法向的方向导数n∂φ∂的关系为 。

8. 如图,两块位于x = 0 和 x = d 处无限大导体平板的电位分别为0、U 0,其内部充满体密度ρ = ρ0 (1- e x -d ) 的电荷(设内部介电常数为ε0)。

(1)利用直接积分法计算0 < x < d区域的电位φ 及电场强度E ρ;(2)x = 0处导体平板的表面电荷密度。

Sol. 为一维边值问题:)(x φ=φ )1(d d 00222d xe x--ερ-=φ⇒ερ-=φ∇边界条件:0)0(==φx , 0)(U d x ==φ(1)直接积分得:x e d dd Ue x e x d d d x )]1([)2()(2000200---+-ερ-++-ερ=φ1θ2θ1E ρ2E ρ1ε2εE φ=-∇r r 121212 n nφφφφεε∂∂==∂∂;2 ρφε∇=-2E ρε∇∇=r 2E 21ε=m w 3s nρ-=∂φ∂ε1=φ02U =φoxd)]1()([ˆˆ)(200000d d x x x e d dd U xe e dx d e x E --+-ερ-+-ερ-=φ-=φ-∇=ρ (2)由s nρ-=∂φ∂ε得:00000)(==ε=∂φ∂ε-=∂φ∂ε-=ρx x s x E x n)]11(1[20000de d d d U d -+--ρερ-=-9. 如图所示横截面为矩形的无限长直导体槽,内填空气。

已知侧壁和底面的电位为零,而顶盖的电位为V 0 。

写出导体槽内电位所满足的微分方程及其边界条件,并利用直角坐标系分离变量法求出该导体槽内的电位分布。

Sol. (略)见教材第82页例3.6.110. 如图所示,在由无限大平面和突起的半球构成的接地导体上方距离平面为d 处有一个点电荷q 0 。

利用镜像法求z 轴上z > a 各点的电位分布。

Sol. 空间电荷对导体表面上部空间场分布的影响等效于:无限大接地导体平面 + 接地导体球边界条件:0=φ=φ球面平面使0=φ平面,引入镜像电荷:0,q q d z -='-='使0=φ球面,引入镜像电荷:⎪⎪⎩⎪⎪⎨⎧=''-=-='-=-==022220121||,||,q d a q z a q d a z a z q d a q d a z z 轴上z > a 各点的电位:⎥⎦⎤⎢⎣⎡+'+-+-+-πε=φd z q z z q z z q d z q 221100||41⎥⎦⎤⎢⎣⎡+----πε=d z ad z a d z q 12||144223011. 已知接地导体球半径为R 0 ,在x 轴上关于原点(球心)对称放置等量异号电荷+q 、-q ,位置如图所示。

利用镜像法求(1)镜像电荷的位置及电量大小;(2)球外空间电位;(3)x 轴上x >2R 0各点的电场强度。

Sol. (1) 引入两个镜像电荷: 22001q q R R q -=-=,220021R R R x == 2)(2002qq R R q =--=,2200202R R R x -=-=(2)=⎪⎪⎭⎫ ⎝⎛'-++πε=φR q R q R q R q z y x 2211041),,((略)z d xq o az 'q '2z 1z 1q 2q o q+q-xR 0R 0R 1q 1x 2x 2q2220)2(z y R x R ++-=, 22201)2/(z y R x R ++-=22202)2/(z y R x R +++=,2220)2(z y R x R +++='(3)x 轴上x >2R 0各点的电场强度:⎥⎦⎤⎢⎣⎡++++--+-=20202020)2()2/(2/)2/(2/)2(ˆR x qR x q R x q R x q e E x ρ 12. 如图所示,两块半无限大相互垂直的接地导体平面,在其平分线上放置一点电荷q ,求(1)各镜像电荷的位置及电量;(2)两块导体间的电位分布。

Sol. (1)01q q -=,)0 ,0 ,(a - 02q q +=,)0 , ,0(a -03q q -=,)0 ,0 ,(a(2)⎪⎪⎭⎫⎝⎛+++πε=φ33221100041),,(R q R q R q R q z y x=(略)其中:2220)(z a y x R +-+= 2221)(z y a x R +++= 2222)(z a y x R +++=2223)(z y a x R ++-=yx0q 45o ()0,,0P a45o 1q 2q 3q )0 ,,0(a -)0 ,0 ,(a -)0 ,0 ,(a第4章 恒定电场与恒定磁场1. 线性和各项同性的均匀导电媒质内部电荷体密度等于 0 ,净余电荷只能分布在该导电媒质的 表面 上。

2. 线性和各项同性的均匀导电媒质中,=⋅∇J ρ 0 ;=⋅∇D ρ0 。

3. 在电导率不同的导电媒质分界面上,电场强度E ρ和电流密度J ρ的边界条件为: 、 。

4. 在电导率为σ 的导电媒质中,功率损耗密度p c 与电场强度大小E 的关系为 。

5. 恒定磁场的矢量磁位A ρ与磁感应强度B ρ的关系为 ;A ρ所满足的泊松方程为 。

6. 对线性和各项同性磁介质(磁导率设为μ ),恒定磁场(磁场强度大小为H )的磁能密度=m w ,V 空间磁能W m = 。

7. 已知恒定电流分布空间的矢量磁位为:Cxyz e x y e y x eA z y x ˆˆˆ22++=ρ,C 为常数,且A ρ满足库仑规范。

求(1)常数C ;(2)电流密度J ρ;(3)磁感应强度B ρ。

(直角坐标系中:)(ˆ)(ˆ)(ˆya x a e x a z a e z a y a ea x y z z x y y z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇ρ) Sol. (1) 库仑规范:0=⋅∇A ρ4022-=⇒=++=∂∂+∂∂+∂∂⇒C Cxy xy xy zA y A x A zy x (2) 由J μA ρρ-=∇2,xyz e x y e y x eA z y x 4ˆˆˆ22-+=ρ得: ()x e y e z A y A x A A J y x 2ˆ2ˆ112222222+μ-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂μ-=μ∇-=ρρρρρ (3) A B ρρ⨯∇=)(ˆ4ˆ4ˆ22x y e yz e xz ez y x -++-= 8. (P.136. 习题 4.2) 在平板电容器的两个极板间填充两种不同的导电媒质(11,εσ和22,εσ),其厚度分别为1d 和2d 。

相关文档
最新文档