高三文科三角函数专题复习 练习

合集下载

高三数学(文)三角函数大题20道训练(附详答)

高三数学(文)三角函数大题20道训练(附详答)
f (x)在区间,上的最大值和最小值
IL6 2
f (x)= 2cosx •. 3sin 2x a.(a R, a为常数)
[丿逛]
f(X)在6’6上最大值与最小值之和为3,求的值;
(2)条件下f(x)经过怎样的变换后得到y=sinx,写出其变换步骤
6.已知a=(1,2sinx),b=(2cos(x ),1),函数f(x)二c b(x R)
2
10.已知ABC中,内角A、B、C的对边的边长为a b、c,且bcsC(2a . B
(1)求角B的大小;
(2)若y = cos2A-cos2C,求y的最小值.
11.如图,已知平面四边形ABCD中,也BCD为正三角形,AB= AD=1,/BAD=,记四边形ABCD勺面积为S.
(1)求函数f(x)的单调递减区间;
8兀
(2)若f(x) ,求cos(2x-§)的值。
7.已知:在厶ABC中,a,b,c分别是角A、B、C所对的边,向量m=(23sin号,),
n=(sin寻+扌,1)且m•n=、.3•
(1)求角B的大小;
(2)若角B为锐角,a=6,S^abc=6 .. 3求b的值.
8.已知A、B、C是△ABC的三个内角,向量m=(1,-.,③,n = (cosA,sin A),
S 4
且m n = -1.
(1)求角A;
•2f2 f
(2)若sin B -cos B
1
9.在:ABC中,角A,B,C所对的边分别是a,b,c,且a2c2-b2ac
2
(i)求cosB的值;
r A +C
(u)求sin—— -cos2B的值.
文数20道三角大题
..3bc cos A.

(完整版)高三一轮复习三角函数专题及答案解析.doc

(完整版)高三一轮复习三角函数专题及答案解析.doc

弘知教育内部资料中小学课外辅导专家三角函数典型习题1 .设锐角ABC 的内角 A, B, C 的对边分别为a,b, c , a 2bsin A .(Ⅰ)求B的大小 ;(Ⅱ )求cos A sin C的取值范围 .A B C在中 ,角A, B,C所对的边分别为,, 2 .ABC c , sin sin2 . 2 2(I)试判断△ABC的形状 ;(I I)若△ABC的周长为 16,求面积的最大值 .3 .已知在ABC 中, A且与tan B是方程 x2 5 x 6 0 的两个根.B , tan A(Ⅰ )求tan( A B) 的值;(Ⅱ )若 AB 5 ,求BC的长.4.在ABC 中,角A.B.C所对的边分别是a,b,c,且a2 c 2 b 2 1 ac.A C 2(1)求sin2 cos 2B 的值;2(2)若 b=2,求△ABC面积的最大值 .5.已知函数f ( x) 2sin 2 π3 cos2x , xπ π.x4,4 2(1)求f ( x)的最大值和最小值;(2)f ( x) m 2 在 x π π上恒成立,求实数m 的取值范围.,4 26.在锐角△ABC 中,角..的对边分别为a、b、已知(b2 c 2 a 2) tanA bcA B C c, 3 .(I)求角 A;(II)若 a=2,求△ ABC面积 S 的最大值 ?7.已知函数f ( x) (sin x cos x)2 +cos2 x .(Ⅰ )求函数f x 的最小正周期 ;(Ⅱ )当x 0,2时 ,求函数f x 的最大值 ,并写出 x 相应的取值 .8 .在ABC中,已知内角 A . B . C 所对的边分别为 a 、 b 、 c, 向量r2sin B, rcos2B, 2cos2 B1r rm 3 , n 2 ,且m / / n ?(I)求锐角 B 的大小 ;(II)如果b 2 ,求ABC 的面积S ABC的最大值?答案解析11【解析】 :(Ⅰ )由 a2b sin A ,根据正弦定理得 sin A2sin B sin A ,所以 sin B ,2π由ABC 为锐角三角形得B.6(Ⅱ ) cos A sin C cos A sinAcos A sin6Acos A13 sin Acos A223 sin A .32【解析】 :I. sinC sin C cos C sin C 2 sin( C)C2 22 2 2 4即 C ,所以此三角形为直角三角形 .2422II. 16 a b22ab2ab , ab64(22) 2a b 时取等ab2 当且仅当 号,此时面积的最大值为326 4 2 .3【解析】 :(Ⅰ )由所给条件 ,方程 x 2 5 x 6 0 的两根 tan A 3, tan B2 .∴ tan( A B)tan A tan B2 311 tan A tan B 12 3(Ⅱ)∵ A B C 180 ,∴ C180 (A B) .由(Ⅰ )知 , tanCtan( A B)1,∵ C 为三角形的内角 ,∴ sin C22∵ tan A3 , A 为三角形的内角 ,∴ sin A3 ,10由正弦定理得 :AB BC5 3 ∴ BC 3 5 .21028【解析】 :(1)r r2sinB(2cos 2 B m / / n-1)=- 3cos2B22sinBcosB=- 3cos2Btan2B=- 32ππ ∵ 0<2B< π,∴ 2B= 3 ,∴ 锐角 B=3(2)由 tan2B=- 3π 5πB= 或63π① 当B= 时 ,已知 b=2,由余弦定理 ,得 :34=a 2+c 2 -ac ≥ 2ac-ac=ac(当且仅当 a=c=2 时等号成立 )1 3∵△ ABC 的面积 S △ABC =2 acsinB= 4 ac ≤ 3∴△ ABC 的面积最大值为 35π ② 当 B= 6 时 ,已知 b=2,由余弦定理 ,得 :4=a 2+c 2 + 3ac ≥2ac+ 3ac=(2+ 3)ac(当且仅当 a=c= 6- 2时等号成立 )∴ac ≤ 4(2-3)1 1∵△ ABC 的面积 S △ABC =2 acsinB=4ac ≤2- 3 ∴△ ABC 的面积最大值为 2- 314【解析】 :(1) 由余弦定理 :cosB=4sin 2A C+cos2B=124(2)由 cos B1,得 sin B15. ∵ b=2,44a218 115 2+ c =2ac+4≥2ac,得 ac ≤ ,S △ABC =2acsinB ≤(a=c 时取等号 )33故 S △ABC 的最大值为 1535 【解析】∵f ( x) 1 π3 cos2 x 1 sin 2x 3cos2 x( Ⅰ )cos2x21 2sin 2xπ.3又∵ xπ ππ 2xπ 2π, , ∴≤≤,4 2633即2≤12sin 2xπ≤ 3,3∴ f ( x) max 3, f ( x) min 2 .(Ⅱ ) ∵ f ( x)m 2f (x) 2 mf (x) 2 , xπ π ,4,2∴ mf ( x)max 2 且 m f ( x) min 2 ,∴1 m 4 ,即 m 的取值范围是 (14), .6【解析】 :(I)由已知得b 2c 2a 2 sin A3 32bccos A sin A22又在锐角 △ABC 中,所以 A=60°,[不说明是锐角 △ABC 中,扣 1 分 ](II)因为 a=2,A=60 所°以 b2c2bc 4, S1bc sin A3bc24而b 2c 22bc4 2bcbc4bc又 S1bc sin A3bc3 4 3244所以 △ ABC 面积 S 的最大值等于37【解析】 :(Ⅰ )因为 f ( x) (sin xcos x)2 +cos2 xsin 2 x 2sin x cos x cos 2 x cos2 x1 sin2 x cos2x ( ) =1+ 2 sin(2 x)4所以 2,即函数 f (x) 的最小正周期为, T2(Ⅱ )因为 0 x,得4 2x45,所以有2 sin(2 x) 1242 4 12 sin(2 x) 2,即0 12 sin(2 x)1244所以 ,函数 f x的最大值为 1 2此时 ,因为2 x5,所以 , 2 x,即 x844442。

高三数学(文)三角函数大题20道训练(附详答)

高三数学(文)三角函数大题20道训练(附详答)

文数20道三角大题1.锐角三角形ABC 的内角A ,B ,C 的对边分别为c b a ,,,且=-+A a c b sin )(222.cos 3A bc〔Ⅰ〕求A 的值;〔Ⅱ〕求C B cos cos +的取值范围。

2如图,平面四边形ABCD 中,13AB =,三角形ABC 的面积为25=∆ABCS ,3cos 5DAC ∠=,120=⋅AC AB ,求: (1)AC 的长; (2)cos BAD ∠3函数.cos 212cos 2sin )(xx x x f ++=〔I 〕求f (x )的值域; 〔II 〕假设x x f x 2cos ,523)(),4,4(求且=-∈ππ的值. 4.函数2()sin cos 3cos f x x x x =+. 〔Ⅰ〕求()f x 的最小正周期; 〔Ⅱ〕求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 5. :a R a a x x x f ,.(2sin 3cos 2)(2∈++=为常数〕 〔1〕假设R x ∈,求)(x f 的最小正周期;〔2〕假设)(x f 在[,]66ππ-上最大值与最小值之和为3,求的值;〔3〕在〔2〕条件下)(x f 经过怎样的变换后得到x y sin =,写出其变换步骤 6. )1),6cos(2(),sin 2,1(π+==x b x a ,函数)()(R x b c x f ∈⋅=〔1〕求函数)(x f 的单调递减区间; 〔2〕假设)32cos(,58)(π-=x x f 求的值。

7. :在△ABC 中,a,b,c 分别是角A 、B 、C 所对的边,向量m =〔23sin 2B ,23〕,n =〔sin 2B +2π,1〕 且m ·n =3. 〔1〕求角B 的大小;〔2〕假设角B 为锐角,a=6,S △ABC =63,求b 的值.8. A 、B 、C 是△ABC 的三个内角,向量(1,3),(cos ,sin ),m n A A =-= 且 1.m n ⋅=- 〔1〕求角A ;〔2〕假设221sin 23,tan sin cos BC B B +=-求的值。

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)一、填空题1.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫=⎪⎝⎭; ②若5112f π⎛⎫= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③ω的取值范围为(]0,4;④函数()f x 在区间[)0,2π上最多有6个零点. 其中所有正确结论的编号为________.5.已知()()()cos sin 30f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.6.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x x h x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.7.在直角平面坐标系xOy 中,12,F F 分别是双曲线()22210yx b b-=>的左、右焦点,过点1F 作圆221x y +=的切线,与双曲线左、右两支分别交于点,A B ,若2||||F B AB =,则b 的值是_________.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________. 二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )12.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+⎪⎝⎭,x ∈R D .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R13.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A .333B .2C .113D .1114.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C .105D .25515.如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=16.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>17.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A 13B .2 C 31 D .318.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④19.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,33A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]20.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .9三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在52x ⎡∈⎢⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.22.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π-⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.23.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 24.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.25.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 26.已知函数22()cos sin 3sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.27.已知ABC ∆的外接圆...2A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,2sin sin ,sin 4n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为503,其余空地为绿化区域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.已知函数2()2cos 23sin cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.7 21163614.①②④5.140326.1⎡⎤⎣⎦7.11 8.742ω<<或91322ω<≤.910 二、单选题 11.D 12.D 13.A 14.C 15.B 16.A 17.C 18.A 19.D 20.A 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T=⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2, 所以24Tπω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭, 将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x=. (Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍);当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.23.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x xBCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55664y y +-≥=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 24.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008.【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题. 25.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈,使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 26.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得. 【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+-()2sin(2)36f x x π∴=+-由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+-1sin(2)16x π-≤+≤当0a >时,232sin(2)3236a a x a π--≤+-≤-则有234a --=- 解得12a =当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤--则有234a -=-解得12a =-综上 12a ∴=或12a =-.【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题.27.(1) 3C π=. (2) max S =【解析】 【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长. 【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=,∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.28.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

高三提优专题(1.1)——三角函数(多选和填空)(含答案)

高三提优专题(1.1)——三角函数(多选和填空)(含答案)

三角函数(多选与填空)一、多选题1. 已知函数()()sin ()03f x x πωω=+>在[0,2]π上有且仅有4个零点,则下列结论正确的是A.11763ω< B. ()f x 在(0,2)π上有必有2个极小值点 C. ()f x 在(0,2)π上有必有2个极大值点 D. 将()y f x =的图象向右平移3π个单位长度,可得sin y x ω=的图象2. 已知2()2cos 1(0,0,)24f x x ωπϕωϕ⎛⎫⎛⎫=+−>∈ ⎪ ⎪⎝⎭⎝⎭,具有下面三个性质:①将()f x 的图象右移π个单位得到的图象与原图象重合;②x R ∀∈,5()|()|;12f x f π③()f x 在5(0,)12x π∈时存在两个零点,给出下列判断,其中正确的是( ) A. ()f x 在(0,)4x π∈时单调递减B. 91()()()483162f f f πππ++= C. 将()f x 的图象左移24π个单位长度后得到的图象关于原点对称D. 若()g x 与()f x 图象关于3x π=对称,则当2[,]23x ππ∈时,()g x 的值域为1[1,]2−3. 设0ω>,函数()sin ,0,421,,44x x f x x x πωππωωπ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎛⎫⎪−−+∈+∞ ⎪ ⎪⎪⎝⎭⎝⎭⎩,则下列命题正确的是( )A. 若6f π⎛⎫= ⎪⎝⎭,则32ω=B. 若()f x 的值域为[)0,,+∞则243ω C. 若函数()f x 在区间()0,+∞内有唯一零点,则[)20,4,8ωπ⎛⎫∈⋃ ⎪⎝⎭D. 若对任意的[)12,0,,x x ∈+∞且12x x ≠都有()()()()11221221x f x x f x x f x x f x +>+恒成立,则223ωπ<4. 数学中一般用min{,}a b 表示a ,b 中的较小值,max{,}a b 表示a ,b 中的较大值;关于函数()min{sin ,sin }f x x x x x =+−;()max{sin ,sin }g x x x x x =有如下四个命题,其中是真命题的是( )A. ()f x 与()g x 的最小正周期均为πB. ()f x 与()g x 的图象均关于直线32x π=对称 C. ()f x 的最大值是()g x 的最小值D. ()f x 与()g x 的图象关于原点中心对称5. 已知函数()()2sin cos f x x x =+−( ) A. ()f x 的最小正周期为2π B. ()f x 图象的一条对称轴为直线34x π=C. 当0m >时,()f x 在区间3,4ππ⎛⎫⎪⎝⎭上单调递增D. 存在实数 m ,使得()f x 在区间()0,1012π上恰有2023个零点6. 已知点(,0)6π是函数()()()sin 0,f x x ωϕωϕπ=+><的图象的一个对称中心,且()f x 的图象关于直线3x π=对称,()f x 在[0,]3π单调递减,则( )A. 函数()f x 的最小正周期为23π B. 函数()f x 为奇函数C. 若()[]()10,23f x x π=∈的根为()1,2,,i x i n ==⋅⋅⋅,则16ni i x π==∑D. 若()()2f x f x >在(),a b 上恒成立,则b a −的最大值为29π7. 已知函数()tan (2)(0)3f x x πωω=+>,则下列说法不正确的是( )A. 若()f x 的最小正周期是2π,则1ω= B. 当1ω=时,()f x 图象的对称中心的坐标都可以表示为(,0)()26k k Z ππ−∈ C. 当12ω=时,()()6f f ππ−<− D. 若()f x 在区间(,)3ππ上单调递增,则103ω<8. 设函数()f x 的定义域为R ,()2f x π−为奇函数,()2f x π+为偶函数,当[,]22x ππ∈−时,()cos f x x =,则下列结论正确的是( )A. 51()22f π=−B. ()f x 在(3,4)ππ上为减函数C. 点3(,0)2π是函数()f x 的一个对称中心 D. 方程()lg 0f x x −=仅有3个实数解9.让⋅巴普蒂斯⋅约瑟夫⋅傅里叶,法国欧塞尔人,著名数学家、物理学家.他发现任何周期函数都可以用正弦函数或余弦函数构成的无穷级数来表示,如定义在R 上的函数()()()22cos 214cos3cos 2321n x xf x x n ππ⎡⎤−=−++++⎢⎥−⎢⎥⎣⎦,当[0,]x π∈时,有()f x x =,则.( ) A. 函数()f x 的最小正周期为πB. 点,22ππ⎛⎫⎪⎝⎭是函数()f x 图象的对称中心C. 1544f ππ⎛⎫= ⎪⎝⎭D. ()2222111135821n π+++++=−10.已知()sin 4sin 3f θθθ=+,且1θ,2θ,3θ是()f θ在(0,)π内的三个不同零点,则( )A.{}123,,7πθθθ∈B. 123127θθθπ++=C. 1231cos cos cos 8θθθ=D. 1231cos cos cos 2θθθ++=−11.在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到.而信号处理背后的“功臣”就是正弦型函数.函数41sin[(21)]()21i i x f x i =−=−∑的图象就可以近似的模拟某种信号的波形,则( )A. 函数()f x 为周期函数,且最小正周期为πB. 函数()f x 的图象关于点(2,0)π对称C. 函数()f x 的图象关于直线2x π=对称D. 函数()f x 的导函数()f x '的最大值为412.函数()sin()(0,0)f x A x A ωϕϕπ=+><<的部分图象如图中实线所示,图中圆C 与()f x 的图象交于M ,N 两点,且M 在y 轴上,则下列说法中正确的是( )A. 函数()f x 在3,2ππ⎛⎫−− ⎪⎝⎭上单调递增 B. 函数()f x 的图象关于点2,03π⎛⎫−⎪⎝⎭成中心对称 C. 函数()f x 的图象向右平移512π个单位后关于直线56x π=成轴对称D. 若圆半径为512π,则函数()f x的解析式为()sin 263f x x π⎛⎫=+ ⎪⎝⎭13.随着市民健康意识的提升,越来越多的人走出家门健身,身边的健身步道成了市民首选的运动场所.如图,某公园内有一个以O 为圆心,半径为5,圆心角为23π的扇形人工湖OAB ,OM 、ON 是分别由OA 、OB 延伸而成的两条健身步道.为进一步完善全民健身公共服务体系,主管部门准备在公园内增建三条健身步道,其中一条与AB 相切于点F ,且与OM 、ON 分别相交于C 、D ,另两条是分别和湖岸OA 、OB 垂直的FG 、(FH 垂足均不与O 重合).在OCD 区域以内,扇形人工湖OAB 以外的空地铺上草坪,则( )A. FOD ∠的范围是20,3π⎛⎫⎪⎝⎭B. 新增步道CD 的长度可以为20C. 新增步道FG 、FH 长度之和可以为7D. 当点F 为AB 的中点时,草坪的面积为253π14.对于函数1()sin ,02(2),22f x x x f x x π⎧=−>⎨⎩,下列结论中正确的是( )A. 任取1x ,2[1,)x ∈+∞,都有123()()2f x f x −B. 11511()()(2)22222k f f f k +++++=−,其中k N ∈C. *()2(2)()k f x f x k k N =+∈对一切[0,)x ∈+∞恒成立D. 函数()ln(1)y f x x =−−有3个零点15.若()|sin ||cos |f x x x x x =++−,则下列说法正确的是( ) A. ()f x 的最小正周期是2π B. ()f x 的对称轴方程为212k x ππ=−,()k Z ∈ C. 存在实数a ,使得对任意的x R ∈,都存在125,[,0]12x x π∈−且12x x ≠,满足2[()]()()10k f x af x f x −+=,(1,2)k =D. 若函数()2()g x f x b =+,25[0,]12x π∈,(b 是实常数),有奇数个零点1x ,2x ,...,2n x ,21()n x n N +∈,则1232(x x x +++ (221)50)3n n x x π+++=17.由倍角公式2cos 221x cos x =−可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n N ∈次多项式()11001(,,n n n n n P t a t a t a a a −−=+++…,)n a R ∈,使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(..)P LTschebyscheff 多项式.运用探究切比雪夫多项式的方法可得( )A. ()3343P t t t =−+B. ()424881P t t t =−+C. sin 54︒=D. cos54︒=二、填空题1. 已知函数()2sin()3f x x π=−,将()y f x =的图象上所有点横坐标变为原来的12倍(纵坐标不变),再将所得函数图象向左平移4π个单位长度,得到()y g x =图象,若3()2g x =在[0,2]π有n 个不同的解1x ,2x ,,n x ,则1tan()ni i x ==∑__________.2.111sin 30sin 31sin 31sin 32sin 59sin 60︒︒︒︒︒︒+++=⋅⋅⋅__________.3. 已知函数()|cos2| 1.f x x =+给出下列四个结论:①()f x 的最小正周期是π; ②()f x 的一条对称轴方程为4x π=;③若函数()()()g x f x b b R =+∈在区间90,8π⎡⎤⎢⎥⎣⎦上有5个零点,从小到大依次记为12345,,,,x x x x x ,则()1234525x x x x x π++++=;④存在实数a ,使得对任意m R ∈,都存在12,,06x x π⎡⎤∈−⎢⎥⎣⎦且12x x ≠,满足()1()(1,2).()k af x f m k f m =+= 其中所有正确结论的序号是__________.4.声音是由物体的振动产生的能引起听觉的波,每一个音都是由纯音合成的,纯音的数学模型是函数sin .y A t ωπ=某技术人员获取了某种声波,其数学模型记为()y H t =,部分图象如图所示,对该声波进行逆向分析,发现它是由两种不同的纯音合成的,满足()()9sin 2sin 0810H t t t πωπω=+<<,其中50.8663H ⎛⎫≈− ⎪⎝⎭,则ω=__________.( 1.732)≈5.已知函数4()log ,04sin (),41242f x x x x x ππ⎧=<<−⎨⎩,若存在实数1x ,2x ,3x ,4x ,当1234x x x x <<<时,满足1234()()()()f x f x f x f x ===,则12341250x x x x x x ⋅⋅⋅−⋅的取值范围是__________.6.已知1α︒=,61β︒=,则满足tan tan tan 1tan tan tan αβγαβγ++=的一个γ的值为__________.7.已知ABC ∆的边AC =321tan tan A B+=,则ABC ∆的面积的最大值为__________.8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()3cos 2cos 21cos 2A C B −=−,则sin cos sin sin sin C CA B C+的最小值为__________.9.若tantan tan tan tan tan 1222222A B B C A C⋅+⋅+⋅=,则cos()A B C ++=__________。

高考三角函数专题(含答案)

高考三角函数专题(含答案)

高考三角函数专题(含答案)高考专题复习三角函数专题模块一 ——选择题一、选择题:(将正确答案的代号填在题后的括号内.)1.(2010·天津)下图是函数y =A sin(ωx +φ)(x ∈R)在区间⎣⎢⎢⎡⎦⎥⎥⎤-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变解析:观察图象可知,函数y =A sin(ωx +φ)中A =1,2πω=π,故ω=2,ω×⎝⎛⎭⎪⎪⎫-π6+φ=0,得φ=π3,所以函数y =sin ⎝⎛⎭⎪⎪⎫2x +π3,故只要把y =sin x 的图象向左平移π3个单位,再把各点的横坐标缩短到原来的12即可.答案:A2.(2010·全国Ⅱ)为了得到函数y =sin ⎝⎛⎭⎪⎪⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象( )A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 解析:由y =sin ⎝⎛⎭⎪⎪⎫2x +π6――→x →x +φy =sin ⎣⎢⎢⎡⎦⎥⎥⎤2(x +φ)+π6=sin ⎝⎛⎭⎪⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个长度单位.故选B.答案:B3.(2010·重庆)已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的部分图象如图所示,则( )A .ω=1,φ=π6B .ω=1,φ=-π6 C .ω=2,φ=π6 D .ω=2,φ=-π6解析:依题意得T =2πω=4⎝ ⎛⎭⎪⎪⎫7π12-π3=π,ω=2,sin ⎝⎛⎭⎪⎪⎫2×π3+φ=1.又|φ|<π2,所以2π3+φ=π2,φ=-π6,选D.答案:D4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]上的图象如图所示,那么ω=( )A .1B .2 C.12 D.13解析:由函数的图象可知该函数的周期为π,所以2πω=π,解得ω=2.答案:B5.已知函数y =sin ⎝⎛⎭⎪⎪⎫x -π12cos ⎝ ⎛⎭⎪⎪⎫x -π12,则下列判断正确的是( )A .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0 B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0C .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0D .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0解析:∵y =sin ⎝⎛⎭⎪⎪⎫x -π12·cos ⎝ ⎛⎭⎪⎪⎫x -π12=12sin ⎝ ⎛⎭⎪⎪⎫2x -π6,∴T =2π2=π,且当x =π12时,y =0.答案:B6.如果函数y =sin2x +a cos2x 的图象关于直线x =-π8对称,则实数a 的值为( ) A.2 B .- 2 C .1 D .-1分析:函数f (x )在x =-π8时取得最值;或考虑有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 解析:解法一:设f (x )=sin2x +a cos2x ,因为函数的图象关于直线x =-π8对称,所以f ⎝ ⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x对一切实数x 都成立,即sin2⎝⎛⎭⎪⎪⎫-π8+x +a cos2⎝ ⎛⎭⎪⎪⎫-π8+x=sin2⎝⎛⎭⎪⎪⎫-π8-x +a cos2⎝ ⎛⎭⎪⎪⎫-π8-x即sin ⎝⎛⎭⎪⎪⎫-π4+2x +sin ⎝ ⎛⎭⎪⎪⎫π4+2x=a ⎣⎢⎢⎡⎦⎥⎥⎤cos ⎝⎛⎭⎪⎪⎫π4+2x -cos ⎝ ⎛⎭⎪⎪⎫-π4+2x ,∴2sin2x ·cos π4=-2a sin2x ·sin π4,即(a +1)·sin2x =0对一切实数x 恒成立,而sin2x 不能恒为0,∴a +1=0,即a =-1,故选D.解法二:∵f (x )=sin2x +a cos2x 关于直线x =-π8对称.∴有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 特别,对于x =π8应该成立.将x =π8代入上式,得f (0)=f ⎝ ⎛⎭⎪⎪⎫-π4,∴sin0+a cos0=sin ⎝⎛⎭⎪⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎪⎫-π2∴0+a =-1+a ×0. ∴a =-1.故选D.解法三:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ的终边经过点(1,a ).其图象的对称轴方程为2x +φ=k π+π2(k ∈Z),即x =k π2+π4-φ2(k ∈Z).令k π2+π4-φ2=-π8(k ∈Z).得φ=k π+3π4(k ∈Z).但角φ的终边经过点(1,a ),故k 为奇数,角φ的终边与-π2角的终边相同,∴a =-1.解法四:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ满足tan φ=a .因为f (x )的对称轴为y =-π8,∴当x =-π8时函数y =f (x )有最大值或最小值,所以1+a 2=f ⎝⎛⎭⎪⎪⎫-π8或-1+a 2=f ⎝⎛⎭⎪⎪⎫-π8, 即1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4, 或-1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4. 解之得a =-1.故选D. 答案:D评析:本题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f (m +x )=f (m -x )的图象关于直线x =m 对称的性质,取特殊值来求出待定系数a 的值.解法三利用函数y =A sin(ωx +φ)的对称轴是方程ωx +φ=k π+π2(k ∈Z)的解x =k π+π2-φω(k ∈Z),然后将x =-π8代入求出相应的φ值,再求a 的值.解法四利用对称轴的特殊性质,在此处函数f (x )取最大值或最小值.于是有f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]max或f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]min .从而转化为解方程问题,体现了方程思想.由此可见,本题体现了丰富的数学思想方法,要从多种解法中悟出其实质东西.模块二——填空题二、填空题:(把正确答案填在题后的横线上.) 7.(2010·福建)已知函数f (x )=3sin ⎝⎛⎭⎪⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,则f (x )的取值范围是________.解析:∵f (x )与g (x )的图象的对称轴完全相同,∴f (x )与g (x )的最小正周期相等,∵ω>0,∴ω=2,∴f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π6,∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin ⎝⎛⎭⎪⎪⎫2x -π6≤1,∴-32≤3sin ⎝ ⎛⎭⎪⎪⎫2x -π6≤3,即f (x )的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤-32,3.答案:⎣⎢⎢⎡⎦⎥⎥⎤-32,38.设函数y =cos 12πx 的图象位于y 轴右侧所有的对称中心从左依次为A 1,A 2,…,A n ,….则A 50的坐标是________.解析:对称中心横坐标为x =2k +1,k ≥0且k ∈N ,令k =49即可得.答案:(99,0)9.把函数y =cos ⎝⎛⎭⎪⎪⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的最小值是________.解析:由y =cos(x +π3+m )的图象关于y 轴对称,所以π3+m =k π,k ∈Z ,m =k π-π3,当k =1时,m 最小为2 3π.答案:2 3π10.定义集合A,B的积A×B={(x,y)|x∈A,y∈B}.已知集合M={x|0≤x≤2π},N={y|cos x≤y≤1},则M×N所对应的图形的面积为________.解析:如图所示阴影面积可分割补形为ABCD的面积即BC×CD=π·2=2π.答案:2π模块三——解答题三、解答题:(写出证明过程或推演步骤.)11.若方程3sin x+cos x=a在[0,2π]上有两个不同的实数解x1、x2,求a的取值范围,并求x1+x2的值.分析:设函数y 1=3sin x +cos x ,y 2=a ,在同一平面直角坐标系中作出这两个函数的图象,应用数形结合解答即可.解:设f (x )=3sin x +cos x =2sin ⎝⎛⎭⎪⎪⎫x +π6,x ∈[0,2π].令x +π6=t ,则f (t )=2sin t ,且t ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,13π6.在同一平面直角坐标系中作出y =2sin t 及y =a 的图象,从图中可以看出当1<a <2和-2<a <1时,两图象有两个交点,即方程3sin x +cos x =a 在[0,2π]上有两个不同的实数解.当1<a <2时,t 1+t 2=π, 即x 1+π6+x 2+π6=π,∴x 1+x 2=2π3;当-2<a <1时,t 1+t 2=3π, 即x 1+π6+x 2+π6=3π,∴x 1+x 2=8π3.综上可得,a 的取值范围是(1,2)∪(-2,1). 当a ∈(1,2)时,x 1+x 2=2π3;当a ∈(-2,1)时,x 1+x 2=8π3.评析:本题从方程的角度考查了三角函数的图象和对称性,运用的主要思想方法有:函数与方程的思想、数形结合的思想及换元法.解答本题常见的错误是在换元时忽略新变量t 的取值范围,仍把t 当成在[0,2π]中处理,从而出错.12.(2010·山东)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎢⎡⎦⎥⎥⎤0,π4上的最大值和最小值.解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎪⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ=12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ), 又函数图象过点⎝⎛⎭⎪⎪⎫π6,12, 所以12=12cos ⎝ ⎛⎭⎪⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎪⎫π3-φ=1,又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos ⎝ ⎛⎭⎪⎪⎫2x -π3,将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos ⎝⎛⎭⎪⎪⎫4x -π3, 因为x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4,所以4x ∈⎣⎢⎡⎦⎥⎤0,π, 因此4x -π3∈⎣⎢⎢⎡⎦⎥⎥⎤-π3,2π3,故-12≤cos ⎝ ⎛⎭⎪⎪⎫4x -π3≤1.所以y =g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12和-14.13.(2009天津卷理)在⊿ABC 中,BC=5,AC=3,sinC=2sinA (I) 求AB 的值:(II) 求sin 24A π⎛⎫- ⎪⎝⎭的值 本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。

高中三年级文科数学专题复习_三角函数、解三角形_(教师版)

高中三年级文科数学专题复习_三角函数、解三角形_(教师版)

高三文科数学专题复习 三角函数、解三角形专题一 三角函数的概念、同角三角函数的关系式及诱导公式A 组 三年高考真题(2016~2014年)1.(2015·福建,6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125B.-125C.512D.-5121.解析 ∵sin α=-513,且α为第四象限角, ∴cos α=1213,∴tan α=sin αcos α=-512,故选D. 答案 D2.(2014·大纲全国,2)已知角α的终边经过点(-4,3),则cos α=( )A.45B.35C.-35D.-452.解析 记P (-4,3),则x =-4,y =3,r =|OP |=(-4)2+32=5, 故cos α=x r =-45=-45,故选D.3.(2014·新课标全国Ⅰ,2)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0 3.解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin 2α=2sin αcos α>0,故选C. 答案 C4.(2016·新课标全国Ⅰ,14)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________. 4.解析 由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝⎛⎭⎪⎫θ+π4=-43. 答案 -435.(2016·四川,11)sin 750°=________.5.解析 ∵sin θ=sin(k ·360°+θ),(k ∈Z ), ∴sin 750°=sin(2×360°+30°)=sin 30°=12. 答案 126.(2015·四川,13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 6.解析 ∵sin α+2cos α=0, ∴sin α=-2cos α,∴tan α=-2,又∵2sin αcos α-cos 2α=2sin α·cos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1, ∴原式=2×(-2)-1(-2)2+1=-1. 答案 -1B 组 两年模拟精选(2016~2015年)1.(2016·济南一中高三期中)若点(4,a )在12y x =图象上,则tan a6π的值为( )A.0B.33C.1D. 31.解析 ∵a =412=2, ∴tan a6π= 3. 答案 D2.(2016·贵州4月适应性考试)若sin ⎝ ⎛⎭⎪⎫π2+α=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,则sin ()π-2α=( )A.2425 B.1225 C.-1225 D.-24252.解析 由sin ⎝⎛⎭⎪⎫π2+α=-35得cos α=-35, 又α∈⎝ ⎛⎭⎪⎫π2,π, 则sin α=45,所以sin(π-2α)=sin 2α=2sin αcos α=-2425. 答案 D3.(2016·南充市第一次适应性考试)已知角α的终边经过点P (2,-1),则sin α-cos αsin α+cos α=( )A.3B.13C.-13D.-33.解析 因为角α终边经过点P (2,-1),所以tan α=-12,sin α-cos αsin α+cos α=tan α-1tan α+1=-12-1-12+1=-3,故选D.4.(2015·乐山市调研)若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A.-33 B.33C.- 3D. 3 4.解析 -10π3=-4π+2π3,所以-10π3与2π3的终边相同,所以tan 2π3=-3=-y ,则y = 3. 答案 D5.(2015·石家庄一模)已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin(π+α)=( )A.-1-k 2B.1-k 2C.-kD.±1-k 25.解析 因为α∈⎝ ⎛⎭⎪⎫π2,π,所以sin α>0,则sin ()π+α=-sin α=-1-cos 2 α=-1-k 2,故选A. 答案 A6.(2015·洛阳市统考)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B ,3cos A -1)位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 6.解析 由题意得,A +B >π2即A >π2-B ,且A ∈⎝⎛⎭⎪⎫0,π3,π2-B >0,故sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,即sin A -cos B >0, 3cos A -1>3×12-1=12, 故点P 在第一象限. 答案 A7.(2016·山东日照第一次模拟)已知角α为第二象限角,cos ⎝⎛⎭⎪⎫π2-α=45,则cos α=________. 7.解析 sin α=cos ⎝ ⎛⎭⎪⎫π2-α=45, 又α为第二象限角, 所以cos α=-1-sin 2α=-35. 答案 -358.(2015·湖南长沙一模)在平面直角坐标系xOy 中,将点A (3,1)绕原点O 逆时针旋转90°到点B ,那么点B 坐标为________,若直线OB 的倾斜角为α,则tan 2α的值为________.8.解析 设点A (3,1)为角θ终边上一点,如图所示,|OA |=2,由三角函数的定义可知:sin θ=12,cos θ=32,则θ=2k π+π6(k ∈Z ), 则A (2cos θ,2sin θ),设B (x ,y ),由已知得x =2cos ⎝ ⎛⎭⎪⎫θ+π2=2cos ⎝ ⎛⎭⎪⎫2k π+2π3=-1,y =2sin ⎝ ⎛⎭⎪⎫θ+π2=2sin ⎝ ⎛⎭⎪⎫2k π+23π=3, 所以B (-1,3),且tan α=-3,所以tan 2α=2tan α1-tan 2α= 3. 答案 (-1,3) 3专题二 三角函数的图象与性质 A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅰ,6)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4 D.y =2sin ⎝⎛⎭⎪⎫2x -π31.解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. 答案 D 2.(2016·新课标全国卷Ⅱ,3)函数y =A sin(ωx +φ)的部分图象如图所示,则( ) A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6 B.y =2sin ⎝⎛⎭⎪⎫2x -π3 C.y =2sin ⎝ ⎛⎭⎪⎫x +π6 D.y =2sin ⎝⎛⎭⎪⎫x +π3 2.解析 由题图可知,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6,故选A. 答案 A3.(2016·四川,4)为了得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( )A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向上平行移动π3个单位长度D.向下平行移动π3个单位长度3.解析 由y =sin x 得到y =sin(x ±a )的图象,只需记住“左加右减”的规则即可. 答案 A4.(2015·新课标全国Ⅰ,8)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( ) A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z4.解析 由图象知T 2=54-14=1, ∴T =2.由选项知D 正确. 答案 D5.(2015·山东,4)要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位5.解析 ∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12, ∴要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B6.(2014·天津,8)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A.π2 B.2π3C.πD.2π 6.解析 由题意得函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0), 又曲线y =f (x )与直线y =1相邻交点距离的最小值是π3,由正弦函数的图象知,ωx +π6=π6和ωx +π6=5π6对应的x 的值相差π3, 即2π3ω=π3,解得ω=2,所以f (x )的最小正周期是T =2πω=π. 答案 C7.(2014·陕西,2)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是( ) A.π2B.πC.2πD.4π 7.解析 由余弦函数的复合函数周期公式得T =2π2=π. 答案 B8.(2014·四川,3)为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度 8.解析 由图象平移的规律“左加右减”,可知选A. 答案 A9.(2014·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A.向右平移π12个单位B.向右平移π4个单位C.向左平移π12个单位D.向左平移π4个单位9.解析 因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎪⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎪⎫3x -π4的图象.答案 A10.(2014·安徽,7)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( )A.π8 B.π4 C.3π8 D.3π410.解析 方法一 f (x )=2sin ⎝⎛⎭⎪⎫2x +π4,将函数f (x )的图象向右平移φ个单位后所得图象对应的函数解析式为y =2sin ⎝ ⎛⎭⎪⎫2x +π4-2φ,由该函数为偶函数可知2φ-π4=k π+π2,k ∈Z , 即φ=k π2+3π8,k ∈Z , 所以φ的最小正值为3π8.方法二 f (x )=2cos ⎝⎛⎭⎪⎫2x -π4,将函数f (x )的图象向右平移φ个单位后所得图象对应的函数为y =2cos ⎝⎛⎭⎪⎫2x -π4-2φ,且该函数为偶函数, 故2φ+π4=k π,k ∈Z , 所以φ的最小正值为3π8. 答案 C 11.(2014·新课标全国Ⅰ,7)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③11.解析 ①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =cos ⎝ ⎛⎭⎪⎫2x +π6,最小正周期为π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4,最小正周期为π2,所以最小正周期为π的所有函数为①②③,故选A. 答案 A12.(2014·福建,7)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A.y =f (x )是奇函数B.y =f (x )的周期为πC.y =f (x )的图象关于直线x =π2对称D.y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称 12.解析 函数y =sin x 的图象向左平移π2个单位后,得到函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π2=cos x 的图象,f (x )=cos x为偶函数,排除A ;f (x )=cos x 的周期为2π,排除B ;因为f ⎝ ⎛⎭⎪⎫π2=cos π2=0,所以f (x )=cos x 不关于直线x =π2对称,排除C ;故选D. 答案 D13.(2016·新课标全国Ⅲ,14)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.13.解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,由y =2sin x 的图象至少向右平移π3个单位长度得到. 答案 π314.(2015·天津,11)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.14.解析 f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4, 由-π2+2k π≤ωx +π4≤π2+2k π,k ∈Z , 得-3π4+2k π≤ωx ≤π4+2k π, 由题意f (x )在区间(-ω,ω)内单调递增,可知k =0,ω≥π2,又函数y =f (x )的图象关于直线x =ω对称, 所以sin(ω2+π4)=1,ω2+π4=π2, 所以ω=π2. 答案 π215.(2015·陕西,14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.15.解析 由题干图易得y min =k -3=2,则k =5, ∴y max =k +3=8. 答案 816.(2015·湖南,15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 16.解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx ,知sin ωx =cos ωx , 即sin ωx -cos ωx =0, ∴2sin ⎝ ⎛⎭⎪⎫ωx -π4=0,∴ωx =π4+k π,x =1ω⎝ ⎛⎭⎪⎫π4+k π(k ∈Z ), ∴两函数交点坐标为⎝ ⎛⎭⎪⎫1ω⎝ ⎛⎭⎪⎫π4+k π,2(k =0,2,4,…),或⎝ ⎛⎭⎪⎫1ω⎝ ⎛⎭⎪⎫π4+k π,-2(k =…,-3,-1,1,3,…) ∴最短距离为(22)2+π2ω2=23,∴π2ω2=4, ∴ω=π2. 答案 π217.(2014·重庆,13)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________.17.解析 把函数y =sin x 的图象向左平移π6个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π6的图象,再把函数y =sin ⎝⎛⎭⎪⎫x +π6图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6的图象, 所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫12×π6+π6=sin π4=22. 答案 2218.(2015·湖北,18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1) (2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.18.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 因此g (x )=5sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=5sin ⎝ ⎛⎭⎪⎫2x +π6.因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0.19.(2014·湖北,18)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.19.解 (1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10. 故实验室上午8时的温度为10 ℃. (2)因为f (t )=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24, 所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 20.(2014·四川,17)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值. 20.解 (1)由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z , 得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z .(2)由已知,有sin ⎝⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2 α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z ,此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或cos α-sin α=-52. 21.(2014·福建,18)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.21.解 f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .22.(2014·北京,16)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.22.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0. 于是当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.B 组 两年模拟精选(2016~2015年)1.(2016·四川成都第二次诊断)将函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数g (x )的图象,则函数g (x )的解析式为( )A.g (x )=cos ⎝ ⎛⎭⎪⎫2x +π3B.g (x )=cos ⎝ ⎛⎭⎪⎫2x +π6C.g (x )=cos ⎝ ⎛⎭⎪⎫x 2+π3D.g (x )=cos ⎝ ⎛⎭⎪⎫x 2+π61.解析 横坐标缩短为原来的12倍,纵坐标不变,则有g (x )=cos ⎝⎛⎭⎪⎫2x +π6. 答案 B2.(2016·山西四校联考)已知函数f (x )=cos ⎝⎛⎭⎪⎫ωx +φ-π2⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的集合为( )A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z2.解析 依题意得T =2πω=4⎝ ⎛⎭⎪⎫7π12-π3=π,ω=2,f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫φ+π6=1, 又|φ|<π2,因此φ=-π6,所以f (x )=cos ⎝⎛⎭⎪⎫2x -2π3.当f ⎝ ⎛⎭⎪⎫x +π6=cos ⎝⎛⎭⎪⎫2x -π3取得最小值时,2x -π3=2k π-π,k ∈Z ,即x =k π-π3,k ∈Z , 答案 B3.(2015·石家庄模拟)将函数f (x )=sin(2x +φ)的图象向左平移π8个单位,所得到的函数图象关于y 轴对称,则φ的一个可能取值为( ) A.3π4 B.π4 C.0 D.-π43.解析 函数f (x )=sin(2x +φ)的图象向左平移π8个单位, 得g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,又g (x )的函数图象关于y 轴对称,所以g (x )为偶函数, 所以π4+φ=k π+π2(k ∈Z ),即φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选B. 答案 B4.(2015·黄冈模拟)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x 是( ) A.奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称4.解析 当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,即π4+φ=-π2+2k π,k ∈Z ,即φ=-3π4+2k π,k ∈Z ,所以f (x )=A sin ⎝ ⎛⎭⎪⎫x -3π4(A >0), 所以y =f (3π4-x )=A sin ⎝ ⎛⎭⎪⎫3π4-x +3π4=-A cos x ,所以函数为偶函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称,选D. 答案 D5.(2015·河南焦作市统考)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( ) A.关于点⎝ ⎛⎭⎪⎫π2,0对称 B.关于直线x =5π12对称 C.关于点⎝ ⎛⎭⎪⎫5π12,0对称 D.关于直线x =π12对称5.解析 f (x )=2sin ⎝ ⎛⎭⎪⎫π3-2x =2cos ⎝ ⎛⎭⎪⎫2x +π6, π+2k π≤2x +π6≤2π+2k π,k ∈Z ,即5π12+k π≤x ≤11π12+k π,k ∈Z . 答案 ⎣⎢⎡⎦⎥⎤5π12+k π,11π12+k π(k ∈Z )6.(2015·怀化市监测)函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调增区间为________.6.解析 由于函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π, 故2πω=π,ω=2.把其图象向右平移π12个单位后得到函数的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+φ=sin ⎝ ⎛⎭⎪⎫2x -π6+φ,为奇函数,∴-π6+φ=k π,∴φ=k π+π6,k ∈Z , ∴φ=π6,∴函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6.令2x +π6=k π,k ∈Z ,可得x =k π2-π12,k ∈Z , 故函数的对称中心为⎝ ⎛⎭⎪⎫k π2-π12,0(k ∈Z ).故点⎝⎛⎭⎪⎫5π12,0是函数的一个对称中心. 答案 C7.(2015·辽宁五校联考)已知函数f (x )=32sin ωx +32cos ωx (ω>0)的周期为4. (1)求f (x )的解析式;(2)将f (x )的图象沿x 轴向右平移23个单位得到函数g (x )的图象,P ,Q 分别为函数g (x )图象的最高点和最低点(如图),求∠OQP 的大小.7.解 (1)f (x )=32sin ωx +32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =3⎝ ⎛⎭⎪⎫sin ωx cos π3+cos ωx sin π3=3sin ⎝⎛⎭⎪⎫ωx +π3.∵T =4,ω>0,∴ω=2π4=π2. ∴f (x )=3sin ⎝ ⎛⎭⎪⎫π2x +π3.(2)将f (x )的图象沿x 轴向右平移23个单位得到函数g (x )=3sin π2x .∵P ,Q 分别为该图象的最高点和最低点, ∴P (1,3),Q (3,-3).∴OP =2,PQ =4,OQ =12, ∴cos ∠OQP =OQ 2+PQ 2-OP 22OQ ·QP =32.∵∠OQP 是△OPQ 的一个内角, ∴∠OQP =π6.专题三 三角恒等变换A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅲ,6)若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.451.解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 答案 D 2.(2016·新课标全国Ⅱ,11)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.72.解析 因为f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,所以当sin x =1时函数的最大值为5,故选B. 答案 B3.(2015·重庆,6)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.563.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 答案 A4.(2016·浙江,11)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________. 4.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎪⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1=A sin(ωx +φ)+b (A >0),∴A =2,b =1. 答案 2 15.(2016·山东,17)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值. 5.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin ⎝⎛⎭⎪⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )⎝ ⎛⎭⎪⎫或⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ).(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎪⎫x -π3+3-1的图象.再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1. 所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3. 6.(2016·北京,16)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值; (2)求f (x )的单调递增区间.6.解 (1)f (x )=2sin ωx ·cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2⎝⎛⎭⎪⎫22sin 2ωx +22cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π4由ω>0,f (x )最小正周期为π得2π2ω=π, 解得ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎪⎫2x +π4,令-π2+2k π≤2x +π4≤π2+2k π,k ∈Z , 解得-3π8+k π≤x ≤π8+k π,k ∈Z ,即f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).7.(2015·广东,16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 7.解 (1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=tan α+11-tan α=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 8.(2015·北京,15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.8.解 (1)因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎪⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3时,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.9.(2015·福建,21)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2. ①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.9.(1)解 因为f (x )=103sin x 2cos x 2+10cos 2x 2=53sin x +5cos x +5=10sin ⎝⎛⎭⎪⎫x +π6+5,所以函数f (x )的最小正周期T =2π.(2)证明 ①将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5的图象,再向下平移a(a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45. 由45<32知,存在0<α0<π3,使得sin α0=45.由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45. 因为y =sin x 的周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,所以对任意的正整数k ,都存在正整数x 0∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.10.(2014·广东,16)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=322.(1)求A 的值; (2)若f (θ)-f (-θ)=3,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫π6-θ.10.解 (1)∵f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,且f ⎝ ⎛⎭⎪⎫5π12=322, ∴A sin ⎝ ⎛⎭⎪⎫5π12+π3=322⇒A sin 3π4=322⇒A =3.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫x +π3, ∵f (θ)-f (-θ)=3, ∴3sin(θ+π3)-3sin ⎝⎛⎭⎪⎫-θ+π3=3,展开得3⎝ ⎛⎭⎪⎫12sin θ+32cos θ-3⎝ ⎛⎭⎪⎫32cos θ-12sin θ=3, 化简得sin θ=33.∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴cos θ=63. ∴f ⎝ ⎛⎭⎪⎫π6-θ=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π6-θ+π3=3sin ⎝ ⎛⎭⎪⎫π2-θ=3cos θ= 6.11.(2014·浙江,18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin =2+ 2.(1)求角C 的大小; (2)已知b =4,△ABC 的面积为6,求边长c 的值. 11.解 (1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22. 所以A +B =3π4,从而C =π4. (2)因为S △ABC =12ab sin C , 由S △ABC =6,b =4,C =π4,得a =32,由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10.B 组 两年模拟精选(2016~2015年)1.(2016·江西九校联考)已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于( )A.7B.17C.-17 D.-71.解析 ∵α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-45, ∴sin α=-35, ∴tan α=sin αcos α=34, ∴tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=17. 答案 B2.(2016·洛阳统考)若α∈[0,2π),则满足1+sin 2α=sin α+cos α的α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π2B.[]0,πC.⎣⎢⎡⎦⎥⎤0,3π4 D.⎣⎢⎡⎦⎥⎤0,3π4∪⎣⎢⎡⎭⎪⎫7π4,2π2.解析 由1+sin 2α=sin α+cos α得sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4≥0,又因为α∈[0,2π),所以α的取值范围为⎣⎢⎡⎦⎥⎤0,3π4∪⎣⎢⎡⎭⎪⎫7π4,2π,故选D. 答案 D3.(2016·河南六市联考)设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( ) A.a <c <b B.a <b <c C.b <c <a D.c <a <b3.解析 利用三角公式化简得a =12cos 2°-32sin 2°=cos(60°+2°)=cos 62°=sin 28°,b =tan 28°,c =sin 2 25°=sin 25°.因为sin 25°<sin 28°<tan 28°, 所以c <a <b ,故选D. 答案 D 4.(2015·大庆市质检二)已知sin α=54,则sin 2α-cos 2α的值为( ) A.-18 B.-38 C.18 D.384.解析 sin 2α-cos 2α=-cos 2α=2sin 2α-1=-38. 答案 B5.(2015·烟台模拟)已知cos α=35,cos(α+β)=-513,α,β都是锐角,则cos β等于( )A.-6365B.-3365C.3365D.63655.解析 ∵α,β是锐角,∴0<α+β<π,又cos(α+β)=-513<0,cos α=35,∴π2<α+β<π, ∴sin(α+β)=1213,sin α=45. 又cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-513×35+1213×45=3365. 答案 C6.(2015·河北唐山模拟)已知2sin 2α=1+cos 2α,则tan 2α=( ) A.43 B.-43 C.43或0 D.-43或0 6.解析 因为2sin 2α=1+cos 2α,所以2sin 2α=2cos 2α,所以2cos α·(2sin α-cos α)=0,解得cos α=0或tan α=12.若cos α=0,则α=k π+π2,k ∈Z , 2α=2k π+π,k ∈Z ,所以tan 2α=0;若tan α=12,则tan 2α=2tan α1-tan 2α=43. 综上所述,故选C. 答案 C 7.(2015·巴蜀中学一模)已知sin αcos α1-cos 2α=12,tan(α-β)=12,则tan β=________.7.解析 ∵sin αcos α1-cos 2α=sin αcos α2sin 2α=cos α2sin α=12, ∴tan α=1. ∵tan(α-β)=tan α-tan β1+tan αtan β=12,∴tan β=13. 答案 138.(2015·河南洛阳统考)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=41313.(1)求cos(α-β)的值; (2)若0<α<π2,-π2<β<0且sin β=-45,求sin α的值.8.解 (1)∵a -b =(cos α-cos β,sin α-sin β),∴|a -b |2=(cos α-cos β)2+(sin α-sin β)2=2-2cos(α-β), ∴1613=2-2cos(α-β),∴cos(α-β)=513. (2)∵0<α<π2,-π2<β<0且sin β=-45,∴cos β=35且0<α-β<π.又∵cos(α-β)=513,∴sin(α-β)=1213.∴sin α=sin[(α-β)+β]=sin(α-β)·cos β+cos(α-β)·sin β=1213×35+513×⎝ ⎛⎭⎪⎫-45=1665.专题四 解三角形A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅰ,4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3C.2D.31.解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去,故选D.答案 D2.(2016·山东,8)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4 D.π62.解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ),∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.答案 C3.(2015·广东,5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A. 3B.2 2C.2D. 33.解析 由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+12-2×b ×23×32,即b 2-6b +8=0,∴b =4或b =2,又b <c ,∴b =2. 答案 C4.(2014·四川,8)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m4.解析 ∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan 60°-60tan 15°=120(3-1)(m),故选C. 答案 C 5.(2016·新课标全国Ⅱ,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 若cos A =45,cos C =513,a =1,则b =________.5.解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.答案 21136.(2016·北京,13)在△ABC 中,∠A =2π3,a =3c ,则bc =________.6.解析 由a sin A =csin C得sin C =c sin A a =13×32=12, 又0<C <π3,所以C =π6,B =π-(A +C )=π6. 所以b c =sin Bsin C =sinπ6sinπ6=1. 答案 17.(2015·北京,11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.7.解析 由正弦定理得sin ∠B =b sin ∠A a =6sin2π33=22,因为∠A 为钝角,所以∠B =π4. 答案 π48.(2015·重庆,13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.8.解析 由3sin A =2sin B ,得3a =2b ,∴b =32a =32×2=3,在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos C =22+32-2×2×3×⎝ ⎛⎭⎪⎫-14=16, 解得c =4. 答案 49.(2015·安徽,12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.9.解析 已知∠C =60°,由正弦定理得AC sin ∠B =AB sin ∠C ,∴AC =6sin 45°sin 60°=6×2232=2. 答案 210.(2015·湖北,15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.10.解析 依题意,在△ABC 中,AB =600,∠BAC =30°,∠ACB =45°,由正弦定理得600sin 45°=BCsin 30°,得BC =3002, 在Rt △BCD 中,CD =BC ·tan 30°=1006(m).答案 100 611.(2014·新课标全国Ⅰ,16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.11.解析 在三角形ABC 中,AC =1002,在三角形MAC 中,MAsin 60°=ACsin 45°,解得MA =1003,在三角形MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m .答案 15012.(2014·湖北,13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.12.解析 由正弦定理a sin A =b sin B 得sin B =b sin A a =32,又B ∈⎝ ⎛⎭⎪⎫π6,5π6,所以B =π3或2π3.答案 π3或2π313.(2014·福建,14)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.13.解析 在△ABC 中,根据正弦定理,得AC sin B =BC sin A ,所以2sin B =3sin 60°,解得sin B =1,因为B ∈(0,π),所以B =π2,所以AB =22-(3)2=1. 答案 1 14.(2014·北京,12)在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.14.解析 根据余弦定理,c 2=a 2+b 2-2ab cos C =12+22-2×1×2×14=4,故c =2,因为cos C =14,于是sin C =1-⎝ ⎛⎭⎪⎫142=154, 于是,由正弦定理,sin A =a sin C c =1×1542=158(或:由a =1,b =2,c =2,得cos A =22+22-122×2×2=78,于是,sin A =1-⎝ ⎛⎭⎪⎫782=158). 答案 215815.(2016·浙江,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B.(1)证明:A =2B ; (2)若cos B =23,求cos C 的值.15.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B , 所以A =2B . (2)解 由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.16.(2016·四川,18)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B.16.(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得:sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc , 根据余弦定理,有cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin Bcos B=4.17.(2015·江苏,15)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.17.解 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7, 所以BC =7.(2)由正弦定理知,AB sin C =BC sin A , 所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 所以sin 2C =2sin C ·cos C =2×217×277=437. 18.(2015·新课标全国Ⅱ,17)在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin ∠B sin ∠C ; (2)若∠BAC =60°,求∠B .18.解 (1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DCsin ∠CAD.因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B .由(1)知2sin ∠B =sin ∠C , 所以tan ∠B =33,即∠B =30°. 19.(2015·天津,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值. 19.解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158.(2)cos ⎝⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316.20.(2015·山东,17)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33, sin (A +B )=69,ac =23, 求sin A 和c 的值. 20.解 在△ABC 中,由cos B =33,得sin B =63. 因为A +B +C =π,所以sin C =sin(A +B )=69. 因为sin C <sin B ,所以C <B ,可知C 为锐角, 所以cos C =539.所以sin A =sin(B +C )=sin B cos C +cos B sin C =63×539+33×69=223. 由a sin A =c sin C ,可得a =c sin Asin C =223c 69=23c , 又ac =23,所以c =1. 21.(2015·湖南,17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ; (2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .21.解 (1)由正弦定理知a sin A =b sin B =csin C=2R , ∴a =2R sin A ,b =2R sin B ,代入a =b tan A ,得sin A =sin B ·sin A cos A , 又∵A ∈(0,π),∴sin A >0, ∴1=sin Bcos A,即sin B =cos A .(2)由sin C -sin A cos B =43知,sin(A +B )-sin A cos B =43, ∴cos A sin B =34.由(1)知sin B =cos A ,∴cos 2A =34, 由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6,sin B =32,B =2π3, ∴C =π-(A +B )=π6.22.(2015·浙江,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2A sin 2A +cos 2A 的值; (2)若B =π4,a =3,求△ABC 的面积. 22.解 (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13, 所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)因为tan A =13,A ∈(0,π), 所以sin A =1010,cos A =31010.又由a =3,B =π4及正弦定理a sin A =b sin B 得b =3 5. 由sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫A +π4得sin C =255,设△ABC 的面积为S ,则S =12ab sin C =9.23.(2015·新课标全国Ⅰ,17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sinC . (1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积.23.解 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为1.24.(2014·重庆,18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;。

高三文科周末辅导11(三角函数专题练习)

高三文科周末辅导11(三角函数专题练习)

1.已知函数2()2cos 3sin 2x f x x =-. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若α为第二象限角,且1()33f πα-=,求cos21tan αα-的值.2.设函数23()3sin sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π. (Ⅰ)求ω的值; (Ⅱ)求()f x 的单调增区间,对称轴,对称中心; (III )求()f x 在区间3[,]2ππ上的最大值和最小值; (IV)求()f x 在区间 上的单调区间.3.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知向量(2,),(cos ,cos ),p c a b q B C =-= p q ⊥ 且. (1)求角B 的大小; (2)若b =23,求△ABC 面积的最大值.4.在ABC ∆中,角A B C 、、的对边分别为a b c ,,,且满足2cos .c b A =(1)求证:A B =;(2)若ABC ∆的面积152S =,4cos 5C =,c 求的值.16、解:(Ⅰ)因为 ()1cos 3sin f x x x =+- ……………………1分 12cos()3x π=++, ……………………3分所以函数()f x 的周期为2π,值域为[1,3]-. ……………………5分 (Ⅱ)因为 1()33f πα-=, 所以 112cos =3α+,即1cos 3α=-. ……………………6分 因为 22cos 2cos sin cos sin 1tan cos ααααααα-=-- ……………………8分 cos (cos sin )ααα=+2cos cos sin ααα=+, ……………………10分 因为α为第二象限角, 所以 22sin 3α=. ……………………11分 所以 cos 21221221tan 999αα-=-=-. 【解析】(1)p q ⊥ 由,可得(2)cos cos 0p q c a B b c =-+= ,由正弦定理:sin cos 2sin cos sin cos 0,sin()2sin cos .C B A B B C C B A B -+=+=从而(3分) 又B + C =π– A ,sin(C + B ) = sin A ,且sin A >0,故1cos ,(0,),23B B B ππ=∈∴=又(6分)(2)由余弦定理b2 = a2 + c2– 2ac cos B = a2 + c2 –ac≥ac,又b =23,从而ac≤12 (9分)故113sin1233222ABCS ac B=≤⨯⨯=,因此当a = c =23时,△ABC的面积最大且最大值为33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三文科基础练习《三角函数与解三角形》
高考改变命运
1、若sin α<0且tan α>0,则α是 ( )
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
2、sin 600°的值为 ( ).
A. B. C. D.
3.若角α的终边经过点P(1,-2),则tan 2α的值为 ( ).
A. B. C. D.
4、θ是第二象限角,则下列选项中一定为正值的是 ( ).
A.sin B.cos C.tan D.cos 2θ
5、已知点P落在角θ的终边上,且θ∈[0,2π),则θ的值为 ( ).
A. B. C. D.
6、下列函数中周期为π且为偶函数的是 ( ).
A.y=sin B.y=cos C.y=sin D.y=cos
7、将函数y=cos x的图象向右平移个单位长度,再向上平移1个单位长度,
则所得的图象对应的解析式为 ( ).
A.y=1-sin x B.y=1+sin x C.y=1-cos x D.y=1+cos x
8、函数f(x)=sin xsin的最小正周期为 ( ).
A.4π B.2π C.π D.
9、要得到函数y=的图象,只要将函数y=sin 2x的图象 ( ).
A.向左平移单位 B.向右平移单位
C.向右平移单位 D.向左平移单位
10、已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式
为 ( ).
A.f(x)=2sin B.f(x)=2sin
C.f(x)=2sin D.f(x)=2sin
11、(昆明模拟)已知函数f(x)=2sin (ω>0)的最小正周期为π,则f(x)的单调
递增区间为 ( ).
A. (k∈Z) B. (k∈Z)
C. (k∈Z) D. (k∈Z)
12、将函数f(x)=3sin图象上所有点的横坐标伸长到原来的2倍,再向右平移
个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是( ).
A.x= B.x= C.x= D.x=
13、若函数f(x)=sin的图象向右平移个单位后与原函数的图象关于x轴对
称,则ω的最小正值是 ( ).
A. B.1 C.2 D.3
14、在△ABC中,A=,AB=2,且△ABC的面积为,则边AC的长为
( ).
A.1 B. C.2 D.
15、已知锐角α满足cos 2α=cos,则sin 2α等于 ( ).
A. B.- C. D.-
16、已知角A为△ABC的内角,且sin 2A=,则sin A-cos A= ( ).
A. B.- C.- D.
17、在△ABC中,角A,B,C所对的边分别为a,b,c,若sin2 A+sin2 C-
sin2 B=
sin Asin C,则角B为 ( ).
A. B. C. D.
18、若三条线段的长分别为3,5,7,则用这三条线段 ( ).
A.能组成直角三角形 B.能组成锐角三角形
C.能组成钝角三角形 D.不能组成三角形
19、设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A
=5sin B,则角C= ( ).
A. B. C. D.
20、设α,β都是锐角,且cos α=,sin(α+β)=,则cos β= ( ).
A. B. C.或 D.或
21、在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC= ( ).
A. B. C. D.
22、sin 585°的值为 ( ).
A.- B. C.- D.
23、若3sin α+cos α=0,则的值为 ( ).
A. B. C. D.-2
25、若sin α是5x2-7x-6=0的根,则
= ( ).
A. B. C. D.
26、函数f(x)=2sin xcos x是 ( ).
A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数
C.最小正周期为π的奇函数 D.最小正周期为π的偶函数
27、已知函数f(x)=sin-1(ω>0)的最小正周期为,则f(x)的图象的一条对称
轴方程是 ( ).
A.x= B.x= C.x= D.x=
28、将函数y=sin x的图象向左平移φ(0≤φ<2π)个单位后,得到函数y=sin
的图象,则φ等于 ( ).
A. B. C. D.
29、如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期为T,且当x=2时,
f(x)取得最大值,那么 ( ).
A.T=2,θ= B.T=1,θ=π C.T=2,θ=π D.T =1,θ=
30、已知sin=,则cos(π+2α)的值为 ( ).
A.- B. C. D.-
31、已知cos=,则sin 2x= ( ).
A. B. C.- D.-
32、已知α∈,且cos α=-,则tan等于 ( ).
A.7 B. C.- D.-7
33、在△ABC中,若a2-c2+b2=ab,则C= ( ).
A.30° B.45° C.60° D.120°
34、在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为
( ).
A. B. C.2 D.2
35、△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C
=,则△ABC的面积为 ( ).
A.2+2 B.+1 C.2-2 D.-1
36、△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a=1,b
=,则c= ( ). A.2 B.2 C. D.1
37、设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B
=asin A,则△ABC的形状为 ( ).
A.直角三角形 B.锐角三角形 C.钝角三角形 D.不确定
38、两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东
40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的 ( ).
A.北偏东10° B.北偏西10° C.南偏东10° D.南偏西
10°
39、已知角α的终边上一点的坐标为,则角α的最小正值为________.
40、在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,
sin B+cos B=,则角A的大小为________.
41、在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=
ac,则角B的值为________.
42、函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]
上的图象如图所示,则ω=________.
43、已知函数y=g(x)的图象由f(x)=sin 2x的图象向右平移φ(0<φ<π)个单
位得到,这两个函数的部分图象如图所示,则φ=________.
高考改变命运
44、如果sin(π+A)=,那么cos的值是________.
45、sin·cos·tan的值是________.
46、已知sin=,且-π<α<-,则cos=________.
47、如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,
点A的纵坐标为,则cos α=____.
48、在△ABC中,a,b,c分别是角A,B,C的对边,若b=1,c=,C
=,则S△ABC=________.
49、如图所示的是函数y=Asin(ωx+φ)图象的一部分,则其函数解析式是
________.
50、已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象与直线y=b(0<b
<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是
________.。

相关文档
最新文档