井身结构设计
井身结构设计的内容

井身结构设计的内容
《井身结构设计的内容》
嘿,咱今天来聊聊井身结构设计。
你知道吗,井身结构设计就像是给一口井打造一个完美的“家”。
这可不是一件简单的事儿呢!就拿我之前看到过的一口井来说吧。
那是在一个大工地里,我好奇地凑过去看他们在干嘛。
原来他们正在设计那口井的结构。
他们先得考虑井的深度啊,这可不能随便乱来。
得根据实际需求,要够深才能达到想要的资源,但又不能太深了,不然成本太高啦,这中间的分寸得把握好。
就好像你做饭放盐一样,少了没味道,多了咸得慌。
然后呢,还要设计井筒的直径,这也有讲究的呀。
得让井里面能有足够的空间来运作,但又不能太大了,不然多浪费材料和成本呀。
我看着他们在那仔细地测量、计算,就像在给井量身定制一套衣服一样,要合适,要舒服。
还有啊,井壁的强度也很重要呢。
要是不结实,那可不行,说不定哪天就塌了。
那可就像盖房子,墙要是不牢固,那可危险啦。
他们得选用合适的材料,让井壁坚固无比,能够承受各种压力和考验。
最后还有一些细节呢,比如井口的设计,要方便使用,还要保证安全。
就像我们家里的门一样,得开关方便,还不能有隐患。
总之,井身结构设计这事儿真不简单,每一个环节都得精心考虑,从深度到直径,从强度到细节。
只有这样,才能打造出一口完美的井,让它好好地为我们服务。
我看着那口正在设计中的井,仿佛看到了它未来发挥大作用的样子,真的很神奇啊!这就是井身结构设计的内容,看似普通却蕴含着大大的智慧呢!。
第二章井身结构设计

第二章 井身结构设计井身结构设计就是钻井工程得基础设计。
它得主要任务就是确定套管得下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。
基础设计得质量就是关系到油气井能否安全、优质、高速与经济钻达目得层及保护储层防止损害得重要措施。
由于地区及钻探目得层得不同,钻井工艺技术水平得高低,国内外各油田井身结构设计变化较大。
选择井身结构得客观依据就是地层岩性特征、地层压力、地层破裂压力。
主观条件就是钻头、钻井工艺技术水平等。
井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况与事故。
为安全、优质、高速与经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流得能力。
本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。
第一节 地层压力理论及预测方法地层压力理论与评价技术对天然气及石油勘探开发有着重要意义。
钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力就是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制得基础。
一、几个基本概念1.静液柱压力静液柱压力就是由液柱自身重量产生得压力,其大小等于液体得密度乘以重力加速度与液柱垂直深度得乘积,即0.00981hP H (2-1)式中:P h ——静液柱压力,MPa;r ——液柱密度,g/cm 3; H ——液柱垂直高度,m 。
静液柱压力得大小取决于液柱垂直高度H 与液体密度r ,钻井工程中,井愈深,静液柱压力越大。
2.压力梯度指用单位高度(或深度)得液柱压力来表示液柱压力随高度(或深度)得变化。
ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m; P h ——液柱压力,MPa; H ——液柱垂直高度,m 。
石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:r ——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内得总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。
《井身结构设计》课件

井身材料
常用井身材料包括钢筋混凝 土、混凝土、钢和玻璃钢等。
井身结构设计的目的
提高井身稳定性
井身结构设计的目的是为了提高 井身的稳定性,确保石油井的平 稳生产。
降低事故风险
合理的井身结构设计可以减少石 油井事故的概率,保障工人的生 命安全。
提高生产效率
通过优化井身结构设计,可以提 高石油井的生产效率,降低维护 成本。
1
基础工程
进行基础开挖、标出基坑轮廓线、安置钢筋骨架等。
2
混凝土浇筑
进行钢筋模板组装、浇筑混凝土等。
3
砼强度与养护
根据测量计算、检验、养护高强度混凝土的质量。
预应力混凝土结构井的施工
预应力钢筋制作
预应力混凝土井筒需要应用预应 力钢筋,进行钢筋的制作和预应 力张拉。
施工工艺
构件之间的连接
进行预制整体与预制分段两种工 艺,将预制件安装到已完成地基 的基础上,进行钢束拉紧与固定。
井身结构设计实例分享
பைடு நூலகம்
1
长江三峡水电站井身设计
针对高水压和高岸坡等复杂工况,设计了多层钢筋混凝土结构的井身,确保水电 站的正常运行。
2
渤海海洋油田厂房井身设计
针对海洋环境的复杂性,设计高强度钢结构井身,提高了设施稳定性和运行效率。
3
南海油田纯海上井身设计
针对纯海上井身不稳定等特点,设计了预制单元式混凝土井身结构,解决了海上 施工难度大的问题。
井身结构的安全性检查
1 验收检查
在施工完成后,进行对井身结构的检查,确认是否符合设计要求。
2 日常检查
对井身结构进行日常管护与维修,确保井身结构的稳定性和安全性。
3 保护检查
第2讲_井身结构设计

测技术得到发展,特别是近平衡钻井的推广和井控技术的掌
握,使井身结构中套管层次和下入深度的设计,逐步总结出 一套较为科学的设计方法。
在“六五”期间,我国开始应用这套方法.首先在中原
油田取得很大效益。如在3500到4700m深井中,使平均事故 时间大幅度下降、建井周期缩短、钻井成本下降。
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
2.2、发生溢流(井涌)时
f 2
剖面图中最大地层压力梯度点对应的深度(m)
p m ax
Sb S
f
D p m ax D 21
Sk
井涌条件允许值
地层设计破裂压当量密度
激动压力系数
剖面图中最大地层压力对应的当量密度值 破裂压力安全增值 中间套管下入深度的初始假定点深度(m)
长江大学石油工程学院钻井工程研究所
3、井身结构设计中所需要的基础数据
地层破裂安全增值Sf由地区统计资料得到,一般取 0.031 g/cm3; 井涌条件允许值Sk由地区统计资料得到,一般取 0.051-0.10 g/cm3; 最大回压pwh由工艺条件决定,一般取2.0-4.0MPa;
. 钻压差允许值 卡
7、水泥返深设计
对于油层,生产套管的管外水泥返深至少应该在油 层顶部200m以上。对于气层,生产套管的管外水泥 返深至少应该在油层顶部300m以上;
中间套管的管外水泥返深至少应该在复杂或大断层
100m以上; 尾管的管外水泥返深至少在尾管的悬挂器以上;
表层套管的管外水泥返到地面。
长江大学石油工程学院钻井工程研究所
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
(2)中间套管下入深度 的初始假定点D21 在压力剖面图的横坐标 上,找出前面已经确定的
井身结构设计课件16页PPT文档

– Sg:激动压力梯度当量密度; g/cm3; – Sg=0.024-0.048 g/cm3
井身结构设计
井身结构设计关键参数
最大井内压力梯度(续)
发生液流时:为了制止液流,如压井时井内压力 增高值为Sk,则最大井内压力梯度为:
mE maxSK
– Sk=0.060 g/cm3
生产套管根据采油方面要求来定。勘探井则按照勘探方 要求来定。
套管与井眼之间有一定间隙,间隙过大则不经济,过小 会导致下套管困难及注水泥后水泥过早脱水形成水泥桥 。间隙值一般最小在9.5~12.7mm(3/8~1/2in)范围,最 好为19mm(3/4in)。
四、套管尺寸与井眼尺寸选择及配合
3.套管及井眼尺寸标准组合
81/2
、卡钻等井下复杂情况,为全井 安全、优质、快速和经济地钻 进创造条件; 当实际地层压力超过预测值使 井出现液流时,在一定范围内 ,具有压井处理溢流的能力。
井身结构设计
套管类型
导管
钻表层井眼时,将钻井液从地表引导 到钻台平面上来。
表层套管
防止浅层水受污染,封闭浅层流砂、 砾石层及浅层气,支撑井口设备装置 ,悬挂依次下入的各层套管的载荷。
mEf Sf
ρf:上一层套管下入深 度处裸露地层的破裂 压力梯度; g/cm3
Sf:为避免将上一层套管 下入深度处裸露地层压裂 的安全值, Sf =0.0240.048 g/cm3
Gf Gp
当量泥浆密度
井身结构设计
最大允许压差
为了在下套管过程中,不致于发生压差粘卡 套管的事故,应该限制井内钻井液液柱压力 与地层压力的压力差值,即规定最大允许压 差。
井身结构设计
【钻井工程】井身结构设计

井
深 ,
表 套
m
破裂压力
技 套
设计 井深
地层压力
1.0 1.3 1.6
油套
1.8 当量密度,g/cm3
1. 自下而上的设计法
2)设计特点
(1)每层套管下入的深度最浅,套管费用最低。适合已探明 地区开发井的井身结构设计;
(2)上部套管下入深度的合理性取决于对下部地层特性了解 的准确程度和充分程度;
(3)应用于已探明地区的开发井的井身结构设计比较合理; (4)在保证钻井施工顺利的前提下,自下而上的设计方法可 使井身结构的套管层次最少,每层套管下入的深度最浅,从而达 到成本最优的目的。
(3) 0.00981 (dmax pmin ) Dpmin P
(4)
d max S f
Sk
Dpmax Dc1
fc1
防井涌 防井漏 防压差卡钻 防关井井漏
第三节 井身结构设计依据与原理
五、地层必封点
(1)钻进过程中钻遇易坍塌页岩层、塑性泥岩层、盐岩层、岩膏 层、煤层等,易造成井壁坍塌和缩径。 (2)裂缝溶洞型、破裂带地层、不整合交界面地层。 (3)含H2S等有毒气体的油气层。 (4)低压油气层的防污染问题。 (5)井眼轨迹控制等施工方面的特殊要求。SY/T 6396-2009 中第4.6条的规定:“井身结构除按SY/T5431的规定执行外,丛 式井组各井的表层下深宜交替错开10m以上。” (6)在采用欠平衡压力钻井时,为了维持上部井眼的稳定性,通 常将技术套管下至产层顶部。 (7)表层套管的下入深度应满足环境保护的要求。
油气井工程设计与应用
第一部分 井身结构设计
第一部分 井身结构设计
第一节 地层—井眼压力系统 第二节 井身结构设计的内容及套管层次 第三节 井身结构设计依据与原理 第四节 井身结构设计方法 第五节 套管与井眼尺寸的选择 第六节 设计举例
井深结构设计

数
出。中原油田将Sk值定为0.06~0.14。
据
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大, 除使机械钻速降低外,而且也是造成压差卡钻的直接
原因,这会使下套管过程中,发生卡套管事故,使已
压差允值(△PN与△Pa)
钻成的井眼无法进行固井和完井工作。压差允值的确 定,各油田可以从卡钻资料中(卡点深度,当时泥浆
当△Prn>△P时,则可能发生压差卡钻,这时,该层套管下 深Hn应浅于初选点Hni。Hn的计算如下:
令△Prn=△P,则允许的最大地层孔隙压力ρpper为:
pper
P 9.8103
Hmm
p min
Sb
由地层孔隙压力梯度曲面图上查ρ 所在井深即该层套管下入 pper
深度Hn。
3)、当中间套管下入深度浅于初选点Hn<Hni时,则需要下尾管
第一节 井身结构设计
一、套管柱类型及作用
图3-8-1-1 套管类型 (a)正常压力井;(b)异常压力井
二、井眼中的压力体系
在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压
力。
三个压力体系必须同时满足于以下情况:
Pf≥Pm≥Pp
(1)
式中 Pf——地层的破裂压力,MPa;
Pm——钻井液的液柱压力,MPa;
作用下, 上部裸露地层不被压裂所应有的地层破
裂压力梯度,g/cm3; ρpmax——第n层套管以下井段预计最大地层孔隙压力等效
密度,g/cm3。
发生井涌情况时,由(4)、(7)(8)式,有:
fnk
pm ax
Sb
Sg
H pmax H ni
Sk
(10)
式中 ρfnk——第n层套管以下井段发生井涌时,在井内最大压力 梯度作用下,上部地层不被压裂所应有的地层破裂
井身结构设计

•2.工程数据
(2)激动压力系数Sg,以当量钻井液密度表示,单位g/cm3。 Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地 区取Sg=0.06,我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值Sf,以当量钻井液密度表示,单位 g/cm3。
Sf是考虑地层破裂压力检测误差而附加的,此值与地层 破裂压力检测精度有关,可由地区统计资料确定。美国 油田Sf取值0.024,我国中原油田取值为0.02~0.03。
•地层压力和地层破裂压力的数据一般是离散的,是由若干个压 力梯度和深度数据的离散点构成。为了求得连续的地层压力和 地层破裂压力梯度剖面,拟合曲线是不适用的,但可依靠线性 插值的方法。在线性插值中,认为离散的两邻点间压力梯度变 化规律为一直线。
•对任意深度H求线性插值的步骤:
•设自上而下顺序为i的点具有深度为Hi,地层压力梯度为GPi, 地层破裂压力梯度为Gfi,而其上部相邻点的序号为i-1,相邻 的地层压力梯度为GPi-1,地层破裂压力梯度为Gfi-1,则在深度 区间Hi~Hi-1内任意深度H有:
m P Sw
钻至某一井深Hx时,发生一个大小为Sk的溢流,停泵关闭防
喷器,立管压力读数为Psd
Psd 0.00981 Sk H
关井后井内有效液柱压力平衡方程为PmE=Pm+Psd
0.00981 mE H 0.00981 H ( P Sw ) 0.00981 Sk H x
mE
P
Sw
Hx H
井身结构设计原理—液体压力体系的当
量梯度分布
Pm Pm 0.0981 mH m
Gm Gm 0.0981 m
•非密封液柱体系 的压力分布和当
量梯度分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
井身结构设计
摘要:井深结构设计是钻井工程的基础设计。
它的主要任务是确定导管的下入层次,下入深度,水泥浆返深,水泥环厚度及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻井目的层的不同,钻井工艺技术水平的高低,不同地区井身结构设计变化较大。
选择井身结构的客观依据是底层岩性特征、底层压力、地层破裂压力。
正确的井身结构设计决定整个油田的开采。
本文基于课本所学的基本内容,对井身结构做一个大致的程序设计。
井身结构设计的内容:
1、确定套管的下入层次
2、下入深度
3、水泥浆返深
4、水泥环厚度
5、钻头尺寸
井身结构设计的基础参数包括地质方面的数据和工程等数据
1.地质方面数据
(1)岩性剖面及故障提示;
(2)地层压力梯度剖面;
(3)地层破裂压力梯度剖面。
2.工程数据
,以当量钻井液密度表示;单位g/cm3:如美国墨西(1)抽汲压力系数S
w
=0.06。
我国中原油田Sw=0.015~0.049。
湾地区采用S
w
,以当量钻井液密度表示,单位g/cm3。
(2)激动压力系数S
g
由计算的激动压力用(2-58)进行计算,美国墨西湾地区取Sg=0.06, S
g
我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值S
,以当量钻井液密度表示,单位g/cm3。
f
S
f
是考虑地层破裂压力检测误差而附加的,此值与地层破裂压力检测精度
有关,可由地区统计资料确定。
美国油田S
f
取值0.024,我国中原油田取值为0.02~0.03。
4)溢流条件S
k
以当量钻井液密度表示,单位g/cm3。
由于地层压力检测误差,溢流压井时,限定地层压力增加值S
k。
此值由地
区压力检测精度和统计数据确定。
美国油田一般取S
k
=0.06。
我国中原油田取值为0.05~0.10。
(5)压差允值P
N (P
a
)
裸眼中,钻井液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差卡钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行固井和完井工作。
压差允值和工艺技术有很大关系。
压差允值的确定,各油田可以从卡钻资料中(卡点深度,当时钻井液密度、卡点地层孔隙压力等)反算出当时的压差值。
再由大量的压差值进行统计分析得出该地区适合的压差允值。
井身结构设计的方法及步骤
1.套管层次和套管柱类型
国内油田套管下入层次为:导管,表层套管,中间套管(或技术套管),油层套管。
表层套管,中间套管,油层套管,一般按(339.7244.5177.8139.7mm(13 3/8 9 5/8 7 5 ½ in)系列进行设计。
(1)根据区域地质情况,确定按正常作业工况或溢流工况选择
(2)利用压力剖面图中最大地层压力梯度求中间套管下入深度假定点。
自横坐标上找到设计的地层破裂压力梯度
fD
,向下引垂直线与地层破裂压
力梯度线相交,交点即为中间套管下入深度假定点,记点H
3。
(3)验证中间套管下入深度H3是否有卡套管危险。
采用 P m-P Pmin P N
式中
m ——钻井深度H
3
时采用的钻井液密度,g/cm3;
P ——H
3
以下裸眼井段最小或正常地层压力梯度当量密度,g/cm3;
H
N
——最深正常地层压力或最小地层压力深度,m。
若P P
N (或P
a
),则假定深度H
3
为中间套管下入深度。
若P>P
N (或P
a
),则中间套管下至H
3
过程中有被卡危险。
在这种情况
下可采取以下方法解决:
a.应用以下公式重新计算中间套管下入深度
(或Pa)
m 是在深度H
N
,允许压差值P
N
(或P
a
)时采用的钻井液密度。
(
m
-S
w
)
=最大允许地层压力。
在压力剖面图上找到(
m -S
w
)值,引垂线与地层压力梯度
线相交,交点即为新计算的中间套管下入深度,记为H
2。
b.应用方法a,往往需多下一层套管或尾管,为了避免这种情况,钻井工程师可根据所在区域钻井工艺技术水平,钻井液体系和性能,从工艺、防卡液上解决中间套管下入到H3的卡钻危险。
(4)计算钻井(或中间)尾管的最大下入深度
在上步中,若按方法a解决压差卡钻危险,则还需下一段中间尾管以
满足采用(
Pmax +S
w
)钻井液密度钻井时,H
3
与H
2
的安全钻井问题。
一般情况下,
中间尾管下至H
3即可。
当然也可根据中间套管鞋处(H
2
)的地层破裂压力梯度,
下推尾管的最大可下深度:
N
N
P
m
P
H∆
=
-)
(
00981
.
0ρ
ρ
P
f
g
W
fH
S
S
Sρ
ρ=
+
+
-)
(
2
fH2
—中间套管鞋处的地层破裂压力梯度,g/cm 3;
P
—中间尾管最大可下深度处地层压力梯,g/cm 3。
在压力梯度剖面图横坐标上找到P
,从
P
引垂线与地层压力梯度线
相交,交点即为中间尾管的最大下入深度H 3。
(5)计算表层套管下入深度H1 根据中间套管鞋处地层压力梯度PH2
,在给事实上S k 的溢流条件,用试算法
计算表层套管的下入深度。
即
式中
fD
——设计地层破裂压力梯度,其工程意义为溢流压井时,表层套管
鞋处承受的有效液柱压力梯度的当量密度。
试算中,当
fH1
-
fD
(0~0.024),即符合设计要求。
(6)进一步校核中间尾管
a.校核中间尾管下入最大深度时,是否有卡套管危险。
校核方法与步骤3相同。
b.校核在给定S k 溢流条件下压井时,中间套管鞋处是否有被压裂的危险。
校核方法同步骤5。
(7)油层套管下入目的层中,应进行压差卡钻和溢流条件校核。
套管尺寸与井眼尺寸选择及配合
1.设计中考虑的因素
(1)生产套管尺寸应满足采油方面要求。
根据生产层的产能、油管大小、增产措施及井下作业等要求来确定。
(2)对于探井,要考虑原设计井深是否要加深,地质上的变化会使原来的预告难于准确,是否要求井眼尺寸上留有余量以便增下中间套管,以及对岩心尺寸要求等。
(3)要考虑到工艺水平,如井眼情况、曲率大小、井斜角以及地质复杂情况带来的问题。
并应考虑管材、钻头等库存规格的限制。
2.套管和井眼尺寸的选择和确定方法
k
f w PH fD S H H
S S 122+++=ρρ
(1)确定井身结构尺寸一般由内向外依次进行,首先确定生产套管尺寸,再确定下入生产套管的井眼尺寸,然后确定中间套管尺寸等,依此类推,直到表层套管的井眼尺寸,最后确定导管尺寸。
(2)生产套管根据采油方面要求来定。
勘探井则按照勘探方面要求来定。
(3)套管与井眼之间有一定间隙,间隙过大则不经济,过小会导致下套管困难及注水泥后水泥过早脱水形成水泥桥。
间隙值一般最小在9.5~12.7mm(3/8~1/2in)范围,最好为19mm(3/4in)。
3.套管及井眼尺寸标准组合
目前国内外所生产的套管尺寸及钻头及尺寸已标准系列化。
套管与其相应井眼的尺寸配合基本确定或在较小范围内变化。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。